1
|
Dincer TU, Ernst J. ChromActivity: integrative epigenomic and functional characterization assay based annotation of regulatory activity across diverse human cell types. Genome Biol 2025; 26:123. [PMID: 40346707 PMCID: PMC12063466 DOI: 10.1186/s13059-025-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
We introduce ChromActivity, a computational framework for predicting and annotating regulatory activity across the genome through integration of multiple epigenomic maps and various functional characterization datasets. ChromActivity generates genomewide predictions of regulatory activity associated with each functional characterization dataset across many cell types based on available epigenomic data. It then for each cell type produces ChromScoreHMM genome annotations based on the combinatorial and spatial patterns within these predictions and ChromScore tracks of overall predicted regulatory activity. ChromActivity provides a resource for analyzing and interpreting the human regulatory genome across diverse cell types.
Collapse
Affiliation(s)
- Tevfik Umut Dincer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Computer Science Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Liu Y, Liu B, Liu J. BINDER achieves accurate identification of hierarchical TADs by comprehensively characterizing consensus TAD boundaries. Genome Res 2025; 35:1194-1208. [PMID: 40097199 PMCID: PMC12047538 DOI: 10.1101/gr.279647.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
As crucial chromatin structures, hierarchical TADs play important roles in epigenetic organization, transcriptional activity, gene regulation, and cell differentiation. Currently, it remains a highly challenging task to accurately identify hierarchical TADs in a computational manner. The key bottleneck for existing TAD callers lies in the difficulty in the prediction of precise TAD boundaries. We solve this problem by introducing a novel algorithm, called BINDER, which conducts a boundary consensus approach, and then precisely locate hierarchical TAD boundaries by developing a multifaceted boundary characterization strategy. In comparison with other leading TAD callers, BINDER shows significant improvement in identifying hierarchical TADs and exhibits the strongest robustness with ultrasparse data, which supports the importance of boundary identification in calling hierarchical TADs. Applying BINDER to experimental data and mouse hematopoietic cases, we find that the hierarchical TADs identified by BINDER show strong biological relevance in their epigenetic organization, transcriptional activity, DNA motifs, and coregulation during cellular differentiation. BINDER discovers differences in the enrichment of two specific transcription factors, CHD1 and CHD2, at TAD boundaries with different hierarchies. It also observes variations in the gene expression of TADs with different hierarchies during cellular differentiation.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai, 264209, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, 250100, China
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai, 264209, China;
| |
Collapse
|
3
|
Brown AR, Fox GA, Kaplow IM, Lawler AJ, Phan BN, Gadey L, Wirthlin ME, Ramamurthy E, May GE, Chen Z, Su Q, McManus CJ, van de Weerd R, Pfenning AR. An in vivo systemic massively parallel platform for deciphering animal tissue-specific regulatory function. Front Genet 2025; 16:1533900. [PMID: 40270544 PMCID: PMC12016043 DOI: 10.3389/fgene.2025.1533900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction: Transcriptional regulation is an important process wherein non-protein coding enhancer sequences play a key role in determining cell type identity and phenotypic diversity. In neural tissue, these gene regulatory processes are crucial for coordinating a plethora of interconnected and regionally specialized cell types, ensuring their synchronized activity in generating behavior. Recognizing the intricate interplay of gene regulatory processes in the brain is imperative, as mounting evidence links neurodevelopment and neurological disorders to non-coding genome regions. While genome-wide association studies are swiftly identifying non-coding human disease-associated loci, decoding regulatory mechanisms is challenging due to causal variant ambiguity and their specific tissue impacts. Methods: Massively parallel reporter assays (MPRAs) are widely used in cell culture to study the non-coding enhancer regions, linking genome sequence differences to tissue-specific regulatory function. However, widespread use in animals encounters significant challenges, including insufficient viral library delivery and library quantification, irregular viral transduction rates, and injection site inflammation disrupting gene expression. Here, we introduce a systemic MPRA (sysMPRA) to address these challenges through systemic intravenous AAV viral delivery. Results: We demonstrate successful transduction of the MPRA library into diverse mouse tissues, efficiently identifying tissue specificity in candidate enhancers and aligning well with predictions from machine learning models. We highlight that sysMPRA effectively uncovers regulatory effects stemming from the disruption of MEF2C transcription factor binding sites, single-nucleotide polymorphisms, and the consequences of genetic variations associated with late-onset Alzheimer's disease. Conclusion: SysMPRA is an effective library delivering method that simultaneously determines the transcriptional functions of hundreds of enhancers in vivo across multiple tissues.
Collapse
Affiliation(s)
- Ashley R. Brown
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Grant A. Fox
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Irene M. Kaplow
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - BaDoi N. Phan
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lahari Gadey
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Morgan E. Wirthlin
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Easwaran Ramamurthy
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gemma E. May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Qiao Su
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Robert van de Weerd
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Andreas R. Pfenning
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Metz S, Belanich JR, Claussnitzer M, Kilpeläinen TO. Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders. CELL GENOMICS 2025:100844. [PMID: 40185091 DOI: 10.1016/j.xgen.2025.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jonathan Robert Belanich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Endocrine Division, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02142, USA
| | - Tuomas Oskari Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Monsen Ø, Grønvold L, Datsomor A, Harvey T, Kijas J, Suh A, Hvidsten TR, Sandve SR. The role of transposon activity in shaping cis-regulatory element evolution after whole-genome duplication. Genome Res 2025; 35:475-488. [PMID: 39939177 PMCID: PMC11960703 DOI: 10.1101/gr.278931.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Whole-genome duplications (WGDs) and transposable element (TE) activity can act synergistically in genome evolution. WGDs can increase TE activity directly through cellular stress or indirectly by relaxing selection against TE insertions in functionally redundant, duplicated regions. Because TEs can function as, or evolve into, TE-derived cis-regulatory elements (TE-CREs), bursts of TE activity following WGD are therefore likely to impact evolution of gene regulation. Yet, the role of TEs in genome regulatory evolution after WGDs is not well understood. Here we used Atlantic salmon as a model system to explore how TE activity after the salmonid WGD ∼100 MYA shaped CRE evolution. We identified 55,080 putative TE-CREs using chromatin accessibility data from the liver and brain. Retroelements were both the dominant source of TE-CREs and had higher regulatory activity in MPRA experiments compared with DNA elements. A minority of TE subfamilies (16%) accounted for 46% of TE-CREs, but these "CRE superspreaders" were mostly active prior to the WGD. Analysis of individual TE insertions, however, revealed enrichment of TE-CREs originating from WGD-associated TE activity, particularly for the DTT (Tc1-Mariner) DNA elements. Furthermore, coexpression analyses supported the presence of TE-driven gene regulatory network evolution, including DTT elements active at the time of WGD. In conclusion, our study supports a scenario in which TE activity has been important in genome regulatory evolution, either through relaxed selective constraints or through strong selection to recalibrate optimal gene expression phenotypes, during a transient period following genome doubling.
Collapse
Affiliation(s)
- Øystein Monsen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Alex Datsomor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Thomas Harvey
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - James Kijas
- Aquaculture Programme, Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Queensland 4067, Australia
| | - Alexander Suh
- School of Biological Sciences-Organisms and the Environment, University of East Anglia, NR4 7TU Norwich, United Kingdom
- Department of Organismal Biology-Systematic Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Simen Rød Sandve
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway;
| |
Collapse
|
6
|
Yang J, Zhou F, Luo X, Fang Y, Wang X, Liu X, Xiao R, Jiang D, Tang Y, Yang G, You L, Zhao Y. Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies. Cell Death Discov 2025; 11:84. [PMID: 40032852 DOI: 10.1038/s41420-025-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
7
|
Segert JA, Bulyk ML. Histone H4 lysine 20 monomethylation is not a mark of transcriptional silencers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632211. [PMID: 39868205 PMCID: PMC11761030 DOI: 10.1101/2025.01.09.632211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Transcriptional silencers are cis-regulatory elements that downregulate the expression of target genes. Although thousands of silencers have been identified experimentally, a predictive chromatin signature of silencers has not been found. H4K20me1 previously was reported to be highly enriched among human silencers, but our reanalysis of those data using an appropriate background revealed that the enrichment is only marginal. We generated H4K20me1 ChIP-seq profiles in Drosophila S2 cells, which similarly showed that H4K20me1 does not mark Drosophila silencers and instead is associated with active transcription. Silencers remain a poorly annotated, difficult to predict class of cis-regulatory elements whose specific chromatin features remain to be identified.
Collapse
Affiliation(s)
- Julian A Segert
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Wang M, Yang X, Wu Q. High-resolution dissection of human cell type-specific enhancers in cis and trans activities. Genomics 2025; 117:110985. [PMID: 39755338 DOI: 10.1016/j.ygeno.2025.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The spatiotemporal-specific gene expression is regulated by cell type-specific regulatory elements. Here we selected the H3K4me1-associated DNA sequences as candidate enhancers in two different human cell lines and performed ChIP-STARR-seq to quantify the cell-type-specific enhancer activities with high-resolution. We investigated how the activity landscape of enhancers would change when transferred from native cells (cis activity) to another cell lines (trans activity). We obtained enhancers cis activity maps and trans activity maps in two different cell lines. The cis and trans activity maps enabled us to identify cell type-specific active enhancers, with enrichment of motifs of differentially expressed TFs. Comparisons between the cis and trans activity maps revealed general consistent regulatory property with different levels of activity in two cell lines, suggesting sequence intrinsic regulatory properties remain similar in different types of cells. This study provides a new perspective on sequence intrinsic enhancer activities in different types of cells.
Collapse
Affiliation(s)
- Meng Wang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, PR China.
| | - Xiaoxu Yang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, PR China
| | - Qixi Wu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
9
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. BMC Genomics 2024; 25:1240. [PMID: 39716078 DOI: 10.1186/s12864-024-11162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. RESULTS We describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor (TF) CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). CONCLUSION HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David J Waxman
- Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Yang SH, Ahmed I, Li Y, Bleaney C, Sharrocks A. Massively parallel reporter assays identify enhancer elements in oesophageal Adenocarcinoma. NAR Cancer 2024; 6:zcae041. [PMID: 39417090 PMCID: PMC11482635 DOI: 10.1093/narcan/zcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a disease underpinned by aberrant gene expression. Enhancers are regulatory elements that play a major role in transcriptional control and changes in active enhancer function are likely critical in the pathogenesis of oesophageal adenocarcinoma (OAC). Here, we utilise STARR-seq to profile the genome-wide enhancer landscape in OAC and identify hundreds of high-confidence enhancer elements. These regions are enriched in enhancer-associated chromatin marks, are actively transcribed and exhibit high levels of associated gene activity in OAC cells. These characteristics are maintained in human patient samples, demonstrating their disease relevance. This relevance is further underlined by their responsiveness to oncogenic ERBB2 inhibition and increased activity compared to the pre-cancerous Barrett's state. Mechanistically, these enhancers are linked to the core OAC transcriptional network and in particular KLF5 binding is associated with high level activity, providing further support for a role of this transcription factor in defining the OAC transcriptome. Our results therefore uncover a set of enhancer elements with physiological significance, that widen our understanding of the molecular alterations in OAC and point to mechanisms through which response to targeted therapy may occur.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ibrahim Ahmed
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Yaoyong Li
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christopher W Bleaney
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Sumida TS, Lincoln MR, He L, Park Y, Ota M, Oguchi A, Son R, Yi A, Stillwell HA, Leissa GA, Fujio K, Murakawa Y, Kulminski AM, Epstein CB, Bernstein BE, Kellis M, Hafler DA. An autoimmune transcriptional circuit drives FOXP3 + regulatory T cell dysfunction. Sci Transl Med 2024; 16:eadp1720. [PMID: 39196959 PMCID: PMC12051482 DOI: 10.1126/scitranslmed.adp1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/30/2024]
Abstract
Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.
Collapse
Affiliation(s)
- Tomokazu S. Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew R. Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M6R 1B5, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M6R 1B5, Canada
| | - Liang He
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Yongjin Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Raku Son
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alice Yi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Helen A. Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Greta A. Leissa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | | | - Bradley E. Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Xu L, Liu Y. Identification, Design, and Application of Noncoding Cis-Regulatory Elements. Biomolecules 2024; 14:945. [PMID: 39199333 PMCID: PMC11352686 DOI: 10.3390/biom14080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of sophisticated and dynamic processes. The rapid advancement in the identification and characterization of these regulatory elements has been marked by initiatives such as the Encyclopedia of DNA Elements (ENCODE) project, which represents a significant milestone in the field. Concurrently, the development of CRE detection technologies, exemplified by massively parallel reporter assays, has progressed at an impressive pace, providing powerful tools for CRE discovery. The exponential growth of multimodal functional genomic data has necessitated the application of advanced analytical methods. Deep learning algorithms, particularly large language models, have emerged as invaluable tools for deconstructing the intricate nucleotide sequences governing CRE function. These advancements facilitate precise predictions of CRE activity and enable the de novo design of CREs. A deeper understanding of CRE operational dynamics is crucial for harnessing their versatile regulatory properties. Such insights are instrumental in refining gene therapy techniques, enhancing the efficacy of selective breeding programs, pushing the boundaries of genetic innovation, and opening new possibilities in microbial synthetic biology.
Collapse
Affiliation(s)
- Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
13
|
Davidson BSA, Arcila-Galvis JE, Trevisan-Herraz M, Mikulasova A, Brackley CA, Russell LJ, Rico D. Evolutionarily conserved enhancer-associated features within the MYEOV locus suggest a regulatory role for this non-coding DNA region in cancer. Front Cell Dev Biol 2024; 12:1294510. [PMID: 39139450 PMCID: PMC11319300 DOI: 10.3389/fcell.2024.1294510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
The myeloma overexpressed gene (MYEOV) has been proposed to be a proto-oncogene due to high RNA transcript levels found in multiple cancers, including myeloma, breast, lung, pancreas and esophageal cancer. The presence of an open reading frame (ORF) in humans and other primates suggests protein-coding potential. Yet, we still lack evidence of a functional MYEOV protein. It remains undetermined how MYEOV overexpression affects cancerous tissues. In this work, we show that MYEOV has likely originated and may still function as an enhancer, regulating CCND1 and LTO1. Firstly, MYEOV 3' enhancer activity was confirmed in humans using publicly available ATAC-STARR-seq data, performed on B-cell-derived GM12878 cells. We detected enhancer histone marks H3K4me1 and H3K27ac overlapping MYEOV in multiple healthy human tissues, which include B cells, liver and lung tissue. The analysis of 3D genome datasets revealed chromatin interactions between a MYEOV-3'-putative enhancer and the proto-oncogene CCND1. BLAST searches and multi-sequence alignment results showed that DNA sequence from this human enhancer element is conserved from the amphibians/amniotes divergence, with a 273 bp conserved region also found in all mammals, and even in chickens, where it is consistently located near the corresponding CCND1 orthologues. Furthermore, we observed conservation of an active enhancer state in the MYEOV orthologues of four non-human primates, dogs, rats, and mice. When studying this homologous region in mice, where the ORF of MYEOV is absent, we not only observed an enhancer chromatin state but also found interactions between the mouse enhancer homolog and Ccnd1 using 3D-genome interaction data. This is similar to the interaction observed in humans and, interestingly, coincides with CTCF binding sites in both species. Taken together, this suggests that MYEOV is a primate-specific gene with a de novo ORF that originated at an evolutionarily older enhancer region. This deeply conserved putative enhancer element could regulate CCND1 in both humans and mice, opening the possibility of studying MYEOV regulatory functions in cancer using non-primate animal models.
Collapse
Affiliation(s)
| | | | | | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris A. Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa J. Russell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
14
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. RESEARCH SQUARE 2024:rs.3.rs-4559581. [PMID: 38978599 PMCID: PMC11230509 DOI: 10.21203/rs.3.rs-4559581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Results Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). Conclusions HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
|
15
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
16
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598329. [PMID: 38915578 PMCID: PMC11195054 DOI: 10.1101/2024.06.10.598329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Departments of Biology and Biomedical Engineering, and Bioinformatics program, Boston University, Boston, MA 02215
| | - David J Waxman
- Departments of Biology and Biomedical Engineering, and Bioinformatics program, Boston University, Boston, MA 02215
| |
Collapse
|
17
|
Uvarova AN, Tkachenko EA, Stasevich EM, Zheremyan EA, Korneev KV, Kuprash DV. Methods for Functional Characterization of Genetic Polymorphisms of Non-Coding Regulatory Regions of the Human Genome. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1002-1013. [PMID: 38981696 DOI: 10.1134/s0006297924060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 07/11/2024]
Abstract
Currently, numerous associations between genetic polymorphisms and various diseases have been characterized through the Genome-Wide Association Studies. Majority of the clinically significant polymorphisms are localized in non-coding regions of the genome. While modern bioinformatic resources make it possible to predict molecular mechanisms that explain influence of the non-coding polymorphisms on gene expression, such hypotheses require experimental verification. This review discusses the methods for elucidating molecular mechanisms underlying dependence of the disease pathogenesis on specific genetic variants within the non-coding sequences. A particular focus is on the methods for identification of transcription factors with binding efficiency dependent on polymorphic variations. Despite remarkable progress in bioinformatic resources enabling prediction of the impact of polymorphisms on the disease pathogenesis, there is still the need for experimental approaches to investigate this issue.
Collapse
Affiliation(s)
- Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Elena A Tkachenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia
| | - Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
18
|
Hansen TJ, Fong SL, Day JK, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. CELL GENOMICS 2024; 4:100536. [PMID: 38604126 PMCID: PMC11019363 DOI: 10.1016/j.xgen.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/03/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.
Collapse
Affiliation(s)
- Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica K Day
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA.
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Sakamoto F, Kanamori S, Díaz LM, Cádiz A, Ishii Y, Yamaguchi K, Shigenobu S, Nakayama T, Makino T, Kawata M. Detection of evolutionary conserved and accelerated genomic regions related to adaptation to thermal niches in Anolis lizards. Ecol Evol 2024; 14:e11117. [PMID: 38455144 PMCID: PMC10920033 DOI: 10.1002/ece3.11117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic basis for adapting to thermal environments is important due to serious effects of global warming on ectothermic species. Various genes associated with thermal adaptation in lizards have been identified mainly focusing on changes in gene expression or the detection of positively selected genes using coding regions. Only a few comprehensive genome-wide analyses have included noncoding regions. This study aimed to identify evolutionarily conserved and accelerated genomic regions using whole genomes of eight Anolis lizard species that have repeatedly adapted to similar thermal environments in multiple lineages. Evolutionarily conserved genomic regions were extracted as regions with overall sequence conservation (regions with fewer base substitutions) across all lineages compared with the neutral model. Genomic regions that underwent accelerated evolution in the lineage of interest were identified as those with more base substitutions in the target branch than in the entire background branch. Conserved elements across all branches were relatively abundant in "intergenic" genomic regions among noncoding regions. Accelerated regions (ARs) of each lineage contained a significantly greater proportion of noncoding RNA genes than the entire multiple alignment. Common genes containing ARs within 5 kb of their vicinity in lineages with similar thermal habitats were identified. Many genes associated with circadian rhythms and behavior were found in hot-open and cool-shaded habitat lineages. These genes might play a role in contributing to thermal adaptation and assist future studies examining the function of genes involved in thermal adaptation via genome editing.
Collapse
Affiliation(s)
- Fuku Sakamoto
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Luis M. Díaz
- National Museum of Natural History of CubaHavanaCuba
| | - Antonio Cádiz
- Faculty of BiologyUniversity of HavanaHavanaCuba
- Present address:
Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | - Yuu Ishii
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Shuji Shigenobu
- Trans‐Omics FacilityNational Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, School of Life ScienceThe Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
| | - Takuro Nakayama
- Division of Life Sciences, Center for Computational SciencesUniversity of TsukubaTsukubaJapan
| | - Takashi Makino
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
20
|
Liu J, Ashuach T, Inoue F, Ahituv N, Yosef N, Kreimer A. Optimizing sequence design strategies for perturbation MPRAs: a computational evaluation framework. Nucleic Acids Res 2024; 52:1613-1627. [PMID: 38296821 PMCID: PMC10939410 DOI: 10.1093/nar/gkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
The advent of perturbation-based massively parallel reporter assays (MPRAs) technique has facilitated the delineation of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. In this study, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Within this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. While our analyses show very similar results across multiple benchmarking metrics, the predictive modeling for the approach involving random nucleotide shuffling shows significant robustness compared with the other two approaches. Thus, we recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA, followed by a coherence check to prevent the introduction of other variations of the target motifs. In summary, our evaluation framework and the benchmarking findings create a resource of computational pipelines and highlight the potential of perturbation-MPRA in predicting non-coding regulatory activities.
Collapse
Affiliation(s)
- Jiayi Liu
- Graduate Program in Cell & Developmental Biology, Rutgers, The State University of New Jersey, 604 Allison Rd, Piscataway, NJ 08854, USA
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, Piscataway, NJ 08854, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720, USA
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Faculty of Medicine Building B, Yoshidatachibanacho, Sakyo Ward, Kyoto 606-8303, Japan
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th Street, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Chan-Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
- Department of Systems Immunology, Ragon Institute of MGH, MIT, and Harvard Institute of Science, 400 Technology Square, Cambridge, MA 02139, USA
| | - Anat Kreimer
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Company C, Schmitt MJ, Dramaretska Y, Serresi M, Kertalli S, Jiang B, Yin JA, Aguzzi A, Barozzi I, Gargiulo G. Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and state changes. Nat Commun 2024; 15:897. [PMID: 38316783 PMCID: PMC10844330 DOI: 10.1038/s41467-024-45069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Descriptive data are rapidly expanding in biomedical research. Instead, functional validation methods with sufficient complexity remain underdeveloped. Transcriptional reporters allow experimental characterization and manipulation of developmental and disease cell states, but their design lacks flexibility. Here, we report logical design of synthetic cis-regulatory DNA (LSD), a computational framework leveraging phenotypic biomarkers and trans-regulatory networks as input to design reporters marking the activity of selected cellular states and pathways. LSD uses bulk or single-cell biomarkers and a reference genome or custom cis-regulatory DNA datasets with user-defined boundary regions. By benchmarking validated reporters, we integrate LSD with a computational ranking of phenotypic specificity of putative cis-regulatory DNA. Experimentally, LSD-designed reporters targeting a wide range of cell states are functional without minimal promoters. Applied to broadly expressed genes from human and mouse tissues, LSD generates functional housekeeper-like sLCRs compatible with size constraints of AAV vectors for gene therapy applications. A mesenchymal glioblastoma reporter designed by LSD outperforms previously validated ones and canonical cell surface markers. In genome-scale CRISPRa screens, LSD facilitates the discovery of known and novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-regulation and is broadly applicable to studying complex cell states and mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Carlos Company
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Sonia Kertalli
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ben Jiang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany.
| |
Collapse
|
22
|
Zhao J, Baltoumas FA, Konnaris MA, Mouratidis I, Liu Z, Sims J, Agarwal V, Pavlopoulos GA, Georgakopoulos--Soares I, Ahituv N. MPRAbase: A Massively Parallel Reporter Assay Database. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567742. [PMID: 38045264 PMCID: PMC10690217 DOI: 10.1101/2023.11.19.567742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Massively parallel reporter assays (MPRAs) represent a set of high-throughput technologies that measure the functional effects of thousands of sequences/variants on gene regulatory activity. There are several different variations of MPRA technology and they are used for numerous applications, including regulatory element discovery, variant effect measurement, saturation mutagenesis, synthetic regulatory element generation or characterization of evolutionary gene regulatory differences. Despite their many designs and uses, there is no comprehensive database that incorporates the results of these experiments. To address this, we developed MPRAbase, a manually curated database that currently harbors 129 experiments, encompassing 17,718,677 elements tested across 35 cell types and 4 organisms. The MPRAbase web interface (http://www.mprabase.com) serves as a centralized user-friendly repository to download existing MPRA data for independent analysis and is designed with the ability to allow researchers to share their published data for rapid dissemination to the community.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, 16672, Greece
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Statistics, Penn State University, State College, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Statistics, Penn State University, State College, PA, USA
| | - Zhe Liu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Jasmine Sims
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi Pasteur Inc., Waltham, MA, USA
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari, 16672, Greece
| | - Ilias Georgakopoulos--Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Statistics, Penn State University, State College, PA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Arnold M, Stengel KR. Emerging insights into enhancer biology and function. Transcription 2023; 14:68-87. [PMID: 37312570 PMCID: PMC10353330 DOI: 10.1080/21541264.2023.2222032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Cell type-specific gene expression is coordinated by DNA-encoded enhancers and the transcription factors (TFs) that bind to them in a sequence-specific manner. As such, these enhancers and TFs are critical mediators of normal development and altered enhancer or TF function is associated with the development of diseases such as cancer. While initially defined by their ability to activate gene transcription in reporter assays, putative enhancer elements are now frequently defined by their unique chromatin features including DNase hypersensitivity and transposase accessibility, bidirectional enhancer RNA (eRNA) transcription, CpG hypomethylation, high H3K27ac and H3K4me1, sequence-specific transcription factor binding, and co-factor recruitment. Identification of these chromatin features through sequencing-based assays has revolutionized our ability to identify enhancer elements on a genome-wide scale, and genome-wide functional assays are now capitalizing on this information to greatly expand our understanding of how enhancers function to provide spatiotemporal coordination of gene expression programs. Here, we highlight recent technological advances that are providing new insights into the molecular mechanisms by which these critical cis-regulatory elements function in gene control. We pay particular attention to advances in our understanding of enhancer transcription, enhancer-promoter syntax, 3D organization and biomolecular condensates, transcription factor and co-factor dependencies, and the development of genome-wide functional enhancer screens.
Collapse
Affiliation(s)
- Mirjam Arnold
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristy R. Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
24
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
25
|
Tovar A, Kyono Y, Nishino K, Bose M, Varshney A, Parker SCJ, Kitzman JO. Using a modular massively parallel reporter assay to discover context-specific regulatory grammars in type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561391. [PMID: 37873175 PMCID: PMC10592691 DOI: 10.1101/2023.10.08.561391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Recent genome-wide association studies have established that most complex disease-associated loci are found in noncoding regions where defining their function is nontrivial. In this study, we leverage a modular massively parallel reporter assay (MPRA) to uncover sequence features linked to context-specific regulatory activity. We screened enhancer activity across a panel of 198-bp fragments spanning over 10k type 2 diabetes- and metabolic trait-associated variants in the 832/13 rat insulinoma cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up-or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin gene ( INS ). We identified clear effects of MPRA construct design on measured fragment enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. A separate set of fragments exhibited promoter bias (n = 698/11,656), mostly towards the cell-specific INS promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with INS promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory variants. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the INS promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.
Collapse
|
26
|
Malfait J, Wan J, Spicuglia S. Epromoters are new players in the regulatory landscape with potential pleiotropic roles. Bioessays 2023; 45:e2300012. [PMID: 37246247 DOI: 10.1002/bies.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Precise spatiotemporal control of gene expression during normal development and cell differentiation is achieved by the combined action of proximal (promoters) and distal (enhancers) cis-regulatory elements. Recent studies have reported that a subset of promoters, termed Epromoters, works also as enhancers to regulate distal genes. This new paradigm opened novel questions regarding the complexity of our genome and raises the possibility that genetic variation within Epromoters has pleiotropic effects on various physiological and pathological traits by differentially impacting multiple proximal and distal genes. Here, we discuss the different observations pointing to an important role of Epromoters in the regulatory landscape and summarize the evidence supporting a pleiotropic impact of these elements in disease. We further hypothesize that Epromoter might represent a major contributor to phenotypic variation and disease.
Collapse
Affiliation(s)
- Juliette Malfait
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, LIGUE, Marseille, France
| | - Jing Wan
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, LIGUE, Marseille, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, LIGUE, Marseille, France
| |
Collapse
|
27
|
Cui Y, Cao Q, Li Y, He M, Liu X. Advances in cis-element- and natural variation-mediated transcriptional regulation and applications in gene editing of major crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5441-5457. [PMID: 37402253 DOI: 10.1093/jxb/erad248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.
Collapse
Affiliation(s)
- Yue Cui
- College of Teacher Education, Molecular and Cellular Postdoctoral Research Station, Hebei Normal University, Shijiazhuang 050024, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiao Cao
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
28
|
Ni P, Wu S, Su Z. Underlying causes for prevalent false positives and false negatives in STARR-seq data. NAR Genom Bioinform 2023; 5:lqad085. [PMID: 37745976 PMCID: PMC10516709 DOI: 10.1093/nargab/lqad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Self-transcribing active regulatory region sequencing (STARR-seq) and its variants have been widely used to characterize enhancers. However, it has been reported that up to 87% of STARR-seq peaks are located in repressive chromatin and are not functional in the tested cells. While some of the STARR-seq peaks in repressive chromatin might be active in other cell/tissue types, some others might be false positives. Meanwhile, many active enhancers may not be identified by the current STARR-seq methods. Although methods have been proposed to mitigate systematic errors caused by the use of plasmid vectors, the artifacts due to the intrinsic limitations of current STARR-seq methods are still prevalent and the underlying causes are not fully understood. Based on predicted cis-regulatory modules (CRMs) and non-CRMs in the human genome as well as predicted active CRMs and non-active CRMs in a few human cell lines/tissues with STARR-seq data available, we reveal prevalent false positives and false negatives in STARR-seq peaks generated by major variants of STARR-seq methods and possible underlying causes. Our results will help design strategies to improve STARR-seq methods and interpret the results.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Siwen Wu
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
29
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
30
|
Dincer TU, Ernst J. Integrative epigenomic and functional characterization assay based annotation of regulatory activity across diverse human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549056. [PMID: 37503240 PMCID: PMC10369970 DOI: 10.1101/2023.07.14.549056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We introduce ChromActivity, a computational framework for predicting and annotating regulatory activity across the genome through integration of multiple epigenomic maps and various functional characterization datasets. ChromActivity generates genomewide predictions of regulatory activity associated with each functional characterization dataset across many cell types based on available epigenomic data. It then for each cell type produces (1) ChromScoreHMM genome annotations based on the combinatorial and spatial patterns within these predictions and (2) ChromScore tracks of overall predicted regulatory activity. ChromActivity provides a resource for analyzing and interpreting the human regulatory genome across diverse cell types.
Collapse
Affiliation(s)
- Tevfik Umut Dincer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, CA, 90095, USA
- Computer Science Department, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
31
|
Hussain S, Sadouni N, van Essen D, Dao LTM, Ferré Q, Charbonnier G, Torres M, Gallardo F, Lecellier CH, Sexton T, Saccani S, Spicuglia S. Short tandem repeats are important contributors to silencer elements in T cells. Nucleic Acids Res 2023; 51:4845-4866. [PMID: 36929452 PMCID: PMC10250210 DOI: 10.1093/nar/gkad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The action of cis-regulatory elements with either activation or repression functions underpins the precise regulation of gene expression during normal development and cell differentiation. Gene activation by the combined activities of promoters and distal enhancers has been extensively studied in normal and pathological contexts. In sharp contrast, gene repression by cis-acting silencers, defined as genetic elements that negatively regulate gene transcription in a position-independent fashion, is less well understood. Here, we repurpose the STARR-seq approach as a novel high-throughput reporter strategy to quantitatively assess silencer activity in mammals. We assessed silencer activity from DNase hypersensitive I sites in a mouse T cell line. Identified silencers were associated with either repressive or active chromatin marks and enriched for binding motifs of known transcriptional repressors. CRISPR-mediated genomic deletions validated the repressive function of distinct silencers involved in the repression of non-T cell genes and genes regulated during T cell differentiation. Finally, we unravel an association of silencer activity with short tandem repeats, highlighting the role of repetitive elements in silencer activity. Our results provide a general strategy for genome-wide identification and characterization of silencer elements.
Collapse
Affiliation(s)
- Saadat Hussain
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Nori Sadouni
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Dominic van Essen
- Institute for Research on Cancer and Ageing, IRCAN, 06107 Nice, France
| | - Lan T M Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Quentin Ferré
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Frederic Gallardo
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Tom Sexton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire – IGBMC (CNRS UMR 7104, INSERM U1258, Université de Strasbourg), 67404 Illkirch, France
| | - Simona Saccani
- Institute for Research on Cancer and Ageing, IRCAN, 06107 Nice, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
32
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
33
|
Stefan K, Barski A. Cis-regulatory atlas of primary human CD4+ T cells. BMC Genomics 2023; 24:253. [PMID: 37170195 PMCID: PMC10173520 DOI: 10.1186/s12864-023-09288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Cis-regulatory elements (CRE) are critical for coordinating gene expression programs that dictate cell-specific differentiation and homeostasis. Recently developed self-transcribing active regulatory region sequencing (STARR-Seq) has allowed for genome-wide annotation of functional CREs. Despite this, STARR-Seq assays are only employed in cell lines, in part, due to difficulties in delivering reporter constructs. Herein, we implemented and validated a STARR-Seq-based screen in human CD4+ T cells using a non-integrating lentiviral transduction system. Lenti-STARR-Seq is the first example of a genome-wide assay of CRE function in human primary cells, identifying thousands of functional enhancers and negative regulatory elements (NREs) in human CD4+ T cells. We find an unexpected difference in nucleosome organization between enhancers and NRE: enhancers are located between nucleosomes, whereas NRE are occupied by nucleosomes in their endogenous locations. We also describe chromatin modification, eRNA production, and transcription factor binding at both enhancers and NREs. Our findings support the idea of silencer repurposing as enhancers in alternate cell types. Collectively, these data suggest that Lenti-STARR-Seq is a successful approach for CRE screening in primary human cell types, and provides an atlas of functional CREs in human CD4+ T cells.
Collapse
Affiliation(s)
- Kurtis Stefan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229-3026, USA
- Medical Scientist Training Program (MSTP), University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229-3026, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3026, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
34
|
Das M, Hossain A, Banerjee D, Praul CA, Girirajan S. Challenges and considerations for reproducibility of STARR-seq assays. Genome Res 2023; 33:479-495. [PMID: 37130797 PMCID: PMC10234304 DOI: 10.1101/gr.277204.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
High-throughput methods such as RNA-seq, ChIP-seq, and ATAC-seq have well-established guidelines, commercial kits, and analysis pipelines that enable consistency and wider adoption for understanding genome function and regulation. STARR-seq, a popular assay for directly quantifying the activities of thousands of enhancer sequences simultaneously, has seen limited standardization across studies. The assay is long, with more than 250 steps, and frequent customization of the protocol and variations in bioinformatics methods raise concerns for reproducibility of STARR-seq studies. Here, we assess each step of the protocol and analysis pipelines from published sources and in-house assays, and identify critical steps and quality control (QC) checkpoints necessary for reproducibility of the assay. We also provide guidelines for experimental design, protocol scaling, customization, and analysis pipelines for better adoption of the assay. These resources will allow better optimization of STARR-seq for specific research needs, enable comparisons and integration across studies, and improve the reproducibility of results.
Collapse
Affiliation(s)
- Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayaan Hossain
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepro Banerjee
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig Alan Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
35
|
Ren N, Dai S, Ma S, Yang F. Strategies for activity analysis of single nucleotide polymorphisms associated with human diseases. Clin Genet 2023; 103:392-400. [PMID: 36527336 DOI: 10.1111/cge.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Genome-wide association studies (GWAS) have identified a large number of single nucleotide polymorphism (SNP) sites associated with human diseases. In the annotation of human diseases, especially cancers, SNPs, as an important component of genetic factors, have gained increasing attention. Given that most of the SNPs are located in non-coding regions, the functional verification of these SNPs is a great challenge. The key to functional annotation for risk SNPs is to screen SNPs with regulatory activity from thousands of disease associated-SNPs. In this review, we systematically recapitulate the characteristics and functional roles of SNP sites, discuss three parallel reporter screening strategies in detail based on barcode tag classification, and recommend the common in silico strategies to help supplement the annotation of SNP sites with epigenetic activity analysis, prediction of target genes and trans-acting factors. We hope that this review will contribute to this exuberant research field by providing robust activity analysis strategies that can facilitate the translation of GWAS results into personalized diagnosis and prevention measures for human diseases.
Collapse
Affiliation(s)
- Naixia Ren
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shangkun Dai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shumin Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
36
|
Hansen T, Fong S, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528376. [PMID: 36824965 PMCID: PMC9949080 DOI: 10.1101/2023.02.14.528376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie >50% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-to regulatory differences between species.
Collapse
Affiliation(s)
- Tyler Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Sarah Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Lead contact
| |
Collapse
|
37
|
Gallego Romero I, Lea AJ. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biol 2023; 24:26. [PMID: 36788564 PMCID: PMC9926830 DOI: 10.1186/s13059-023-02856-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia. .,School of BioSciences, The University of Melbourne, Royal Parade, Parkville, 3010, Australia. .,The Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3010, Australia. .,Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Amanda J. Lea
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37240 USA ,Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| |
Collapse
|
38
|
Juhas M. Artificial Intelligence in Microbiology. BRIEF LESSONS IN MICROBIOLOGY 2023:93-109. [DOI: 10.1007/978-3-031-29544-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
Morova T, Ding Y, Huang CCF, Sar F, Schwarz T, Giambartolomei C, Baca S, Grishin D, Hach F, Gusev A, Freedman M, Pasaniuc B, Lack N. Optimized high-throughput screening of non-coding variants identified from genome-wide association studies. Nucleic Acids Res 2022; 51:e18. [PMID: 36546757 PMCID: PMC9943666 DOI: 10.1093/nar/gkac1198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.
Collapse
Affiliation(s)
- Tunc Morova
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Yi Ding
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Funda Sar
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova 16163, Italy,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Dennis Grishin
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada,Department of Urologic Science, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Alexander Gusev
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,The Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan A Lack
- To whom correspondence should be addressed. Tel: +1 604 875 4411;
| |
Collapse
|
40
|
Tabet D, Parikh V, Mali P, Roth FP, Claussnitzer M. Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annu Rev Genet 2022; 56:441-465. [PMID: 36055970 DOI: 10.1146/annurev-genet-072920-032107] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Scalable sequence-function studies have enabled the systematic analysis and cataloging of hundreds of thousands of coding and noncoding genetic variants in the human genome. This has improved clinical variant interpretation and provided insights into the molecular, biophysical, and cellular effects of genetic variants at an astonishing scale and resolution across the spectrum of allele frequencies. In this review, we explore current applications and prospects for the field and outline the principles underlying scalable functional assay design, with a focus on the study of single-nucleotide coding and noncoding variants.
Collapse
Affiliation(s)
- Daniel Tabet
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Victoria Parikh
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Frederick P Roth
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA;
| |
Collapse
|
41
|
Giacoman-Lozano M, Meléndez-Ramírez C, Martinez-Ledesma E, Cuevas-Diaz Duran R, Velasco I. Epigenetics of neural differentiation: Spotlight on enhancers. Front Cell Dev Biol 2022; 10:1001701. [PMID: 36313573 PMCID: PMC9606577 DOI: 10.3389/fcell.2022.1001701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mayela Giacoman-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, Mexico
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| |
Collapse
|
42
|
Ni P, Moe J, Su Z. Accurate prediction of functional states of cis-regulatory modules reveals common epigenetic rules in humans and mice. BMC Biol 2022; 20:221. [PMID: 36199141 PMCID: PMC9535988 DOI: 10.1186/s12915-022-01426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predicting cis-regulatory modules (CRMs) in a genome and their functional states in various cell/tissue types of the organism are two related challenging computational tasks. Most current methods attempt to simultaneously achieve both using data of multiple epigenetic marks in a cell/tissue type. Though conceptually attractive, they suffer high false discovery rates and limited applications. To fill the gaps, we proposed a two-step strategy to first predict a map of CRMs in the genome, and then predict functional states of all the CRMs in various cell/tissue types of the organism. We have recently developed an algorithm for the first step that was able to more accurately and completely predict CRMs in a genome than existing methods by integrating numerous transcription factor ChIP-seq datasets in the organism. Here, we presented machine-learning methods for the second step. RESULTS We showed that functional states in a cell/tissue type of all the CRMs in the genome could be accurately predicted using data of only 1~4 epigenetic marks by a variety of machine-learning classifiers. Our predictions are substantially more accurate than the best achieved so far. Interestingly, a model trained on a cell/tissue type in humans can accurately predict functional states of CRMs in different cell/tissue types of humans as well as of mice, and vice versa. Therefore, epigenetic code that defines functional states of CRMs in various cell/tissue types is universal at least in humans and mice. Moreover, we found that from tens to hundreds of thousands of CRMs were active in a human and mouse cell/tissue type, and up to 99.98% of them were reutilized in different cell/tissue types, while as small as 0.02% of them were unique to a cell/tissue type that might define the cell/tissue type. CONCLUSIONS Our two-step approach can accurately predict functional states in any cell/tissue type of all the CRMs in the genome using data of only 1~4 epigenetic marks. Our approach is also more cost-effective than existing methods that typically use data of more epigenetic marks. Our results suggest common epigenetic rules for defining functional states of CRMs in various cell/tissue types in humans and mice.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Joshua Moe
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
43
|
Nagayasu K, Andoh C, Shirakawa H, Kaneko S. Diff-ATAC-STARR-Seq: A Method for Genome-Wide Functional Screening of Enhancer Activity in Vivo. Biol Pharm Bull 2022; 45:1590-1595. [PMID: 36184520 DOI: 10.1248/bpb.b22-00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional regulatory elements, including promoters and enhancers, play a key role in the cell-type specific regulation of the transcriptome. Application of rapidly evolving genetic tools, such as optogenetic/chemogenetic actuators and fluorescent reporters to elucidate the function of cell subtypes in vivo necessitates cell-type specific promoters or enhancers. In this context, methods for genome-wide functional screening of cis-regulatory elements, including enhancers, are of utmost importance. In this study, we describe a novel method for genome-wide functional screening of enhancer activity in vivo with minimal handling. Application of the method to cells from different brain structures and subsequent differential analysis allow identification of active enhancers in the target tissue or brain structures. To demonstrate proof of concept, we applied this method to samples from the dorsal raphe nucleus (DRN) and the medial prefrontal cortex of the mouse brain and successfully identified six enhancers with highly biased activity towards the dorsal raphe nucleus. Considering that these two structures consist of largely similar cell types whereas serotonin and dopamine neurons exist only in the DRN, our results confirm the validity of this method in identifying cell-type specific and brain-structure specific enhancers. Overall, this method will be helpful in identifying cis-regulatory elements suitable for cell-type specific manipulations.
Collapse
Affiliation(s)
- Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
44
|
Bergeron BP, Diedrich JD, Zhang Y, Barnett KR, Dong Q, Ferguson DC, Autry RJ, Yang W, Hansen BS, Smith C, Crews KR, Fan Y, Pui CH, Pruett-Miller SM, Relling MV, Yang JJ, Li C, Evans WE, Savic D. Epigenomic profiling of glucocorticoid responses identifies cis-regulatory disruptions impacting steroid resistance in childhood acute lymphoblastic leukemia. Leukemia 2022; 36:2374-2383. [PMID: 36028659 PMCID: PMC9522591 DOI: 10.1038/s41375-022-01685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022]
Abstract
Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.
Collapse
Affiliation(s)
- Brennan P Bergeron
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly R Barnett
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Dong
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chunliang Li
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
45
|
Hansen TJ, Hodges E. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome. Genome Res 2022; 32:1529-1541. [PMID: 35858748 PMCID: PMC9435738 DOI: 10.1101/gr.276766.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Massively parallel reporter assays (MPRAs) test the capacity of putative gene regulatory elements to drive transcription on a genome-wide scale. Most gene regulatory activity occurs within accessible chromatin, and recently described methods have combined assays that capture these regions-such as assay for transposase-accessible chromatin using sequencing (ATAC-seq)-with self-transcribing active regulatory region sequencing (STARR-seq) to selectively assay the regulatory potential of accessible DNA (ATAC-STARR-seq). Here, we report an integrated approach that quantifies activating and silencing regulatory activity, chromatin accessibility, and transcription factor (TF) occupancy with one assay using ATAC-STARR-seq. Our strategy, including important updates to the ATAC-STARR-seq assay and workflow, enabled high-resolution testing of ∼50 million unique DNA fragments tiling ∼101,000 accessible chromatin regions in human lymphoblastoid cells. We discovered that 30% of all accessible regions contain an activator, a silencer, or both. Although few MPRA studies have explored silencing activity, we demonstrate that silencers occur at similar frequencies to activators, and they represent a distinct functional group enriched for unique TF motifs and repressive histone modifications. We further show that Tn5 cut-site frequencies are retained in the ATAC-STARR plasmid library compared to standard ATAC-seq, enabling TF occupancy to be ascertained from ATAC-STARR data. With this approach, we found that activators and silencers cluster by distinct TF footprint combinations, and these groups of activity represent different gene regulatory networks of immune cell function. Altogether, these data highlight the multilayered capabilities of ATAC-STARR-seq to comprehensively investigate the regulatory landscape of the human genome all from a single DNA fragment source.
Collapse
Affiliation(s)
- Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
46
|
Yao L, Liang J, Ozer A, Leung AKY, Lis JT, Yu H. A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. Nat Biotechnol 2022; 40:1056-1065. [PMID: 35177836 PMCID: PMC9288987 DOI: 10.1038/s41587-022-01211-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 01/15/2023]
Abstract
Mounting evidence supports the idea that transcriptional patterns serve as more specific identifiers of active enhancers than histone marks; however, the optimal strategy to identify active enhancers both experimentally and computationally has not been determined. Here, we compared 13 genome-wide RNA sequencing (RNA-seq) assays in K562 cells and show that nuclear run-on followed by cap-selection assay (GRO/PRO-cap) has advantages in enhancer RNA detection and active enhancer identification. We also introduce a tool, peak identifier for nascent transcript starts (PINTS), to identify active promoters and enhancers genome wide and pinpoint the precise location of 5' transcription start sites. Finally, we compiled a comprehensive enhancer candidate compendium based on the detected enhancer RNA (eRNA) transcription start sites (TSSs) available in 120 cell and tissue types, which can be accessed at https://pints.yulab.org . With knowledge of the best available assays and pipelines, this large-scale annotation of candidate enhancers will pave the way for selection and characterization of their functions in a time- and labor-efficient manner.
Collapse
Affiliation(s)
- Li Yao
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jin Liang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Alden King-Yung Leung
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
47
|
Warren TL, Lambert JT, Nord AS. AAV Deployment of Enhancer-Based Expression Constructs In Vivo in Mouse Brain. J Vis Exp 2022:10.3791/62650. [PMID: 35435902 PMCID: PMC10010840 DOI: 10.3791/62650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Enhancers are binding platforms for a diverse array of transcription factors that drive specific expression patterns of tissue- and cell-type-specific genes. Multiple means of assessing non-coding DNA and various chromatin states have proven useful in predicting the presence of enhancer sequences in the genome, but validating the activity of these sequences and finding the organs and developmental stages they are active in is a labor-intensive process. Recent advances in adeno-associated virus (AAV) vectors have enabled the widespread delivery of transgenes to mouse tissues, enabling in vivo enhancer testing without necessitating a transgenic animal. This protocol shows how a reporter construct that expresses EGFP under the control of a minimal promoter, which does not drive significant expression on its own, can be used to study the activity patterns of candidate enhancer sequences in the mouse brain. An AAV-packaged reporter construct is delivered to the mouse brain and incubated for 1-4 weeks, after which the animal is sacrificed, and brain sections are observed under a microscope. EGFP appears in cells in which the tested enhancer is sufficient to initiate gene expression, pinpointing the location and developmental stage in which the enhancer is active in the brain. Standard cloning methods, low-cost AAV packaging, and expanding AAV serotypes and methods for in vivo delivery and standard imaging readout make this an accessible approach for the study of how gene expression is regulated in the brain.
Collapse
Affiliation(s)
- Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis;
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis;
| |
Collapse
|
48
|
Mustafi D, Hisama FM, Huey J, Chao JR. The current state of genetic testing platforms for inherited retinal diseases. Ophthalmol Retina 2022; 6:702-710. [PMID: 35307606 PMCID: PMC9356993 DOI: 10.1016/j.oret.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate genetic testing platforms used to aid in the diagnosis of inherited retinal degenerations (IRDs). DESIGN Evaluation of diagnostic test or technology SUBJECTS: Targeted genetic panel testing for IRDs METHODS, INTERVENTION, OR TESTING: Data collected regarding targeted genetic panel testing for IRDs offered by different labs were investigated for inclusion of coding and non-coding variants in disease genes. Both large IRD panels and smaller, more focused disease specific panels were included in the analysis. MAIN OUTCOME MEASURES Number of disease genes tested as well as the commonality and uniqueness across testing platforms in both coding and non-coding variants of disease. RESULTS Across the three IRD panel tests investigated, 409 unique genes are represented, of which 269 genes are tested by all three panels. The top 20 genes known to cause over 70% of all IRDs are represented in the 269 common genes tested by all three panels. In addition, 138 non-coding variants are assayed across the three platforms in 50 unique genes. Focused disease specific panels exhibited significant variability across 5 testing platforms that were studied. CONCLUSIONS Ordering genetic testing for IRDs is not straightforward, as evidenced by the multitude of panels available to providers. It is important that there is coverage of both coding and non-coding regions in IRD genes to offer a diagnosis in these patients. This paper details the diversity of testing platforms currently available to clinicians and provides a thorough explanation of genes tested in the different IRD panels. In a time of increased importance for clinical genetic testing of IRD patients, knowledge of the proper test to order is paramount.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Ophthalmology, University of Washington, Seattle, Washington; Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington.
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Jennifer Huey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Yan J, Huangfu D. Epigenome rewiring in human pluripotent stem cells. Trends Cell Biol 2022; 32:259-271. [PMID: 34955367 PMCID: PMC8840982 DOI: 10.1016/j.tcb.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
The epigenome plays a crucial role in modulating the activity of regulatory elements, thereby orchestrating diverse transcriptional programs during embryonic development. Human (h)PSC stepwise differentiation provides an excellent platform for capturing dynamic epigenomic events during lineage transition in human development. Here we discuss how recent technological advances, from epigenomic mapping to targeted perturbation, are providing a more comprehensive appreciation of remodeling of the chromatin landscape during human development with implications for aberrant rewiring in disease. We predict that the continuous innovation of hPSC differentiation methods, epigenome mapping, and CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technologies will allow researchers to build toward not only a comprehensive understanding of the epigenomic mechanisms governing development, but also a highly flexible way to model diseases with opportunities for translation.
Collapse
Affiliation(s)
- Jielin Yan
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
50
|
He N, Wang W, Fang C, Tan Y, Li L, Hou C. Integration of Count Difference and Curve Similarity in Negative Regulatory Element Detection. Front Genet 2022; 13:818344. [PMID: 35251128 PMCID: PMC8896116 DOI: 10.3389/fgene.2022.818344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Negative regulatory elements (NREs) down-regulate gene expression by inhibiting the activities of promoters or enhancers. The repressing activity of NREs can be measured globally by massively parallel reporter assays (MPRAs). However, most existing algorithms are designed for the statistical detection of positively enriched signals in MPRA datasets. To identify reduced signals in MPRA experiments, we designed a NRE identification program, fast-NR, by integrating the count and graphic features of sequenced reads to detect NREs using datasets generated by experiments of self-transcribing active regulatory region sequencing (STARR-seq). Fast-NR identified hundreds of silencers in human K562 cells that can be validated by independent methods.
Collapse
Affiliation(s)
- Na He
- Harbin Institute of Technology, Harbin, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Chunhui Hou, ; Na He,
| | - Wenjing Wang
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chao Fang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yongjian Tan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Li Li
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Hou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Chunhui Hou, ; Na He,
| |
Collapse
|