1
|
Griffin LP, Streit TN, Sievers R, Aldridge S, Gomila RM, Frontera A, Malischewski M. Crystallographic Evidence for Bi(I) as the Heaviest Halogen Bond Acceptor. J Am Chem Soc 2024; 146:29877-29882. [PMID: 39423030 PMCID: PMC11528405 DOI: 10.1021/jacs.4c11901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Complexation of the green bismuthinidene (RBi) with two equivalents of a highly fluorinated aryl iodide at low temperature allows the crystallographic identification of an unstable red species that can be regarded as an intermediate in an overall Bi(I) → Bi(III) oxidation process. Both C-I bonds are orientated toward the filled 6p orbital of bismuth (Bi-I distances 3.44-3.52 Å), leading to an elongation of the C-I bonds by 0.05 and 0.07 Å. Density functional theory (DFT) calculations confirm that the Bi(I) center is indeed acting as an electron donor, establishing two strong and directional halogen bonds. The color change from green to red upon halogen bond formation is a consequence of the energetic stabilization of a Bi(I) lone pair by interactions with the sigma-holes of the halogen bond donors. Overall, this study presents the first structural proof of bismuth, and more generally of heavy organopnictogen(I) compounds, acting as halogen bond acceptors.
Collapse
Affiliation(s)
- Liam P. Griffin
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Tim-Niclas Streit
- Freie
Universität Berlin, Institut für Anorganische Chemie, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Robin Sievers
- Freie
Universität Berlin, Institut für Anorganische Chemie, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Simon Aldridge
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Rosa M. Gomila
- Department
of Chemistry, Universitat de les Illes Balears, Crta de valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Crta de valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Moritz Malischewski
- Freie
Universität Berlin, Institut für Anorganische Chemie, Fabeckstraße 34-36, D-14195 Berlin, Germany
| |
Collapse
|
2
|
Posavec L, Cinčić D. Isothiocyanate Sulfur Atom as an Acceptor Site for Halogen-Bonded Cocrystallization of Werner Ni(II) Coordination Compounds and Perfluorinated Iodobenzenes. CRYSTAL GROWTH & DESIGN 2024; 24:7514-7523. [PMID: 39323605 PMCID: PMC11421206 DOI: 10.1021/acs.cgd.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
We explore the halogen bond acceptor potential of the isothiocyanate sulfur atom in the synthesis of cocrystals involving metal-organic building blocks by using Werner Ni(II) coordination compounds whose pendant isothiocyanate group enables halogen bonding. A series of 14 cocrystals involving octahedral Ni(L)4(NCS)2 coordination compounds (L = pyridine or 4-methylpyridine) has been prepared by both crystallization from solution and liquid-assisted grinding. The effectiveness of this strategy is demonstrated by the assembly of a large family of cocrystals involving five perfluorinated iodobenzenes. For both coordination compounds, we generally obtained one cocrystal with each donor; in one case, we obtained an additional two stoichiomorphs, and in another, we obtained three additional solvates. Single-crystal X-ray diffraction experiments revealed that building units in all cocrystals are connected via S···I halogen bonds involving the donor iodine atom and the isothiocyanate sulfur atom, which is an acceptor of two and, in some cases, even three halogen bonds. Consequently, both coordination compounds act as multitopic acceptors that can form multiple halogen bonds leading to the formation of one-, two-, and three-dimensional halogen-bonded architectures. The relative shortenings of S···I distances are from 7 to 15%, while the S···I-C angles are in the range from 160 to 180°.
Collapse
Affiliation(s)
- Lidija Posavec
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Rautiainen JM, Valkonen A, Lundell J, Rissanen K, Puttreddy R. The Geometry and Nature of C─I···O─N Interactions in Perfluoroiodobenzene-Pyridine N-oxide Halogen-Bonded Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403945. [PMID: 38870234 PMCID: PMC11321645 DOI: 10.1002/advs.202403945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Indexed: 06/15/2024]
Abstract
The N─Oxide oxygen in the 111 C─I···⁻O─N+ halogen bond (XB) complexes, formed by five perfluoroiodobenzene XB donors and 32 pyridine N-oxides (PyNO) XB acceptors, exhibits three XB modes: bidentate, tridentate, and monodentate. Their C─I···O XB angles range from 148° to 180°, reflecting the iodine σ-hole's structure-guiding influence. The I···⁻O─N+ angles range from 87° to 152°. On the contrary, the I···⁻O─N+ angles have a narrower range from 107° to 125° in stronger monodentate N─I···⁻O─N+ XBs of N-iodoimides and PyNOs. The C─I···⁻O─N+ systems exhibit a larger variation in I···⁻O─N+ angles due to weaker XB donor perfluoroiodoaromatics forming weak I···O XBs, which allows wider access to electron-rich N-O group regions. Density Functional Theory analysis shows that I···O interactions are attractive even when the I···⁻O─N+ angle is ≈80°. Correlation analysis of structural parameters showed that weak I···O XBs in perfluoroiodobenzene-PyNO complexes affect the C─I bond via n(O)→σ*(C─I) donation less than the N─I bond via n(O)→σ*(N─I) donation in very strong I···O XBs of N-iodoimide-PyNO complexes. This implies that PyNOs' oxygen self-tunes its XB acceptor property, dependent on the XB donor σ-hole strength affecting the bonding denticity, geometry, and interaction energies.
Collapse
Affiliation(s)
| | - Arto Valkonen
- Department of chemistryUniversity of JyvaskylaP.O. BOX 35JyvaskylaFI‐40014Finland
| | - Jan Lundell
- Department of chemistryUniversity of JyvaskylaP.O. BOX 35JyvaskylaFI‐40014Finland
| | - Kari Rissanen
- Department of chemistryUniversity of JyvaskylaP.O. BOX 35JyvaskylaFI‐40014Finland
| | - Rakesh Puttreddy
- Department of chemistryUniversity of JyvaskylaP.O. BOX 35JyvaskylaFI‐40014Finland
| |
Collapse
|
4
|
Baus Topić N, Dash SG, Topić E, Arhangelskis M, Cinčić D. Perhalogenated Anilines as Bifunctional Donors of Hydrogen and Halogen Bonds in Cocrystals with Ditopic Nitrogen-Containing Acceptors. CRYSTAL GROWTH & DESIGN 2024; 24:5078-5088. [PMID: 38911136 PMCID: PMC11191752 DOI: 10.1021/acs.cgd.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
In this study, we examine the experimental and theoretical capabilities of two perhalogenated anilines, 2,3,5,6-tetrafluoro-4-bromoaniline (btfa) and 2,3,5,6-tetrafluoro-4-iodoaniline (itfa) as hydrogen and halogen bond donors. A series of 11 cocrystals derived from the two anilines and selected ditopic nitrogen-containing acceptors (4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane, and 1,4-diazabicyclo[2.2.2]octane) in 1:1 and 2:1 stoichiometries were prepared by liquid-assisted grinding and crystallization from solution. Crystallographic analysis revealed bifunctional donor properties in both anilines. The dominant supramolecular interaction in four cocrystals of btfa is the N-H···Nacceptor hydrogen bond between btfa and acceptor molecules, while in the one remaining cocrystal, donor and acceptor molecules are connected via the N-H···Nacceptor hydrogen bond and the Br···Nacceptor halogen bond. In two cocrystals of itfa, the dominant supramolecular interaction is the I···Nacceptor halogen bond between itfa and acceptor molecules, while in the remaining four cocrystals, donor and acceptor molecules are additionally connected by the N-H···Nacceptor hydrogen bond. Periodic density-functional theory (DFT) calculations have been conducted to assess the formation energies of these cocrystals and the strengths of the established halogen and hydrogen bonds. Molecular DFT calculations on btfa and itfa indicate that the differences in electrostatic potential between the competing sites on the molecules are 261.6 and 157.0 kJ mol-1 e-1, respectively. The findings suggest that itfa, with a smaller electrostatic potential difference between donor sites, is more predisposed to act as a bifunctional donor.
Collapse
Affiliation(s)
- Nea Baus Topić
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sibananda G. Dash
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura Street, Warsaw 02-093, Poland
| | - Edi Topić
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mihails Arhangelskis
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura Street, Warsaw 02-093, Poland
| | - Dominik Cinčić
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Wang Z, Cao Z, Hao A, Xing P. Pnictogen bonding in imide derivatives for chiral folding and self-assembly. Chem Sci 2024; 15:6924-6933. [PMID: 38725497 PMCID: PMC11077576 DOI: 10.1039/d4sc00554f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies. Though the presence of PnB has limited effects on spectroscopic properties in the solution phase, conformation locking effects are sufficiently expressed in the chiral folding and self-assembly behavior. PnB anchors the chiral conformation to control the emergence and inversion of chiroptical signals, while intramolecular PnB induces the formation of supramolecular tilt chirality. It also enables the chiral folding of imide-containing amino acid or peptide derivatives, which induces the formation of unique secondary structural sequences such as β-sheets. Finally, the effects of PnB in directing folded helical structures were revealed. Examples of cysteine and cystine derivatives containing multiple N⋯O and N⋯S PnBs constitute an α-helix like secondary structure with characteristic circular dichroism. This work discloses the comprehensive existence of imide-involved PnB, illustrates its important role in folding and self-assembly, and sheds light on the rational fabrication of conformation-locked compounds and polymers with controllable chiroptical activities.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
6
|
Medvedev AG, Medved'ko AV, Vener MV, Churakov AV, Prikhodchenko PV, Vatsadze SZ. Dioxygen-halogen bonding exemplified by crystalline peroxosolvates of N, N'-bis(haloacetyl) bispidines. Phys Chem Chem Phys 2024; 26:5195-5206. [PMID: 38261463 DOI: 10.1039/d3cp05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The halogen bonding in molecular crystals and supramolecular assemblies has been widely investigated. Special attention is given to the molecular structures capable of simultaneously exhibiting different types of non-covalent interactions, including conventional hydrogen bonds and halogen bonds. This paper systematically analyzes crystalline peroxosolvates of bispidine-based bis-amide derivatives, containing haloacetic acid residues, namely previously reported 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodooethanone) peroxosolvate C13H20I2N2O2·H2O2 (1) and four new crystalline compounds, 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O2·H2O2 (2), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodoethanone) peroxosolvate C13H20I2N2O5·0.5H2O2 (3), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O5·H2O2 (4), and 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-chloroethanone) peroxosolvate C13H20Cl2N2O5·H2O2 (5). Compounds 2-5 were synthesized for the first time and their crystal structures were determined by single-crystal X-ray diffractometry (SCXRD). To the best of our knowledge, 3-5 are unprecedented crystalline hydrogen peroxide adducts of organic hydroperoxides (R-OOH). Short intermolecular contacts between halogen and hydroperoxo oxygen atoms were found in 1-3. The halogen bonding of C-I(Br) fragments with dioxygen species in compounds 1-3 as well as in the previously reported cocrystal of diacetone diperoxide with triodotrinitrobenzene (6) was identified through reduced density gradient analysis, Hirshfeld surface analysis, and Bader analysis of crystalline electron density. The interactions were quantified using the electron density topological properties acquired from the periodic DFT calculations and evaluated to lie in the range of 9-19 kJ mol-1. A distinctive spectral feature was revealed for this type of interaction, involving a red shift of the characteristic O-O stretching vibration by about 6 cm-1, which appeared in IR spectra as a narrow low-intensity band in the region 837-872 cm-1.
Collapse
Affiliation(s)
- Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Aleksei V Medved'ko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Mikhail V Vener
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| |
Collapse
|
7
|
Dai XL, Pang BW, Lv WT, Zhen JF, Gao L, Li CW, Xiong J, Lu TB, Chen JM. Improving the physicochemical and pharmacokinetic properties of olaparib through cocrystallization strategy. Int J Pharm 2023; 647:123497. [PMID: 37827390 DOI: 10.1016/j.ijpharm.2023.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Olaparib (OLA) is the first PARP inhibitor worldwide used for the treatment of ovarian cancer. However, the oral absorption of OLA is extremely limited by its poor solubility. Herein, pharmaceutical cocrystallization strategy was employed to optimize the physicochemical and pharmacokinetic properties. Four cocrystals of OLA with oxalic acid (OLA-OA), malonic acid (OLA-MA), fumaric acid (OLA-FA) and maleic acid (OLA-MLA) were successfully discovered and characterized. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the formation of cocrystals rather than salts, and the possible hydrogen bonding patterns were analyzed through molecular surface electrostatic potential calculations. The in vitro and in vivo evaluations indicate that all of the cocrystals demonstrate significantly improved dissolution performance, oral absorption and tabletability compared to pure OLA. Among them, OLA-FA exhibit sufficient stability and the most increased Cmax and AUC0-24h values that were 11.6 and 6.1 times of free OLA, respectively, which has great potential to be developed into the improved solid preparations of OLA.
Collapse
Affiliation(s)
- Xia-Lin Dai
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Bo-Wen Pang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Ting Lv
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jian-Feng Zhen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lu Gao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Cai-Wen Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Xiong
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia-Mei Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
8
|
Vainauskas J, Borchers TH, Arhangelskis M, McCormick McPherson LJ, Spilfogel TS, Hamzehpoor E, Topić F, Coles SJ, Perepichka DF, Barrett CJ, Friščić T. Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures. Chem Sci 2023; 14:13031-13041. [PMID: 38023516 PMCID: PMC10664517 DOI: 10.1039/d3sc04191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.
Collapse
Affiliation(s)
- Jogirdas Vainauskas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw 1 Pasteura Street Warsaw 02-093 Poland
| | - Laura J McCormick McPherson
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton UK
| | - Toni S Spilfogel
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Filip Topić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Simon J Coles
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton UK
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
9
|
Amonov A, Scheiner S. Heavy pnicogen atoms as electron donors in sigma-hole bonds. Phys Chem Chem Phys 2023; 25:23530-23537. [PMID: 37656119 DOI: 10.1039/d3cp03479h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
DFT calculations evaluate the strength of σ-hole bonds formed by ZH3 and ZMe3 (Z = N, P, As, Sb) acting as electron donor. Bond types considered include H-bond, halogen, chalcogen, pnicogen, and tetrel bond to perfluorinated Lewis acids FH, FBr, F2Se F3As, F4Ge, respectively, as well as their monofluorinated analogues. All of the Z atoms can engage in bonds of at least moderate strength, varying from 3 to more than 40 kcal mol-1. In most cases, N forms the strongest bonds, but the falloff from P to Sb is quite mild. However, this pattern is not characteristic of all cases, as for example in the halogen bonds, where the heavier Z atoms are comparable to, or even stronger than N. Most of the bonds are strengthened by replacing the three H atoms of ZH3 by methyl groups, better simulating the situation that would be generally encountered. Structural and NMR shielding data ought to facilitate the identification of these bonds within crystals or in solution.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy Engineering Physics Institute, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
10
|
Lu P, Li T, Lu M, Ruan C, Sun S, Wu Z, Zhong Y, Zhang F, Gao Y, Huang Y, Wang Y, Hu J, Yan F, Zhang Y. Enrichment of anchoring sites by introducing supramolecular halogen bonds for the efficient perovskite nanocrystal LEDs. LIGHT, SCIENCE & APPLICATIONS 2023; 12:215. [PMID: 37666825 PMCID: PMC10477334 DOI: 10.1038/s41377-023-01266-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Considering the multi-functionalization of ligands, it is crucial for ligand molecular design to reveal the landscape of anchoring sites. Here, a typical triphenylphosphine (TPP) ligand was employed to explore its effect on the surface of CsPbI3 perovskite nanocrystals (PNCs). Except for the conventionally considered P-Pb coordination, an P-I supramolecular halogen bonding was also found on the NC surface. The coexistence of the above two types of bonding significantly increased the formation energy of iodine vacancy defects and improved the photoluminescence quantum yield of PNCs up to 93%. Meanwhile, the direct interaction of P and I enhanced the stability of the Pb-I octahedra and dramatically inhibited the migration of I ions. Furthermore, the introduction of additional benzene rings (2-(Diphenylphosphino)-biphenyl (DPB)) increased the delocalized properties of the PNC surface and significantly improved the charge transport of the PNCs. As a result, the DPB passivated CsPbI3 NCs based top-emitting LEDs exhibite a peak external quantum efficiency (EQE) of 22.8%, a maximum luminance of 15, 204 cd m-2, and an extremely low-efficiency roll-off of 2.6% at the current density of 500 mA cm-2.
Collapse
Affiliation(s)
- Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Ting Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China.
| | - Cheng Ruan
- Changchun Cedar Electronics Technology Co., Ltd., Changchun, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Fujun Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Yanbo Gao
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Yaowei Huang
- Changchun Cedar Electronics Technology Co., Ltd., Changchun, China
| | - Yang Wang
- Changchun Cedar Electronics Technology Co., Ltd., Changchun, China.
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Junhua Hu
- Key Laboratory of Materials Physics of Ministry of Education Department of Physics and Engineering, Zhengzhou University, Zhengzhou, China
| | - Fengping Yan
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China.
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Fotović L, Bedeković N, Stilinović V. Keggin-Type Anions as Halogen Bond Acceptors. CRYSTAL GROWTH & DESIGN 2023; 23:3384-3392. [PMID: 37159658 PMCID: PMC10162449 DOI: 10.1021/acs.cgd.2c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Indexed: 05/11/2023]
Abstract
To study the potential of Keggin-type polyoxometalate anions to act as halogen bond acceptors, we have prepared a series of 10 halogen-bonded compounds starting from phosphomolybdic and phosphotungstic acid and halogenopyridinium cations as halogen (and hydrogen) bond donors. In all the structures, the cations and the anions were interconnected by halogen bonds, more often with terminal M=O oxygen atoms than with bridging oxygen atoms as acceptors. In four structures comprising protonated iodopyridinium cations capable of forming both hydrogen and halogen bonds with the anion, the halogen bond with the anion is apparently favored, whereas hydrogen bonds preferentially involve other acceptors present in the structure. In three obtained structures derived from phosphomolybdic acid, the corresponding oxoanion has been found in its reduced state [Mo12PO40]4-, which has also led to a decrease in halogen bond lengths as compared to the fully oxidated [Mo12PO40]3-. The electrostatic potential on the three types of anions involved in the study ([Mo12PO40]3-, [Mo12PO40]4-, and [W12PO40]3-) has been calculated for optimized geometries of the anions, and it has been shown that the terminal M=O oxygen atoms are the least negative sites of the anions, indicating that they act as halogen bond acceptors primarily due to their steric availability.
Collapse
|
12
|
Zheng DN, Szell PMJ, Khiri S, Ovens JS, Bryce DL. Solid-state multinuclear magnetic resonance and X-ray crystallographic investigation of the phosphorus...iodine halogen bond in a bis(dicyclohexylphenylphosphine)(1,6-diiodoperfluorohexane) cocrystal. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:557-563. [PMID: 35702972 DOI: 10.1107/s2052520622004322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Halogen bonding to phosphorus atoms remains uncommon, with relatively few examples reported in the literature. Here, the preparation and investigation of the cocrystal bis(dicyclohexylphenylphosphine)(1,6-diiodoperfluorohexane) by X-ray crystallography and solid-state multinuclear magnetic resonance spectroscopy is described. The crystal structure features two crystallographically unique C-I...P halogen bonds [dI...P = 3.090 (5) Å, 3.264 (5) Å] and crystallographic disorder of one of the 1,6-diiodoperfluorohexane molecules. The first of these is the shortest and most linear I...P halogen bond reported to date. 13C, 19F, and 31P magic angle spinning solid-state NMR spectra are reported. A 31P chemical shift change of -7.0 p.p.m. in the cocrystal relative to pure dicyclohexylphenylphosphine, consistent with halogen bond formation, is noted. This work establishes iodoperfluoroalkanes as viable halogen bond donors when paired with phosphorus acceptors, and also shows that dicyclohexylphenylphosphine can act as a practical halogen bond acceptor.
Collapse
Affiliation(s)
- Dan Ni Zheng
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Patrick M J Szell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Safaa Khiri
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S Ovens
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
13
|
Lukin S, Germann LS, Friščić T, Halasz I. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Acc Chem Res 2022; 55:1262-1277. [PMID: 35446551 DOI: 10.1021/acs.accounts.2c00062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The past two decades have witnessed a rapid emergence of interest in mechanochemistry-chemical and materials reactivity achieved or sustained by the action of mechanical force-which has led to application of mechanochemistry to almost all areas of modern chemical and materials synthesis: from organic, inorganic, and organometallic chemistry to enzymatic reactions, formation of metal-organic frameworks, hybrid perovskites, and nanoparticle-based materials. The recent success of mechanochemistry by ball milling has also raised questions about the underlying mechanisms and has led to the realization that the rational development and effective harnessing of mechanochemical reactivity for cleaner and more efficient chemical manufacturing will critically depend on establishing a mechanistic understanding of these reactions. Despite their long history, the development of such a knowledge framework for mechanochemical reactions is still incomplete. This is in part due to the, until recently, unsurmountable challenge of directly observing transformations taking place in a rapidly oscillating or rotating milling vessel, with the sample being under the continuous impact of milling media. A transformative change in mechanistic studies of milling reactions was recently introduced through the first two methodologies for real-time in situ monitoring based on synchrotron powder X-ray diffraction and Raman spectroscopy. Introduced in 2013 and 2014, the two new techniques have inspired a period of tremendous method development, resulting also in new techniques for mechanistic mechanochemical studies that are based on temperature and/or pressure monitoring, extended X-ray fine structure (EXAFS), and, latest, nuclear magnetic resonance (NMR) spectroscopy. The new technologies available for real-time monitoring have now inspired the development of experimental strategies and advanced data analysis approaches for the identification and quantification of short-lived reaction intermediates, the development of new mechanistic models, as well as the emergence of more complex monitoring methodologies based on two or three simultaneous monitoring approaches. The use of these new opportunities has, in less than a decade, enabled the first real-time observations of mechanochemical reaction kinetics and the first studies of how the presence of additives, or other means of modifying the mechanochemical reaction, influence reaction rates and pathways. These studies have revealed multistep reaction mechanisms, enabled the identification of autocatalysis, as well as identified molecules and materials that have previously not been known or have even been considered not possible to synthesize through conventional approaches. Mechanistic studies through in situ powder X-ray diffraction (PXRD) and Raman spectroscopy have highlighted the formation of supramolecular complexes (for example, cocrystals) as critical intermediates in organic and metal-organic synthesis and have also been combined with isotope labeling strategies to provide a deeper insight into mechanochemical reaction mechanisms and atomic and molecular dynamics under milling conditions. This Account provides an overview of this exciting, rapidly evolving field by presenting the development and concepts behind the new methodologies for real-time in situ monitoring of mechanochemical reactions, outlining key advances in mechanistic understanding of mechanochemistry, and presenting selected studies important for pushing forward the boundaries of measurement techniques, data analysis, and mapping of reaction mechanisms.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Luzia S. Germann
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. H3A 0B8 Montreal, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. H3A 0B8 Montreal, Canada
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Jiang H, Ye J, Hu P, Zhu S, Liang Y, Cui Z, Kloc C, Hu W. Growth direction dependent separate-channel charge transport in the organic weak charge-transfer co-crystal of anthracene-DTTCNQ. MATERIALS HORIZONS 2022; 9:1057-1067. [PMID: 35048097 DOI: 10.1039/d1mh01767e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophene (DTTCNQ) single crystals as a template to study the crystal growth direction dependent charge transport properties and attempted to elucidate the mechanism by proposing a separate-channel charge transport model. Single-crystal anthracene-DTTCNQ field-effect transistors showed that ambipolar transport properties could be observed in all crystal growth directions. Furthermore, upon changing the measured crystal directions, the electronic properties experienced a weak change from n-type dominated ambipolar, balanced ambipolar, to p-type dominated ambipolar properties. The theoretical calculations at density functional theory (DFT) and higher theory levels suggested that the anthracene-DTTCNQ co-crystal motif was a weak charge-transfer complex, in line with the experiment. Furthermore, the detailed theoretical analysis also indicated that electron or hole transport properties originated from separated channels formed by DTTCNQ or anthracene molecules. We thus proposed a novel separate-channel transport mechanism to support additional theoretical analysis and calculations. The joint experimental and theoretical efforts in this work suggest that the engineering of co-crystallization of weak charge-transfer complexes can be a practical approach for achieving tuneable ambipolar charge transport properties by the rational choice of co-crystal formers.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Christian Kloc
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
15
|
Hengphasatporn K, Wilasluck P, Deetanya P, Wangkanont K, Chavasiri W, Visitchanakun P, Leelahavanichkul A, Paunrat W, Boonyasuppayakorn S, Rungrotmongkol T, Hannongbua S, Shigeta Y. Halogenated Baicalein as a Promising Antiviral Agent toward SARS-CoV-2 Main Protease. J Chem Inf Model 2022; 62:1498-1509. [PMID: 35245424 DOI: 10.1021/acs.jcim.1c01304] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coronavirus disease pandemic is a constant reminder that global citizens are in imminent danger of exposure to emerging infectious diseases. Therefore, developing a technique for inhibitor discovery is essential for effective drug design. Herein, we proposed fragment molecular orbital (FMO)-based virtual screening to predict the molecular binding energy of potential severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease inhibitors. The integration of quantum mechanical approaches and trajectory analysis from a microsecond molecular dynamics simulation was used to identify potential inhibitors. We identified brominated baicalein as a potent inhibitor of the SARS-CoV-2 main protease and confirmed its inhibitory activity in an in vitro assay. Brominated baicalein did not demonstrate significant toxicity in either in vitro or in vivo studies. The pair interaction energy from FMO-RIMP2/PCM and inhibitory constants based on the protease enzyme assay suggested that the brominated baicalein could be further developed into novel SARS-CoV-2 protease inhibitors.
Collapse
Affiliation(s)
- Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wattamon Paunrat
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
16
|
Synthesis, crystal structure, and solubility study of a supramolecular assembly cocrystal formed by levofloxacin and nicotinic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bujak M, Stammler HG, Vishnevskiy YV, Mitzel NW. Very close I⋯As and I⋯Sb interactions in trimethylpnictogen-pentafluoroiodobenzene cocrystals. CrystEngComm 2022. [DOI: 10.1039/d1ce01268a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unusually short, for any experimentally characterized molecular (co)crystal, directional C–I⋯As and C–I⋯Sb halogen bonds have been engineered in the supramolecular reactions of the in situ cocrystallized (CH3)3E (E = As or Sb) with C6F5I.
Collapse
Affiliation(s)
- Maciej Bujak
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yury V. Vishnevskiy
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
18
|
Stolar T, Alić J, Lončarić I, Etter M, Jung D, Farha OK, Đilović I, Meštrović E, Užarević K. Sustainable solid form screening: mechanochemical control over nucleobase hydrogen-bonded organic framework polymorphism. CrystEngComm 2022. [DOI: 10.1039/d2ce00668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice is yours! Liquid-assisted grinding can be used to control HOF polymorphism.
Collapse
Affiliation(s)
| | - Jasna Alić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg, Germany
| | - Dahee Jung
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ivica Đilović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Ernest Meštrović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | |
Collapse
|
19
|
Feng X, Peng X, Peng B, Li Z, Huang W, Yang S, Pei K, Sun Z, Huang F, Li H, Shuai Z, Zhai T. Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. J Am Chem Soc 2021; 143:20192-20201. [PMID: 34780690 DOI: 10.1021/jacs.1c08030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strong intermolecular interactions in 2D organic molecular crystals arising from π-π stacking have been widely explored to achieve high thermal stability, high carrier mobility, and novel physical properties, which have already produced phenomenal progress. However, strong intermolecular interactions in 2D inorganic molecular crystals (2DIMCs) have rarely been investigated, severely limiting both the fundamental research in molecular physics and the potential applications of 2DIMCs for optoelectronics. Here, the effect of strong intermolecular interactions induced by unique short intermolecular Se-Se and P-Se contacts in 2D α-P4Se3 nanoflakes is reported. On the basis of theoretical calculations of the charge density distribution and an analysis of the thermal expansion and plastic-crystal transition, the physical picture of strong intermolecular interactions can be elucidated as a higher charge density between adjacent P4Se3 molecules, arising from an orderly and close packing of P4Se3 molecules. More importantly, encouraged by the strong intermolecular coupling, the in-plane mobility of α-P4Se3 nanoflakes is first calculated with a quantum nuclear tunneling model, and a competitive hole mobility of 0.4 cm2 V-1 s-1 is obtained. Our work sheds new light on the intermolecular interactions in 2D inorganic molecular crystals and is highly significant for promoting the development of molecular physics and optoelectronics.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xingliang Peng
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Baixin Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wentao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ke Pei
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.,State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
20
|
Malla JA, Ahmad M, Talukdar P. Molecular Self-Assembly as a Tool to Construct Transmembrane Supramolecular Ion Channels. CHEM REC 2021; 22:e202100225. [PMID: 34766703 DOI: 10.1002/tcr.202100225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Self-assembly has become a powerful tool for building various supramolecular architectures with applications in material science, environmental science, and chemical biology. One such area is the development of artificial transmembrane ion channels that mimic naturally occurring channel-forming proteins to unveil various structural and functional aspects of these complex biological systems, hoping to replace the defective protein channels with these synthetically accessible moieties. This account describes our recent approaches to construct supramolecular ion channels using synthetic molecules and their applications in medicinal chemistry.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
21
|
Posavec L, Nemec V, Stilinović V, Cinčić D. Halogen and Hydrogen Bond Motifs in Ionic Cocrystals Derived from 3-Halopyridinium Halogenides and Perfluorinated Iodobenzenes. CRYSTAL GROWTH & DESIGN 2021; 21:6044-6050. [PMID: 34759783 PMCID: PMC8569900 DOI: 10.1021/acs.cgd.1c00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Four halopyridinium salts, 3-chloro- and 3-bromopyridinium chlorides and bromides, have been successfully cocrystallized with two ditopic perfluorinated iodobenzenes, 1,4-diiodotetrafluorobenzene and 1,2-diiodotetrafluorobenzene. These halogen bond donor molecules were chosen because the different positionings of halogen bond donor atoms can lead to different supramolecular architectures. In this work, we present insight into the halogen bond acceptor potential of chloride and bromide ions, as well as the halogen bond donor potential of chlorine and bromine atoms substituted on the pyridinium ring when combined with the expectedly very strong hydrogen bonds between halopyridinium ions and free halogenide anions. A series of eight cocrystals were obtained in which three pairs of isostructural cocrystals were formed. Dominant interactions in the obtained cocrystals were charge-assisted hydrogen bonds between halopyridinium cations and halogenide ions as well as halogen bonds between halogen atoms on the pyridinium ring and halogenide ions.
Collapse
|
22
|
Abstract
We performed a structural study of N-alkylated halogenopyridinium cations to examine whether choice of the N-substituent has any considerable effect on the halogen bonding capability of the cations. For that purpose, we prepared a series of N-ethyl-3-halopyridinium iodides and compared them with their N-methyl-3-halopyridinium analogues. Structural analysis revealed that N-ethylated halogenopyridinium cations form slightly shorter C−X⋯I− halogen bonds with iodide anion. We have also attempted synthesis of ditopic symmetric bis-(3-iodopyridinium) dications. Although successful in only one case, the syntheses have afforded two novel ditopic asymmetric monocations with an iodine atom bonded to the pyridine ring and another on the aliphatic N-substituent. Here, the C−I⋯I− halogen bond lengths involving pyridine iodine atom were notably shorter than those involving an aliphatic iodine atom as a halogen bond donor. This trend in halogen bond lengths is in line with the charge distribution on the Hirshfeld surfaces of the cations—the positive charge is predominantly located in the pyridine ring making the pyridine iodine atom σ-hole more positive than the one on the alkyl chan.
Collapse
|
23
|
Khalid M, Ali A, Ud Din Z, Tahir MN, Morais SFDA, Braga AAC, Akhtar MN, Imran M, Rodrigues-Filho E. β-Hydroxy Carbonyl compounds via aldol reaction: Single crystal investigation and quantum chemical exploration for the unveiling of supramolecular behavior. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Chen B, Lin Z, Wu R, Jin S, Dong L, Bai L, Xu W, Wang D. Nine Supramolecular Adducts of 4-dimethylaminopyridine and Carboxylic acids Assembled by Classical Hydrogen Bonds and Other Noncovalent Intermolecular Interactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Moaven S, Watson BT, Polaske TJ, Karl BM, Unruh DK, Bowling NP, Cozzolino AF. Self-Assembly of Complementary Components Using a Tripodal Bismuth Compound: Pnictogen Bonding or Coordination Chemistry? Inorg Chem 2021; 60:11242-11250. [DOI: 10.1021/acs.inorgchem.1c01232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shiva Moaven
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Brandon T. Watson
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Thomas J. Polaske
- Department of Chemistry, University of Wisconsin—Stevens Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Brian M. Karl
- Department of Chemistry, University of Wisconsin—Stevens Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Daniel K. Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Nathan P. Bowling
- Department of Chemistry, University of Wisconsin—Stevens Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Anthony F. Cozzolino
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
26
|
Wang H, Li Q, Zhang J, Zhang H, Shu Y, Zhao Z, Jiang W, Du L, Phillips DL, Lam JWY, Sung HHY, Williams ID, Lu R, Tang BZ. Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. J Am Chem Soc 2021; 143:9468-9477. [PMID: 34152134 DOI: 10.1021/jacs.1c02594] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Solid-state molecular motions (SSMM) play a critical role in adjusting behaviors and properties of materials. However, research on SSMM, especially for multicomponent systems, suffers from various problems and is rarely explored. Herein, through collaboration with cocrystal engineering, visualization and manipulation of SSMM in two-component systems, namely, FSBO ((E)-2-(4-fluorostyryl)benzo[d]oxazole)/TCB (1,2,4,5-tetracyanobenzene) and PVBO ((E)-2-(2-(pyridin-4-yl)vinyl)benzo[d]oxazole)/TCB, were realized. The obtained yellow-emissive F/T (FSBO/TCB) cocrystal displayed turn-on fluorescence, and the green-emissive P/T (PVBO/TCB) cocrystal presented redder emission, both of which exhibited an aggregation-induced emission property. At varied pressure and temperature, the grinding mixtures of FSBO/TCB and PVBO/TCB displayed different molecular motions that were readily observed through the fluorescence signal. Notably, even without grinding, FSBO and TCB molecules could move over for 4 mm in a 1D tube. The unique emission changes induced by SSMM were applied in information storage and dynamic anticounterfeiting. This work not only visualized and manipulated SSMM but offered more insights for multicomponent study in aggregate science.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
| | - Qiyao Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanhong Shu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
| | - Zheng Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biomedical Engineering, Institute for Advanced Study, and Guangdong Hong Kong Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,AIE Institute, Guangzhou Development Distinct, Huangpu, Guangzhou 510530, China
| |
Collapse
|
27
|
Lukin S, Užarević K, Halasz I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nat Protoc 2021; 16:3492-3521. [PMID: 34089023 DOI: 10.1038/s41596-021-00545-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
Solid-state milling has emerged as an alternative, sustainable approach for preparing virtually all classes of compounds and materials. In situ reaction monitoring is essential to understanding the kinetics and mechanisms of these reactions, but it has proved difficult to use standard analytical techniques to analyze the contents of the closed, rapidly moving reaction chamber (jar). Monitoring by Raman spectroscopy is an attractive choice, because it allows uninterrupted data collection from the outside of a translucent milling jar. It complements the already established in situ monitoring based on powder X-ray diffraction, which has limited accessibility to the wider research community, because it requires a synchrotron X-ray source. The Raman spectroscopy monitoring setup used in this protocol consists of an affordable, small portable spectrometer, a laser source and a Raman probe. Translucent reaction jars, most commonly made from a plastic material, enable interaction of the laser beam with the solid sample residing inside the closed reaction jar and collection of Raman-scattered photons while the ball mill is in operation. Acquired Raman spectra are analyzed using commercial or open-source software for data analysis (e.g., MATLAB, Octave, Python, R). Plotting the Raman spectra versus time enables qualitative analysis of reaction paths. This is demonstrated for an example reaction: the formation in the solid state of a cocrystal between nicotinamide and salicylic acid. A more rigorous data analysis can be achieved using multivariate analysis.
Collapse
|
28
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
29
|
The Amine Group as Halogen Bond Acceptor in Cocrystals of Aromatic Diamines and Perfluorinated Iodobenzenes. CRYSTALS 2021. [DOI: 10.3390/cryst11050529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to study the proclivity of primary amine groups to act as halogen bond acceptors, three aromatic diamines (p-phenylenediamine (pphda), benzidine (bnzd) and o-tolidine (otol)) were cocrystallised with three perfluorinated iodobenzenes (1,4-tetrafluorodiiodobenzene (14tfib), 1,3-tetrafluorodiiodobenzene (13tfib) and 1,3,5-trifluorotriiodobenzene (135tfib)) as halogen bond donors. Five cocrystals were obtained: (pphda)(14tfib), (bnzd)(13tfib)2, (bnzd)(135tfib)4, (otol)(14tfib) and (otol)(135tfib)2. In spite of the variability of both stoichiometries and structures of the cocrystals, in all the prepared cocrystals the amine groups form exclusively I···N halogen bonds, while the amine hydrogen atoms participate mostly in N–H⋯F contacts. The preference of the amine nitrogen atom toward the halogen bond, as opposed to the hydrogen bond (with amine as a donor), is rationalised by means of computed hydrogen and halogen bond energies, indicating that the halogen bond energy between a simple primary amine (methylamine) and a perfluorinated iodobenzene (pentafluoroiodobenze ne) is ca. 15 kJ mol−1 higher than the energy of the (H)NH∙∙∙NH2 hydrogen bond between two amine molecules.
Collapse
|
30
|
Pomogaeva AV, Khoroshilova OV, Davydova EI, Suslonov VV, Timoshkin AY. Antimony(III) Iodide Complexes with Pyridine: Structures and bonding via three pnictogen bonds. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anna V. Pomogaeva
- Institute of Chemistry St. Petersburg State University Universitetskaya emb. 7/9 199034 St. Petersburg Russia
| | - Olesya V. Khoroshilova
- Institute of Chemistry St. Petersburg State University Universitetskaya emb. 7/9 199034 St. Petersburg Russia
| | - Elena I. Davydova
- Institute of Chemistry St. Petersburg State University Universitetskaya emb. 7/9 199034 St. Petersburg Russia
| | - Vitalii V. Suslonov
- Institute of Chemistry St. Petersburg State University Universitetskaya emb. 7/9 199034 St. Petersburg Russia
| | - Alexey Y. Timoshkin
- Institute of Chemistry St. Petersburg State University Universitetskaya emb. 7/9 199034 St. Petersburg Russia
| |
Collapse
|
31
|
Tiekink ERT. Supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in molecular crystals and the propensity of their formation. CrystEngComm 2021. [DOI: 10.1039/d0ce01677b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A survey of delocalised C–I⋯π(chelate ring) interactions is presented.
Collapse
Affiliation(s)
- Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Bandar Sunway
- Malaysia
| |
Collapse
|
32
|
Alipour M, Fallahzadeh P. On the role of steric and exchange–correlation effects in halogenated complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj02581c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory formalisms of energy partitioning schemes are utilized to find out what energetic components govern interactions in halogenated complexes.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Parisa Fallahzadeh
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
33
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
34
|
Novendra N, Marrett JM, Katsenis AD, Titi HM, Arhangelskis M, Friščić T, Navrotsky A. Linker Substituents Control the Thermodynamic Stability in Metal–Organic Frameworks. J Am Chem Soc 2020; 142:21720-21729. [DOI: 10.1021/jacs.0c09284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Novendra Novendra
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Joseph M. Marrett
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Hatem M. Titi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Chemistry, University of Warsaw, 1 Pasteura Street, Warsaw 02-093, Poland
| | - Tomislav Friščić
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, One Shields Avenue, Davis, California 95616, United States
- School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
35
|
Prokudina YV, Davydova EI, Virovets A, Stöger B, Peresypkina E, Pomogaeva AV, Timoshkin AY. Structures and Chemical Bonding in Antimony(III) Bromide Complexes with Pyridine. Chemistry 2020; 26:16338-16348. [PMID: 32672367 DOI: 10.1002/chem.202002261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Indexed: 12/21/2022]
Abstract
Weakly or "partially" bonded molecules are an important link between the chemical and van der Waals interactions. Molecular structures of six new SbBr3 -Py complexes in the solid state have been determined by single-crystal X-ray diffraction analysis. In all complexes all Sb atoms adopt a pseudo-octahedral coordination geometry which is completed by additional Sb⋅⋅⋅Br contacts shorter than the sum of the van der Waals radii, with Br-Sb⋅⋅⋅Br angles close to 180°. To reveal the nature of Sb-Br and Sb-N interactions, the DFT calculations were performed followed by the analysis of the electrostatic potentials, the orbital interactions and the topological analysis. Based on Natural Bond Orbital (NBO) analysis, the Sb-Br interactions range from the covalent bonds to the pnictogen bonds. A simple structural parameter, non-covalence criterion (NCC) is defined as a ratio of the atom-atom distance to the linear combination of sums of covalent and van der Waals radii. NCC correlates with E(2) values for Sb-N, Sb-Cl and Sb-Br bonds, and appears to be useful criterion for a preliminary evaluation of the bonding situation.
Collapse
Affiliation(s)
- Yana V Prokudina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Elena I Davydova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexander Virovets
- University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt, 9, 1060, Vienna, Austria
| | | | - Anna V Pomogaeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| |
Collapse
|
36
|
Ping N, Zhang H, Meng L, Zeng Y. Insight into the halogen-bonding interactions in the C6F5X···ZH3 (X = Cl, Br, I; Z = N, P, As) and C6F5I···Z (Ph)3 (Z = N, P, As) complexes. Struct Chem 2020. [DOI: 10.1007/s11224-020-01656-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Feng X, Sun Z, Pei K, Han W, Wang F, Luo P, Su J, Zuo N, Liu G, Li H, Zhai T. 2D Inorganic Bimolecular Crystals with Strong In-Plane Anisotropy for Second-Order Nonlinear Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003146. [PMID: 32589323 DOI: 10.1002/adma.202003146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Indexed: 05/07/2023]
Abstract
2D inorganic bimolecular crystals, consisting of two different inorganic molecules, are expected to possess novel physical and chemical properties due to the synergistic effect of the individual components. However, 2D inorganic bimolecular crystals remain unexploited because of the difficulties in preparation arising from non-typical layered structures and intricate intermolecular interactions. Here, the synthesis of 2D inorganic bimolecular crystal SbI3 ·3S8 nanobelts via a facile vertical microspacing sublimation strategy is reported. The as-synthesized SbI3 ·3S8 nanobelts exhibit strong in-plane anisotropy of phonon vibrations and intramolecular vibrations as well as show anisotropic light absorption with a high dichroism ratio of 3.9. Furthermore, it is revealed that the second harmonic generation intensity of SbI3 ·3S8 nanobelts is highly dependent on the excitation wavelength and crystallographic orientation. This work can inspire the growth of more 2D inorganic bimolecular crystals and excite potential applications for bimolecular optoelectronic devices.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Ke Pei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Wei Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Fakun Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jianwei Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Nian Zuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
38
|
Arhangelskis M, Topić F, Hindle P, Tran R, Morris AJ, Cinčić D, Friščić T. Mechanochemical reactions of cocrystals: comparing theory with experiment in the making and breaking of halogen bonds in the solid state. Chem Commun (Camb) 2020; 56:8293-8296. [PMID: 32573566 DOI: 10.1039/d0cc02935a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mechanochemical re-investigation of the halogen-bonded cocrystallisation of 1,4-diazabicyclo[2.2.2]-octane and 1,2-diiodotetrafluorobenzene revealed an unexpectedly complex system with three distinct cocrystal compositions, one of which also exhibits temperature-dependent polymorphism. This provided an opportunity to experimentally test the ability of dispersion-corrected periodic density functional theory (DFT) to not only explain the formation, but also predict the interconversion between halogen-bonded cocrystals of different stoichiometries.
Collapse
Affiliation(s)
- Mihails Arhangelskis
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal H3A0B8, Canada.
| | | | | | | | | | | | | |
Collapse
|
39
|
Mikherdov AS, Novikov AS, Boyarskiy VP, Kukushkin VY. The halogen bond with isocyano carbon reduces isocyanide odor. Nat Commun 2020; 11:2921. [PMID: 32523100 PMCID: PMC7286913 DOI: 10.1038/s41467-020-16748-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Predominantly, carbon atoms of various species function as acceptors of noncovalent interactions when they are part of a π-system. Here, we report on the discovery of a halogen bond involving the isocyano carbon lone pair. The co-crystallization or mechanochemical liquid-assisted grinding of model mesityl isocyanide with four iodoperfluorobenezenes leads to a series of halogen-bonded adducts with isocyanides. The obtained adducts were characterized by single-crystal and powder X-ray diffraction, solid-state IR and 13C NMR spectroscopies, and also by thermogravimetric analysis. The formation of the halogen bond with the isocyano group leads to a strong reduction of the isocyanide odor (3- to 46-fold gas phase concentration decrease). This manipulation makes isocyanides more suitable for laboratory storage and usage while preserving their reactivity, which is found to be similar between the adducts and the parent isocyanide in some common transformations, such as ligation to metal centers and the multi-component Ugi reaction. Carbon atoms of various species typically function as acceptors of noncovalent interactions when they are part of a π-system. Here, the authors report their discovery of a noncovalent halogen bond involving the isocyano carbon lone pair, which results in adducts with strongly reduced isocyanide odor.
Collapse
Affiliation(s)
- Alexander S Mikherdov
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation.
| | - Alexander S Novikov
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim P Boyarskiy
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation.
| |
Collapse
|
40
|
Exploring the Halogen-Bonded Cocrystallization Potential of a Metal-Organic Unit Derived from Copper(ii) Chloride and 4-Aminoacetophenone. MATERIALS 2020; 13:ma13102385. [PMID: 32455896 PMCID: PMC7288111 DOI: 10.3390/ma13102385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
In this work, we describe a novel halogen-bonded metal-organic cocrystal involving a square-planar Cu(ii) complex and 1,4-diiodotetrafluorobenzene (14tfib) by utilizing an amine ligand whose pendant acetyl group enables halogen bonding. The cocrystal was prepared by both mechanochemical synthesis (liquid-assisted grinding) and the conventional solution-based method. Crystal structure determination by single crystal X-ray diffraction revealed that the dominant supramolecular interactions are the I···O halogen bond between 14tfib and CuCl2(aap)2 building blocks, and the N–H···Cl hydrogen bonds between CuCl2(aap)2 molecules. The combination of halogen and hydrogen bonding leads to the formation of a 2D network. Overall, this work showcases an example of the possibility for extending the complexity of metal-organic crystal structures by using halogen bonding in a way that does not affect other hydrogen bonding synthons.
Collapse
|
41
|
Cobaloximes as Building Blocks in Halogen-Bonded Cocrystals. MATERIALS 2020; 13:ma13102370. [PMID: 32455679 PMCID: PMC7287722 DOI: 10.3390/ma13102370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
In this work, we explore the halogen-bonded cocrystallization potential of cobaloxime complexes in the synthesis of cocrystals with perhalogenated benzenes. We demonstrate a strategy for synthesizing halogen-bonded metal–organic cocrystals by utilizing cobaloximes whose pendant bromide group and oxime oxygen enable halogen bonding. By combining three well-known halogen bond donor molecules differing in binding geometry and composition with three cobaloxime units, we obtained a total of four previously unreported cocrystals. Single crystal X-ray diffraction experiments showed that the majority of obtained cocrystals exhibited the formation of the targeted I···O and I···Br motives. These results illustrate the potential of cobaloximes as halogen bond acceptors and indicate that this type of halogen bond acceptors may offer a novel route to metal–organic halogen-bonded cocrystals.
Collapse
|
42
|
Rani J, Grover V, Dhamija S, Titi HM, Patra R. Computational insight into the halogen bonded self-assembly of hexa-coordinated metalloporphyrins. Phys Chem Chem Phys 2020; 22:11558-11566. [PMID: 32395736 DOI: 10.1039/d0cp00351d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We demonstrate herein a computational study probing the influence of metalloporphyrins on intermolecular halogen bonding (XB) during supramolecular self-assembly. The results demonstrate that porphyrin aromatic rings can activate or deactivate halogen bonding interactions, especially those on axial ligands, and further influence the preference type of halogen···halogen bonding during the supramolecular self-assembly. Calculations show that the halogen atom present at the equatorial position has a higher sigma hole potential (VS,max) than that at the axial position. The computational analysis and our observations from the X-ray structure analysis are in good agreement. From structural analysis it is clear that equatorial halogen atoms prefer to participate in Type-II XB interactions whereas the axial halogen atoms either participate in Type-I XB interaction or reluctant to participate in XB interactions due to the decrease of their sigma hole potential. Thus, we demonstrate, herein, for the first time a computational study probing the direct influence of the porphyrin's ring current on the sigma hole potential (VS,max) of the halogen atoms and subsequently the effects of the supramolecular self-assembly.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | | | | | | | | |
Collapse
|
43
|
Hong Y, Lu Y, Zhu Z, Xu Z, Liu H. Metalloids as halogen bond acceptors: A combined crystallographic data and theoretical investigation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Tao Y, Qiu Y, Zou W, Nanayakkara S, Yannacone S, Kraka E. In Situ Assessment of Intrinsic Strength of X-I⋯OA-Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory. Molecules 2020; 25:molecules25071589. [PMID: 32235623 PMCID: PMC7181175 DOI: 10.3390/molecules25071589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/03/2022] Open
Abstract
Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and N-oxide groups) in 32 model systems originating from 20 molecular crystals. We found that the halogen bonding between the donor dihalogen X-I and the wide collection of acceptor molecules OA features considerable variations of the local stretching force constants (0.1–0.8 mdyn/Å) for I⋯O halogen bonds, demonstrating its powerful tunability in bond strength. Strong correlations between bond length and local stretching force constant were observed in crystals for both the donor X-I bonds and I⋯O halogen bonds, extending for the first time the generalized Badger’s rule to crystals. It is demonstrated that the halogen atom X controlling the electrostatic attraction between the σ-hole on atom I and the acceptor atom O dominates the intrinsic strength of I⋯O halogen bonds. Different oxygen-containing acceptor molecules OA and even subtle changes induced by substituents can tweak the n→σ∗(X-I) charge transfer character, which is the second important factor determining the I⋯O bond strength. In addition, the presence of the second halogen bond with atom X of the donor X-I bond in crystals can substantially weaken the target I⋯O halogen bond. In summary, this study performing the in situ measurement of halogen bonding strength in crystalline structures demonstrates the vast potential of the periodic local vibrational mode theory for characterizing and understanding non-covalent interactions in materials.
Collapse
Affiliation(s)
- Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Yue Qiu
- Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China;
| | - Sadisha Nanayakkara
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Seth Yannacone
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
- Correspondence:
| |
Collapse
|
45
|
Cutsail GE. Applications of electron paramagnetic resonance spectroscopy to heavy main-group radicals. Dalton Trans 2020; 49:12128-12135. [PMID: 32812583 DOI: 10.1039/d0dt02436h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exploration of heavy main-group radicals is rapidly expanding, for which electron paramagnetic resonance (EPR) spectroscopic characterisation plays a key role. EPR spectroscopy has the capacity to deliver information of the radical's electronic, geometric and bonding structure. Herein, foundations of electron-nuclear hyperfine analysis are detailed before reviewing more recent applications of EPR spectroscopy to As, Sb, and Bi centred radicals. Additional diverse examples of the application of EPR spectroscopy to other heavy main group radicals are highlighted.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
46
|
Balmohammadi Y, Khavasi HR, Naghavi SS. Existence of untypical halogen-involving interactions in crystal packings: a statistical and first-principles study. CrystEngComm 2020. [DOI: 10.1039/c9ce01885a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a common perception by the scientific community that a halogen-involving interaction forms when the distance between the donor atom and the acceptor atom is less than the sum of their van der Waals (vdW) radii.
Collapse
Affiliation(s)
- Yaser Balmohammadi
- Department of Inorganic Chemistry and Catalysis
- Shahid Beheshti University
- Tehran 1983963113
- Iran
| | - Hamid Reza Khavasi
- Department of Inorganic Chemistry and Catalysis
- Shahid Beheshti University
- Tehran 1983963113
- Iran
| | - S. Shahab Naghavi
- Department of Physical and Computational Chemistry
- Shahid Beheshti University
- 1983963113 Tehran
- Iran
| |
Collapse
|
47
|
Jakupec N, Fotović L, Stilinović V. The effect of halogen bonding on protonated hexacyanoferrate networks in hexacyanoferrates of halogenopyridines. CrystEngComm 2020. [DOI: 10.1039/d0ce01359e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonded network of protonated hexacyanoferrate anions is determined by geometry and halogen bonding proclivity of the halogenopyridinium cation.
Collapse
Affiliation(s)
- Nikola Jakupec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| |
Collapse
|
48
|
Fotović L, Stilinović V. Halogenide anions as halogen and hydrogen bond acceptors in iodopyridinium halogenides. CrystEngComm 2020. [DOI: 10.1039/d0ce00534g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structures of iodopyridinium halogenides have demonstrated why iodide, the weakest halogen bond acceptor among the halogenides, preferentially forms halogen bonds.
Collapse
Affiliation(s)
- Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| |
Collapse
|
49
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. MATERIALS 2019; 13:ma13010055. [PMID: 31861904 PMCID: PMC6982077 DOI: 10.3390/ma13010055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 11/17/2022]
Abstract
Incorporation of a metal center into halogen-bonded materials can efficiently fine-tune the strength of the halogen bonds and introduce new electronic functionalities. The metal atom can adopt two possible roles: serving as halogen acceptor or polarizing the halogen donor and acceptor groups. We investigated both scenarios for 23 metal–halogen dimers trans-M(Y2)(NC5H4X-3)2 with M = Pd(II), Pt(II); Y = F, Cl, Br; X = Cl, Br, I; and NC5H4X-3 = 3-halopyridine. As a new tool for the quantitative assessment of metal–halogen bonding, we introduced our local vibrational mode analysis, complemented by energy and electron density analyses and electrostatic potential studies at the density functional theory (DFT) and coupled-cluster single, double, and perturbative triple excitations (CCSD(T)) levels of theory. We could for the first time quantify the various attractive contacts and their contribution to the dimer stability and clarify the special role of halogen bonding in these systems. The largest contribution to the stability of the dimers is either due to halogen bonding or nonspecific interactions. Hydrogen bonding plays only a secondary role. The metal can only act as halogen acceptor when the monomer adopts a (quasi-)planar geometry. The best strategy to accomplish this is to substitute the halo-pyridine ring with a halo-diazole ring, which considerably strengthens halogen bonding. Our findings based on the local mode analysis provide a solid platform for fine-tuning of existing and for design of new metal–halogen-bonded materials.
Collapse
Affiliation(s)
- Vytor P. Oliveira
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Bruna L. Marcial
- Núcleo de Química, Instituto Federal Goiano (IF Goiano), Campus Morrinhos, 75650-000 Goiás, Brazil;
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA
- Correspondence: ; Tel.: +1-214-768-2611
| |
Collapse
|
50
|
Pnictogen, chalcogen, and halogen bonds in catalytic systems: theoretical study and detailed comparison. J Mol Model 2019; 26:16. [DOI: 10.1007/s00894-019-4275-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
|