1
|
Luo Q, Liu S, Hua Y, Long C, Lv S, Li J, Zhang Y. Heterobifunctional cross-linker with dinitroimidazole and azide modules for protein and oligonucleotide functionalization. RSC Adv 2025; 15:4526-4531. [PMID: 39931413 PMCID: PMC11808663 DOI: 10.1039/d4ra07987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Dinitroimidazole (DNIm) was recently identified as a powerful bioconjugation agent that could selectively modify thiol over amine on biomolecules at an ultrahigh speed in an aqueous buffer. However, its derivative containing a DNIm module and a terminal alkyne module failed to construct functional agents bearing a DNIm warhead via the CuAAC reaction. To solve this problem, a heterobifunctional cross-linker was designed and synthesized by linking a DNIm module with an azide module via an oxoaliphatic amido bond spacer arm. Its two modules, DNIm and azide, reacted with a thiol and cyclooctyne, respectively, in an orthogonal way. The cross-linker facilitated the preparation of various functional agents bearing a DNIm warhead via SPAAC reaction and was further applied to protein functionalization (including biotinylation and fluorescence labeling) and oligonucleotide functionalization (including PEGylation, oligonucleotide-peptide and oligonucleotide-protein conjugate). Thus, the cross-linker not only provided convenient access to those functional agents bearing a DNIm warhead but also combined DNIm chemistry with click chemistry of SPAAC to enlarge their respective application range in the bioconjugation field.
Collapse
Affiliation(s)
- Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| | - Shuli Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| | - Yaoguang Hua
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| | - Chunqiu Long
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| | - Sijia Lv
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| | - Juncheng Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| | - Yuzhi Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 People's Republic of China
| |
Collapse
|
2
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
3
|
Huang B, Lu S, Li F. A difunctional NMR&CD probe for specific detection and enantiomeric recognition of biothiols in complex mixtures. Anal Chim Acta 2024; 1328:343186. [PMID: 39266201 DOI: 10.1016/j.aca.2024.343186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Biothiols are important for numerous cellular processes, such as resisting oxidative stress and protecting cell health. Their abnormal levels and molecular configurations have been associated with various diseases. So, establishing an effective and reliable method for the specific detection and enantiomeric discrimination of diverse biothiols is highly meaningful. RESULTS We have developed a new NMR and CD probe using 1,4-dinitroimidazole, specifically targeting the thiol group. This probe allows for the specific detection and enantiomeric recognition of biothiols in complex mixtures. We achieved this by identifying the distinguishable 1H NMR signals of 2nd in imidazole-ring of the resulting 4NI-biothiols in the downfield region at 7-8 ppm and newly discovered induced CD signals within 290-430 nm. Using this probe, the limits of detection of Cys, GSH, and Hcy, the recovery rates, and the concentration of GSH extracted from HEK293T cells were determined by measuring the unique downfield 1H NMR signals. Moreover, Cys, GSH, and Hcy can be discriminated simultaneously in complicated samples at a pH range of 2-3.5. Furthermore, this probe can also be utilized to sense chiral thiol-drugs. SIGNIFICANCE This method offers a cost-effective and accurate sensing solution for the specific detection of biothiols in complex mixtures, with stereochemical recognition.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Health Science Center, Ningbo University, Ningbo, 315211, PR China.
| | - Shuyi Lu
- Institute of Drug Discovery Technology, Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Fulai Li
- Institute of Drug Discovery Technology, Health Science Center, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
4
|
Wang C, Zhao Z, Ghadir R, Yang D, Zhang Z, Ding Z, Cao Y, Li Y, Fassler R, Reichmann D, Zhang Y, Zhao Y, Liu C, Bi X, Metanis N, Zhao J. Peptide and Protein Cysteine Modification Enabled by Hydrosulfuration of Ynamide. ACS CENTRAL SCIENCE 2024; 10:1742-1754. [PMID: 39345815 PMCID: PMC11428291 DOI: 10.1021/acscentsci.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Efficient functionalization of peptides and proteins has widespread applications in chemical biology and drug discovery. However, the chemoselective and site-selective modification of proteins remains a daunting task. Herein, a highly efficient chemo-, regio-, and stereoselective hydrosulfuration of ynamide was identified as an efficient method for the precise modification of peptides and proteins by uniquely targeting the thiol group of cysteine (Cys) residues. This novel method could be facilely operated in aqueous buffer and was fully compatible with a wide range of proteins, including small model proteins and large full-length antibodies, without compromising their integrity and functions. Importantly, this reaction provides the Z-isomer of the corresponding conjugates exclusively with superior stability, offering a precise approach to peptide and protein therapeutics. The potential application of this method in peptide and protein chemical biology was further exemplified by Cys-bioconjugation with a variety of ynamide-bearing functional molecules such as small molecule drugs, fluorescent/affinity tags, and PEG polymers. It also proved efficient in redox proteomic analysis through Cys-alkenylation. Overall, this study provides a novel bioorthogonal tool for Cys-specific functionalization, which will find broad applications in the synthesis of peptide/protein conjugates.
Collapse
Affiliation(s)
- Changliu Wang
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Zhenguang Zhao
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reem Ghadir
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dechun Yang
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
& College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Zhenjia Zhang
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| | - Zhe Ding
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Yuan Cao
- Department
of Process Development, BeiGene Guangzhou
Biologics Manufacturing Co., Ltd., Guangzhou 510700, Guangdong P. R. China
| | - Yuqing Li
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Rosi Fassler
- The Alexander
Silberman Institute of Life Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dana Reichmann
- The Alexander
Silberman Institute of Life Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yujie Zhang
- Department
of Process Development, BeiGene Guangzhou
Biologics Manufacturing Co., Ltd., Guangzhou 510700, Guangdong P. R. China
| | - Yongli Zhao
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Can Liu
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| | - Xiaobao Bi
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
& College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Norman Metanis
- Institute
of Chemistry, The Alexander Silberman Institute of Life Science, The
Center for Nanoscience and Nanotechnology, Casali Center for Applied
Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Junfeng Zhao
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| |
Collapse
|
5
|
Cai Y. Conjugation of primary amine groups in targeted proteomics. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39229771 DOI: 10.1002/mas.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Primary amines, in the form of unmodified N-terminus of peptide/protein and unmodified lysine residue, are perhaps the most important functional groups that can serve as the starting points in proteomic analysis, especially via mass spectrometry-based approaches. A variety of multifunctional probes that conjugate primary amine groups through covalent bonds have been developed and employed to facilitate protein/protein complex characterization, including identification, quantification, structure and localization elucidation, protein-protein interaction investigation, and so forth. As an integral part of more accurate peptide quantification in targeted proteomics, isobaric stable isotope-coded primary amine labeling approaches eventually facilitated protein/peptide characterization at the single-cell level, paving the way for single-cell proteomics. The development and advances in the field can be reviewed in terms of key components of a multifunctional probe: functional groups and chemistry for primary amine conjugation; hetero-bifunctional moiety for separation/enrichment of conjugated protein/protein complex; and functionalized linker/spacer. Perspectives are primarily focused on optimizing primary amine conjugation under physiological conditions to improve characterization of native proteins, especially those associated with the surface of living cells/microorganisms.
Collapse
Affiliation(s)
- Yang Cai
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Zhan W, Duan H, Li C. Recent Advances in Metal-Free Peptide Stapling Strategies. CHEM & BIO ENGINEERING 2024; 1:593-605. [PMID: 39974699 PMCID: PMC11835171 DOI: 10.1021/cbe.3c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 02/21/2025]
Abstract
Protein-protein interactions (PPIs) pose challenges for intervention through small molecule drugs, protein drugs, and linear peptides due to inherent limitations such as inappropriate size, poor stability, and limited membrane penetrance. The emergence of stapled α-helical peptides presents a promising avenue as potential competitors for inhibiting PPIs, demonstrating enhanced structural stability and increased tolerance to proteolytic enzymes. This review aims to provide an overview of metal-free stapling strategies involving two identical natural amino acids, two different natural amino acids, non-natural amino acids, and multicomponent reactions. The primary objective is to delineate comprehensive peptide stapling approaches and foster innovative ideation among readers by accentuating methodologies published within the past five years and elucidating evolving trends in stapled peptides.
Collapse
Affiliation(s)
- Wanglin Zhan
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Hongliang Duan
- Faculty
of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Chengxi Li
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
7
|
Zuo Q, Li Y, Lai X, Bao G, Chen L, He Z, Song X, E R, Wang P, Shi Y, Luo H, Sun W, Wang R. Cysteine-Specific Multifaceted Bioconjugation of Peptides and Proteins Using 5-Substituted 1,2,3-Triazines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308491. [PMID: 38466927 DOI: 10.1002/advs.202308491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Peptide and protein postmodification have gained significant attention due to their extensive impact on biomolecule engineering and drug discovery, of which cysteine-specific modification strategies are prominent due to their inherent nucleophilicity and low abundance. Herein, the study introduces a novel approach utilizing multifunctional 5-substituted 1,2,3-triazine derivatives to achieve multifaceted bioconjugation targeting cysteine-containing peptides and proteins. On the one hand, this represents an inaugural instance of employing 1,2,3-triazine in biomolecular-specific modification within a physiological solution. On the other hand, as a powerful combination of precision modification and biorthogonality, this strategy allows for the one-pot dual-orthogonal functionalization of biomolecules utilizing the aldehyde group generated simultaneously. 1,2,3-Triazine derivatives with diverse functional groups allow conjugation to peptides or proteins, while bi-triazines enable peptide cyclization and dimerization. The examination of the stability of bi-triazines revealed their potential for reversible peptide modification. This work establishes a comprehensive platform for identifying cysteine-selective modifications, providing new avenues for peptide-based drug development, protein bioconjugation, and chemical biology research.
Collapse
Affiliation(s)
- Quan Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xuanliang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Lu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Pengxin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yuntao Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Huixin Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
8
|
Doud EA, Tilden JAR, Treacy JW, Chao EY, Montgomery HR, Kunkel GE, Olivares EJ, Adhami N, Kerr TA, Chen Y, Rheingold AL, Loo JA, Frost CG, Houk KN, Maynard HD, Spokoyny AM. Ultrafast Au(III)-Mediated Arylation of Cysteine. J Am Chem Soc 2024; 146:12365-12374. [PMID: 38656163 PMCID: PMC11152249 DOI: 10.1021/jacs.3c12170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.
Collapse
Affiliation(s)
- Evan A. Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - James A. R. Tilden
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Elaine Y. Chao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hayden R. Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Grace E. Kunkel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eileen J. Olivares
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nima Adhami
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tyler A. Kerr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yu Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher G. Frost
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
10
|
Wan C, Zhang Y, Wang J, Xing Y, Yang D, Luo Q, Liu J, Ye Y, Liu Z, Yin F, Wang R, Li Z. Traceless Peptide and Protein Modification via Rational Tuning of Pyridiniums. J Am Chem Soc 2024; 146:2624-2633. [PMID: 38239111 DOI: 10.1021/jacs.3c11864] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Herein, we report a versatile reaction platform for tracelessly cleavable cysteine-selective peptide/protein modification. This platform offers highly tunable and predictable conjugation and cleavage by rationally estimating the electron effect on the nucleophilic halopyridiniums. Cleavable peptide stapling, antibody conjugation, enzyme masking/de-masking, and proteome labeling were achieved based on this facile pyridinium-thiol-exchange protocol.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Xing
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
11
|
Hua Y, Liu S, Xie SS, Shi L, Li J, Luo Q. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine-Lysine Peptide Stapling. Org Lett 2023; 25:8792-8796. [PMID: 38059767 DOI: 10.1021/acs.orglett.3c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A heterobifunctional cross-linker with one sulfhydryl-reactive dinitroimidazole end and another amine-reactive N-hydroxysuccinimide (NHS) ester end was designed and synthesized. The two motifs of this cross-linker, dinitroimidazole and NHS ester, proved to react with thiol and amine, respectively, in an orthogonal way. The cross-linker was further applied to construct stapled peptides of different sizes and mono- and dual functionalization (including biotinylation, PEGylation, and fluorescence labeling) of protein.
Collapse
Affiliation(s)
- Yaoguang Hua
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shuli Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China
| | - Linjing Shi
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Juncheng Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
12
|
Rodrigues KA, Cottrell CA, Steichen JM, Groschel B, Abraham W, Suh H, Agarwal Y, Ni K, Chang JYH, Yousefpour P, Melo MB, Schief WR, Irvine DJ. Optimization of an alum-anchored clinical HIV vaccine candidate. NPJ Vaccines 2023; 8:117. [PMID: 37573422 PMCID: PMC10423202 DOI: 10.1038/s41541-023-00711-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023] Open
Abstract
In the ongoing effort to develop a vaccine against HIV, vaccine approaches that promote strong germinal center (GC) responses may be critical to enable the selection and affinity maturation of rare B cell clones capable of evolving to produce broadly neutralizing antibodies. We previously demonstrated an approach for enhancing GC responses and overall humoral immunity elicited by alum-adjuvanted protein immunization via the use of phosphoserine (pSer) peptide-tagged immunogens that stably anchor to alum particles via ligand exchange with the alum particle surface. Here, using a clinically relevant stabilized HIV Env trimer termed MD39, we systematically evaluated the impact of several parameters relevant to pSer tag composition and trimer immunogen design to optimize this approach, including phosphate valency, amino acid sequence of the trimer C-terminus used for pSer tag conjugation, and structure of the pSer tag. We also tested the impact of co-administering a potent saponin/monophosphoryl lipid A (MPLA) nanoparticle co-adjuvant with alum-bound trimers. We identified MD39 trimer sequences bearing an optimized positively-charged C-terminal amino acid sequence, which, when conjugated to a pSer tag with four phosphates and a polypeptide spacer, bound very tightly to alum particles while retaining a native Env-like antigenicity profile. This optimized pSer-trimer design elicited robust antigen-specific GC B cell and serum IgG responses in mice. Through this optimization, we present a favorable MD39-pSer immunogen construct for clinical translation.
Collapse
Affiliation(s)
- Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jon M Steichen
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - William R Schief
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
13
|
Liao Y, Wang M, Jiang X. Sulfur-containing peptides: Synthesis and application in the discovery of potential drug candidates. Curr Opin Chem Biol 2023; 75:102336. [PMID: 37269675 DOI: 10.1016/j.cbpa.2023.102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Peptides act as biological mediators and play a key role of various physiological activities. Sulfur-containing peptides are widely used in natural products and drug molecules due to their unique biological activity and chemical reactivity of sulfur. Disulfides, thioethers, and thioamides are the most common motifs of sulfur-containing peptides, and they have been extensively studied and developed for synthetic methodology as well as pharmaceutical applications. This review focuses on the illustration of these three motifs in natural products and drugs, as well as the recent advancements in the synthesis of the corresponding core scaffolds.
Collapse
Affiliation(s)
- Yanyan Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Elemento-Organic Chemistry, Nankai University, China.
| |
Collapse
|
14
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
15
|
Jin GQ, Wang JX, Lu J, Zhang H, Yao Y, Ning Y, Lu H, Gao S, Zhang JL. Two birds one stone: β-fluoropyrrolyl-cysteine S NAr chemistry enabling functional porphyrin bioconjugation. Chem Sci 2023; 14:2070-2081. [PMID: 36845938 PMCID: PMC9944650 DOI: 10.1039/d2sc06209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Bioconjugation, a synthetic tool that endows small molecules with biocompatibility and target specificity through covalent attachment of a biomolecule, holds promise for next-generation diagnosis or therapy. Besides the establishment of chemical bonding, such chemical modification concurrently allows alteration of the physicochemical properties of small molecules, but this has been paid less attention in designing novel bioconjugates. Here, we report a "two birds one stone" methodology for irreversible porphyrin bioconjugation based on β-fluoropyrrolyl-cysteine SNAr chemistry, in which the β-fluorine of porphyrin is selectively replaced by a cysteine in either peptides or proteins to generate novel β-peptidyl/proteic porphyrins. Notably, due to the distinct electronic nature between fluorine and sulfur, such replacement makes the Q band red-shift to the near-infrared region (NIR, >700 nm). This facilitates intersystem crossing (ISC) to enhance the triplet population and thus singlet oxygen production. This new methodology features water tolerance, a fast reaction time (15 min), good chemo-selectivity, and broad substrate scope, including various peptides and proteins under mild conditions. To demonstrate its potential, we applied porphyrin β-bioconjugates in several scenarios, including (1) cytosolic delivery of functional proteins, (2) metabolic glycan labeling, (3) caspase-3 detection, and (4) tumor-targeting phototheranostics.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jing-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China.,Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology Guangzhou 510641 China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
16
|
Xiao W, Chen Y, Wang C. Quantitative Chemoproteomic Methods for Reactive Cysteinome Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Weidi Xiao
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| |
Collapse
|
17
|
Abstract
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
18
|
Ahangarpour M, Kavianinia I, Hume PA, Harris PWR, Brimble MA. N-Vinyl Acrylamides: Versatile Heterobifunctional Electrophiles for Thiol-Thiol Bioconjugations. J Am Chem Soc 2022; 144:13652-13662. [PMID: 35858283 DOI: 10.1021/jacs.2c04146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report the first examples of thiol-selective heterobifunctional electrophiles, N-vinyl acrylamides, that enable efficient highly selective thiol-thiol bioconjugations and cysteine modification of peptides. We demonstrate that these new classes of thiol-selective scaffolds can readily undergo a thia-Michael addition and an orthogonal radical induced thiol-ene "click" reaction under biocompatible conditions. Furthermore, the formation of an unexpected Markovnikov N,S-acetal hydrothiolation was explained using computational studies. We also reveal that N-methylation of the N-vinyl acrylamide scaffold changes the regioselectivity of the reaction. We demonstrate that use of N-vinyl acrylamides shows promise as an efficient, mild, and exquisite cysteine-selective protocol for facile construction of fluorophore-labeled peptides and proteins and that the resultant conjugates are resistant to degradation and thiol exchange, thus significantly improving their biophysical properties.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Paul A Hume
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Wang C, Zhao Y, Zhao J. Recent Advances in Chemical Protein Modification via Cysteine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021. [DOI: 10.3390/catal11121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical reactions can be performed to covalently modify specific residues in proteins. When applied to native enzymes, these chemical modifications can greatly expand the available set of building blocks for the development of biocatalysts. Nucleophilic canonical amino acid sidechains are the most readily accessible targets for such endeavors. A rich history of attempts to design enhanced or novel enzymes, from various protein scaffolds, has paved the way for a rapidly developing field with growing scientific, industrial, and biomedical applications. A major challenge is to devise reactions that are compatible with native proteins and can selectively modify specific residues. Cysteine, lysine, N-terminus, and carboxylate residues comprise the most widespread naturally occurring targets for enzyme modifications. In this review, chemical methods for selective modification of enzymes will be discussed, alongside with examples of reported applications. We aim to highlight the potential of such strategies to enhance enzyme function and create novel semisynthetic biocatalysts, as well as provide a perspective in a fast-evolving topic.
Collapse
|
21
|
van der Sleen LM, Tych KM. Bioconjugation Strategies for Connecting Proteins to DNA-Linkers for Single-Molecule Force-Based Experiments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2424. [PMID: 34578744 PMCID: PMC8464727 DOI: 10.3390/nano11092424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023]
Abstract
The mechanical properties of proteins can be studied with single molecule force spectroscopy (SMFS) using optical tweezers, atomic force microscopy and magnetic tweezers. It is common to utilize a flexible linker between the protein and trapped probe to exclude short-range interactions in SMFS experiments. One of the most prevalent linkers is DNA due to its well-defined properties, although attachment strategies between the DNA linker and protein or probe may vary. We will therefore provide a general overview of the currently existing non-covalent and covalent bioconjugation strategies to site-specifically conjugate DNA-linkers to the protein of interest. In the search for a standardized conjugation strategy, considerations include their mechanical properties in the context of SMFS, feasibility of site-directed labeling, labeling efficiency, and costs.
Collapse
Affiliation(s)
| | - Katarzyna M. Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands;
| |
Collapse
|
22
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
23
|
Platts K, Michel R, Green E, Gillam T, Ghetia M, O'Brien-Simpson N, Li W, Blencowe C, Blencowe A. Pentafulvene-Maleimide Cycloaddition for Bioorthogonal Ligation. Bioconjug Chem 2021; 32:1845-1851. [PMID: 34254789 DOI: 10.1021/acs.bioconjchem.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The applications of bioconjugation chemistry are rapidly expanding, and the addition of new strategies to the bioconjugation and ligation toolbox will further advance progress in this field. Herein, we present a detailed study of the Diels-Alder cycloaddition (DAC) reaction between pentafulvenes and maleimides in aqueous solutions and investigate the reaction as an emerging bioconjugation strategy. The DAC reactions were found to proceed efficiently, quantitatively yielding cycloadducts with reaction rates ranging up to ∼0.7 M-1 s-1 for a series of maleimides, including maleimide-derivatized peptides and proteins. The absence of cross-reactivity of the pentafulvene with a large panel of functional (bio)molecules and biological media further demonstrated the bioorthogonality of this approach. The utility of the DAC reaction for bioorthogonal bioconjugation applications was further demonstrated in the presence of biological media and proteins, as well as through protein derivatization and labeling, which was comparable to the widely employed sulfhydryl-maleimide coupling chemistry.
Collapse
Affiliation(s)
- Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Michel
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Elise Green
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.,Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Maulik Ghetia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Neil O'Brien-Simpson
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Christopher Blencowe
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
24
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
25
|
Park Y, Baumann AL, Moon H, Byrne S, Kasper MA, Hwang S, Sun H, Baik MH, Hackenberger CPR. The mechanism behind enhanced reactivity of unsaturated phosphorus(v) electrophiles towards thiols. Chem Sci 2021; 12:8141-8148. [PMID: 34194704 PMCID: PMC8208129 DOI: 10.1039/d1sc01730f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vinyl- and ethynyl phosphorus(v) electrophiles are a versatile class of thiol-reactive reagents suitable for cysteine-selective peptide and protein modifications, especially for the generation of antibody conjugates. Herein we investigated the reactivity of various P(v) reagents towards thiol addition. Complementing previous studies, we observed that the heteroatoms X (X = S, O, NH) as well as the vinyl- vs. ethynyl-substituent bound to phosphorus greatly influence the overall reactivity. These experimentally observed trends, as well as the high Z-selectivity for thiol additions to ethynyl derivatives, were further elucidated using DFT calculations. Hyperconjugation was a key means of stabilizing the intermediate generated upon the thiol addition, thus determining both the reactivity and stereoselectivity of unsaturated P(v) electrophiles. Specifically, the energetically low-lying σ antibonding orbital of the P–S bond more readily stabilizes the electron density from the lone pair (LP) of the generated carbanion, rendering the phosphonothiolates more reactive compared to the derivatives bearing oxygen and nitrogen. Our studies provide a detailed mechanistic picture for designing P(v)-based electrophiles with fine-tuned reactivity profiles. Computational analysis of different unsaturated phosphorus(v) electrophiles revealed a mechanistic picture to rationalize their selectivity and reactivity in cysteine-selective peptide and protein modifications.![]()
Collapse
Affiliation(s)
- Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Alice L Baumann
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Hyejin Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Stephen Byrne
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Marc-André Kasper
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Songhwan Hwang
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Han Sun
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Christian P R Hackenberger
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
26
|
Arsenyan P, Lapcinska S. Straightforward Functionalization of Sulfur-Containing Peptides via 5- and 6-endo-dig Cyclization Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1343-5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractWe present a simple and convenient method for the generation of sulfenyl electrophiles from peptides containing S–S or S–H bonds by employing N-chlorosuccinimide. The corresponding sulfenyl electrophiles are further utilized in 5- and 6-endo-dig cyclization reactions yielding indolizinium salts, indoles, benzo[b]furans, polyaromatic hydrocarbons (PAHs) and isocoumarins, as well as quinolinones bearing a glutathione moiety. PAH derivatives can be used as selective fluorescent dyes for the visualization of lipid droplets in living cells.
Collapse
|
27
|
Silva MJSA, Faustino H, Coelho JAS, Pinto MV, Fernandes A, Compañón I, Corzana F, Gasser G, Gois PMP. Efficient Amino‐Sulfhydryl Stapling on Peptides and Proteins Using Bifunctional NHS‐Activated Acrylamides. Angew Chem Int Ed Engl 2021; 60:10850-10857. [DOI: 10.1002/anie.202016936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria J. S. A. Silva
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Jaime A. S. Coelho
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Maria V. Pinto
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Ismael Compañón
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Francisco Corzana
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
28
|
Silva MJSA, Faustino H, Coelho JAS, Pinto MV, Fernandes A, Compañón I, Corzana F, Gasser G, Gois PMP. Efficient Amino‐Sulfhydryl Stapling on Peptides and Proteins Using Bifunctional NHS‐Activated Acrylamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maria J. S. A. Silva
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Jaime A. S. Coelho
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Maria V. Pinto
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Ismael Compañón
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Francisco Corzana
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
29
|
De Geyter E, Antonatou E, Kalaitzakis D, Smolen S, Iyer A, Tack L, Ongenae E, Vassilikogiannakis G, Madder A. 5-Hydroxy-pyrrolone based building blocks as maleimide alternatives for protein bioconjugation and single-site multi-functionalization. Chem Sci 2021; 12:5246-5252. [PMID: 34163760 PMCID: PMC8179572 DOI: 10.1039/d0sc05881e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
Recent dramatic expansion in potential uses of protein conjugates has fueled the development of a wide range of protein modification methods; however, the desirable single-site multi-functionalization of proteins has remained a particularly intransigent challenge. Herein, we present the application of 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones (5HP2Os) as advantageous alternatives to widely used maleimides for the chemo- and site-selective labeling of cysteine residues within proteins. A variety of 5HP2O building blocks have been synthesized using a one-pot photooxidation reaction starting from simple and readily accessible furans and using visible light and oxygen. These novel reagents display excellent cysteine selectivity and also yield thiol conjugates with superior stability. 5HP2O building blocks offer a unique opportunity to introduce multiple new functionalities into a protein at a single site and in a single step, thus, significantly enhancing the resultant conjugate's properties.
Collapse
Affiliation(s)
- Ewout De Geyter
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Eirini Antonatou
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Sabina Smolen
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Abhishek Iyer
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Laure Tack
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Emiel Ongenae
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
30
|
Li J, Deng JJ, Yin Z, Hu QL, Ge Y, Song Z, Zhang Y, Chan ASC, Li H, Xiong XF. Cleavable and tunable cysteine-specific arylation modification with aryl thioethers. Chem Sci 2021; 12:5209-5215. [PMID: 34168774 PMCID: PMC8179606 DOI: 10.1039/d0sc06576e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a S N Ar approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jun-Jie Deng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhibin Yin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhendong Song
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ying Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Huilin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
31
|
González-Muñiz R, Bonache MÁ, Pérez de Vega MJ. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021; 26:445. [PMID: 33467010 PMCID: PMC7830901 DOI: 10.3390/molecules26020445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic and macrocyclic peptides constitute advanced molecules for modulating protein-protein interactions (PPIs). Although still peptide derivatives, they are metabolically more stable than linear counterparts, and should have a lower degree of flexibility, with more defined secondary structure conformations that can be adapted to imitate protein interfaces. In this review, we analyze recent progress on the main methods to access cyclic/macrocyclic peptide derivatives, with emphasis in a few selected examples designed to interfere within PPIs. These types of peptides can be from natural origin, or prepared by biochemical or synthetic methodologies, and their design could be aided by computational approaches. Some advances to facilitate the permeability of these quite big molecules by conjugation with cell penetrating peptides, and the incorporation of β-amino acid and peptoid structures to improve metabolic stability, are also commented. It is predicted that this field of research could have an important future mission, running in parallel to the discovery of new, relevant PPIs involved in pathological processes.
Collapse
Affiliation(s)
- Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.Á.B.); (M.J.P.d.V.)
| | | | | |
Collapse
|
32
|
Hymel D, Liu F. Proximity‐driven, Regioselective Chemical Modification of Peptides and Proteins. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Hymel
- Discovery Chemistry Novo Nordisk Research Center Seattle, Inc. 500 Fairview Ave Seattle WA 98109 USA
| | - Fa Liu
- Focus-X Therapeutics, Inc 3541 223rd Ave SE Sammamish WA 98075 USA
| |
Collapse
|
33
|
Guo AD, Wei D, Nie HJ, Hu H, Peng C, Li ST, Yan KN, Zhou BS, Feng L, Fang C, Tan M, Huang R, Chen XH. Light-induced primary amines and o-nitrobenzyl alcohols cyclization as a versatile photoclick reaction for modular conjugation. Nat Commun 2020; 11:5472. [PMID: 33122644 PMCID: PMC7596520 DOI: 10.1038/s41467-020-19274-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
The advent of click chemistry has had a profound impact on many fields and fueled a need for reliable reactions to expand the click chemistry toolkit. However, developing new systems to fulfill the click chemistry criteria remains highly desirable yet challenging. Here, we report the development of light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) as a photoclick reaction via primary amines as direct click handle, to rapid and modular functionalization of diverse small molecules and native biomolecules. With intrinsic advantages of temporal control, good biocompatibility, reliable chemoselectivity, excellent efficiency, readily accessible reactants, operational simplicity and mild conditions, the PANAC photoclick is robust for direct diversification of pharmaceuticals and biorelevant molecules, lysine-specific modifications of unprotected peptides and native proteins in vitro, temporal profiling of endogenous kinases and organelle-targeted labeling in living systems. This strategy provides a versatile platform for organic synthesis, bioconjugation, medicinal chemistry, chemical biology and materials science.
Collapse
Affiliation(s)
- An-Di Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Dan Wei
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hui-Jun Nie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shao-Tong Li
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ke-Nian Yan
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Bin-Shan Zhou
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Feng
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chao Fang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ruimin Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Hua Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
34
|
Yang F, Wang C. Profiling of post-translational modifications by chemical and computational proteomics. Chem Commun (Camb) 2020; 56:13506-13519. [PMID: 33084662 DOI: 10.1039/d0cc05447j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) diversify the molecular structures of proteins and play essential roles in regulating their functions. Abnormal PTM status has been linked to a variety of developmental disorders and human diseases, highlighting the importance of studying PTMs in understanding physiological processes and discovering novel nodes and links with therapeutic intervention potential. Classical biochemical methods are suitable for studying PTMs on individual proteins; however, global profiling of PTMs in proteomes remains a challenging task. In this feature article, we start with a brief review of the traditional affinity-based strategies and shift the emphasis to summarizing recent progress in the development and application of chemical and computational proteomic strategies to delineate the global landscapes of functional PTMs. Finally, we discuss current challenges in PTM detection and provide future perspectives on how the field can be further advanced.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
35
|
A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes. Nat Protoc 2020; 15:2891-2919. [PMID: 32690958 DOI: 10.1038/s41596-020-0352-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Cysteine is unique among all protein-coding amino acids, owing to its intrinsically high nucleophilicity. The cysteinyl thiol group can be covalently modified by a broad range of redox mechanisms or by various electrophiles derived from exogenous or endogenous sources. Measuring the response of protein cysteines to redox perturbation or electrophiles is critical for understanding the underlying mechanisms involved. Activity-based protein profiling based on thiol-reactive probes has been the method of choice for such analyses. We therefore adapted this approach and developed a new chemoproteomic platform, termed 'QTRP' (quantitative thiol reactivity profiling), that relies on the ability of a commercially available thiol-reactive probe IPM (2-iodo-N-(prop-2-yn-1-yl)acetamide) to covalently label, enrich and quantify the reactive cysteinome in cells and tissues. Here, we provide a detailed and updated workflow of QTRP that includes procedures for (i) labeling of the reactive cysteinome from cell or tissue samples (e.g., control versus treatment) with IPM, (ii) processing the protein samples into tryptic peptides and tagging the probe-modified peptides with isotopically labeled azido-biotin reagents containing a photo-cleavable linker via click chemistry reaction, (iii) capturing biotin-conjugated peptides with streptavidin beads, (iv) identifying and quantifying the photo-released peptides by mass spectrometry (MS)-based shotgun proteomics and (v) interpreting MS data by a streamlined informatic pipeline using a proteomics software, pFind 3, and an automatic post-processing algorithm. We also exemplified here how to use QTRP for mining H2O2-sensitive cysteines and for determining the intrinsic reactivity of cysteines in a complex proteome. We anticipate that this protocol should find broad applications in redox biology, chemical biology and the pharmaceutical industry. The protocol for sample preparation takes 3 d, whereas MS measurements and data analyses require 75 min and <30 min, respectively, per sample.
Collapse
|
36
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Zheng X, Liu W, Liu Z, Zhao Y, Wu C. Biocompatible and Rapid Cyclization of Peptides with 2,4-Difluoro-6-hydroxy-1,3,5-benzenetricarbonitrile for the Development of Cyclic Peptide Libraries. Bioconjug Chem 2020; 31:2085-2091. [DOI: 10.1021/acs.bioconjchem.0c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuejun Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Weidong Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Ziyan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
38
|
Richardson MB, Gabriel KN, Garcia JA, Ashby SN, Dyer RP, Kim JK, Lau CJ, Hong J, Le Tourneau RJ, Sen S, Narel DL, Katz BB, Ziller JW, Majumdar S, Collins PG, Weiss GA. Pyrocinchonimides Conjugate to Amine Groups on Proteins via Imide Transfer. Bioconjug Chem 2020; 31:1449-1462. [PMID: 32302483 DOI: 10.1021/acs.bioconjchem.0c00143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in bioconjugation, the ability to link biomolecules to each other, small molecules, surfaces, and more, can spur the development of advanced materials and therapeutics. We have discovered that pyrocinchonimide, the dimethylated analogue of maleimide, undergoes a surprising transformation with biomolecules. The reaction targets amines and involves an imide transfer, which has not been previously reported for bioconjugation purposes. Despite their similarity to maleimides, pyrocinchonimides do not react with free thiols. Though both lysine residues and the N-termini of proteins can receive the transferred imide, the reaction also exhibits a marked preference for certain amines that cannot solely be ascribed to solvent accessibility. This property is peculiar among amine-targeting reactions and can reduce combinatorial diversity when many available reactive amines are available, such as in the formation of antibody-drug conjugates. Unlike amides, the modification undergoes very slow reversion under high pH conditions. The reaction offers a thermodynamically controlled route to single or multiple modifications of proteins for a wide range of applications.
Collapse
Affiliation(s)
- Mark B Richardson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kristin N Gabriel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph A Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shareen N Ashby
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rebekah P Dyer
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joshua K Kim
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Calvin J Lau
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - John Hong
- School of Medicine, University of California, Irvine, Irvine, California 92697, United States
| | - Ryan J Le Tourneau
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sanjana Sen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - David L Narel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Philip G Collins
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
39
|
Baumann AL, Schwagerus S, Broi K, Kemnitz-Hassanin K, Stieger CE, Trieloff N, Schmieder P, Hackenberger CPR. Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol–Thiol Bioconjugations. J Am Chem Soc 2020; 142:9544-9552. [DOI: 10.1021/jacs.0c03426] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alice L. Baumann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Sergej Schwagerus
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kevin Broi
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kristin Kemnitz-Hassanin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian E. Stieger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nils Trieloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
40
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
41
|
Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones. Nat Commun 2020; 11:1015. [PMID: 32081914 PMCID: PMC7035330 DOI: 10.1038/s41467-020-14757-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Many reagents have been developed for cysteine-specific protein modification. However, few of them allow for multi-functionalization of a single Cys residue and disulfide bridging bioconjugation. Herein, we report 3-bromo-5-methylene pyrrolones (3Br-5MPs) as a simple, robust, and versatile class of reagents for cysteine-specific protein modification. These compounds can be facilely synthesized via a one-pot mild reaction and they show comparable tagging efficiency but higher cysteine specificity than the maleimide counterparts. The addition of cysteine to 3Br-5MPs generates conjugates that are amenable to secondary addition by another thiol or cysteine, making 3Br-5MPs valuable for multi-functionalization of a single cysteine and disulfide bridging bioconjugation. The labeling reaction and subsequent treatments are mild enough to produce stable and active protein conjugates for biological applications. Many reagents have been developed for cysteine-specific protein modification. However, few of them allow for multi-functionalization of a single Cys residue and disulfide bridging bioconjugation. Here the authors report 3-bromo-5-methylene pyrrolones as a simple, robust and versatile class of reagents for cysteine-specific protein modification.
Collapse
|
42
|
Watanabe K. Covalent Bond Formation between Aromatic Nitro Compounds and Biomolecules. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Kasper MA, Glanz M, Oder A, Schmieder P, von Kries JP, Hackenberger CPR. Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization. Chem Sci 2019; 10:6322-6329. [PMID: 31341586 PMCID: PMC6598645 DOI: 10.1039/c9sc01345h] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
In this paper, we introduce vinylphosphonites for chemoselective Staudinger-phosphonite reactions (SPhR) with azides to form vinylphosphonamidates for the subsequent modification of cysteine residues in peptides and proteins. An electron-rich alkene is turned into an electron-deficient vinylphosphonamidate, thereby inducing electrophilic reactivity for a following thiol addition. We show that by varying the phosphonamidate ester substituent we can fine-tune the reactivity of the thiol addition and even control the functional properties of the final conjugate. Furthermore, we observed a drastic increase in thiol addition efficiency when the SPhR is carried out in the presence of a thiol substrate in a one-pot reaction. Hence, we utilize vinylphosphonites for the chemoselective intramolecular cyclization of peptides carrying an azide-containing amino acid and a cysteine in high yields. Our concept was demonstrated for the stapling of a cell-permeable peptidic inhibitor for protein-protein interaction (PPI) between BCL9 and beta-catenin, which is known to create a transcription factor complex playing a role in embryonic development and cancer origin, and for macrocyclization of cell-penetrating peptides (CPPs) to enhance the cellular uptake of proteins.
Collapse
Affiliation(s)
- Marc-André Kasper
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
- Humboldt Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Maria Glanz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
- Humboldt Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
| | - Jens P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
- Humboldt Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| |
Collapse
|