1
|
Smith AM, Li Y, Velarde A, Cheng Y, Frankel AD. The HIV-1 Nuclear Export Complex Reveals the Role of RNA in Crm1 Cargo Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614349. [PMID: 39345625 PMCID: PMC11430062 DOI: 10.1101/2024.09.22.614349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Crm1 is a highly conserved nuclear exportin that transports >1000 human proteins including ribonucleoprotein (RNP) complexes. The interface between Crm1 and RNP cargos is unknown. The HIV regulatory protein, Rev, was one of the first identified cargos for Crm1 and contains a prototypic nuclear export sequence (NES). We present the cryo-electron microscopy structure of the HIV-1 nuclear export complex (Crm1/Ran-GTP and the Rev/RRE RNP). Rev binds at a previously unseen protein-protein binding site that stabilizes a unique Crm1 dimer and positions two NESs within the Crm1 dimer. The orientation of Rev binding positions the RRE within a charged pocket on the inside of the Crm1 toroid, mediating direct RNA-Ran-GTP contacts, highlighting the significant role of the RRE in the interaction. Structure based mutations, combined with cell-based assays, show that Crm1 has multiple distinct cargo recognition sites and explains how Crm1 can recognize a diverse range of protein and RNP cargos.
Collapse
|
2
|
Niedzialkowska E, Truong TM, Eldredge LA, Ali A, Redemann S, Stukenberg PT. Chromosomal passenger complex condensates generate parallel microtubule bundles in vitro. J Biol Chem 2024; 300:105669. [PMID: 38272221 PMCID: PMC10876603 DOI: 10.1016/j.jbc.2024.105669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
The mitotic spindle contains many bundles of microtubules (MTs) including midzones and kinetochore fibers, but little is known about how bundled structures are formed. Here, we show that the chromosomal passenger complex (CPC) purified from Escherichia coli undergoes liquid-liquid demixing in vitro. An emergent property of the resultant condensates is to generate parallel MT bundles when incubated with free tubulin and GTP in vitro. We demonstrate that MT bundles emerge from CPC droplets with protruding minus ends that then grow into long and tapered MT structures. During this growth, we found that the CPC in these condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for liquid-liquid demixing or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data demonstrate that an in vitro biochemical activity to produce MT bundles emerges after the concentration of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle. Moreover, these data suggest that cells contain MT-organizing centers that generate MT bundles that emerge with the opposite polarity from centrosomes.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tan M Truong
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Luke A Eldredge
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Aamir Ali
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
3
|
Didier-Mathon H, Stoupa A, Kariyawasam D, Yde S, Cochant-Priollet B, Groussin L, Sébag F, Cagnard N, Nitschke P, Luton D, Polak M, Carré A. Borealin/CDCA8 deficiency alters thyroid development and results in papillary tumor-like structures. Front Endocrinol (Lausanne) 2023; 14:1286747. [PMID: 37964961 PMCID: PMC10641986 DOI: 10.3389/fendo.2023.1286747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Background BOREALIN/CDCA8 mutations are associated with congenital hypothyroidism and thyroid dysgenesis. Borealin is involved in mitosis as part of the Chromosomal Passenger Complex. Although BOREALIN mutations decrease thyrocyte adhesion and migration, little is known about the specific role of Borealin in the thyroid. Methods We characterized thyroid development and function in Borealin-deficient (Borealin +/-) mice using histology, transcriptomic analysis, and quantitative PCR. Results Thyroid development was impaired with a hyperplastic anlage on embryonic day E9.5 followed by thyroid hypoplasia from E11.5 onward. Adult Borealin +/- mice exhibited euthyroid goiter and defect in thyroid hormone synthesis. Borealin +/- aged mice had disorganized follicles and papillary-like structures in thyroids due to ERK pathway activation and a strong increase of Braf-like genes described by The Cancer Genome Atlas (TCGA) network of papillary thyroid carcinoma. Moreover, Borealin +/- thyroids exhibited structural and transcriptomic similarities with papillary thyroid carcinoma tissue from a human patient harboring a BOREALIN mutation, suggesting a role in thyroid tumor susceptibility. Conclusion These findings demonstrate Borealin involvement in critical steps of thyroid structural development and function throughout life. They support a role for Borealin in thyroid dysgenesis with congenital hypothyroidism. Close monitoring for thyroid cancer seems warranted in patients carrying BOREALIN mutations.
Collapse
Affiliation(s)
- Hortense Didier-Mathon
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin, Paris, France
| | - Athanasia Stoupa
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin, Paris, France
- IMAGINE Institute Affiliate, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hopitaux de Paris (AP-HP), Paris, France
| | - Dulanjalee Kariyawasam
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin, Paris, France
- IMAGINE Institute Affiliate, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hopitaux de Paris (AP-HP), Paris, France
| | - Sonny Yde
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin, Paris, France
| | - Beatrix Cochant-Priollet
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Pathology, Cochin Hospital, Assistance Publique Hopitaux de Paris (AP-HP) Centre, Paris, France
| | - Lionel Groussin
- Department of Endocrinology, Université Paris Cité, Cochin Hospital, Assistance Publique Hopitaux de Paris (AP-HP) Centre, Paris, France
| | - Frédéric Sébag
- Endocrine Surgery, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Nicolas Cagnard
- Bioinformatics Platform, Institut Imagine, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France
| | - Patrick Nitschke
- Bioinformatics Platform, Institut Imagine, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France
| | - Dominique Luton
- Département de Gynécologie Obstétrique, Hôpital Bicêtre, Assistance Publique Hopitaux de Paris (AP-HP) Le Kremlin Bicêtre France, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Michel Polak
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin, Paris, France
- IMAGINE Institute Affiliate, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology Department, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hopitaux de Paris (AP-HP), Paris, France
- Centre de référence des maladies endocriniennes rares de la croissance et du développement, Necker-Enfants Malades University Hospital, Paris, France
- Centre régional de dépistage néonatal (CRDN) Ile de France, Paris, France
| | - Aurore Carré
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin, Paris, France
- IMAGINE Institute Affiliate, Paris, France
| |
Collapse
|
4
|
Cimini D. Twenty years of merotelic kinetochore attachments: a historical perspective. Chromosome Res 2023; 31:18. [PMID: 37466740 PMCID: PMC10411636 DOI: 10.1007/s10577-023-09727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.
Collapse
Affiliation(s)
- Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Wu Y, Zeng S, Miao C, Wu H, Xu X, Chen L, Lu G, Lin G, Dai C. A 1-kb human CDCA8 promoter directs the spermatogonia-specific luciferase expression in adult testis. Gene 2023; 866:147350. [PMID: 36898512 DOI: 10.1016/j.gene.2023.147350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Cell division cycle associated 8 (CDCA8) is a component of the chromosomal passenger complex and plays an essential role in mitosis, meiosis, cancer growth, and undifferentiated state of embryonic stem cells. However, its expression and role in adult tissues remain largely uncharacterized. Here, we studied the CDCA8 transcription in adult tissues by generating a transgenic mouse model, in which the luciferase was driven by a 1-kb human CDCA8 promoter. Our previous study showed that this 1-kb promoter was active enough to dictate reporter expression faithfully reflecting endogenous CDCA8 expression. Two founder mice carrying the transgene were identified. In vivo imaging and luciferase assays in tissue lysates revealed that CDCA8 promoter was highly activated and drove robust luciferase expression in testes. Subsequently, immunohistochemical and immunofluorescent staining showed that in adult transgenic testes, the expression of luciferase was restricted to a subset of spermatogonia that were located along the basement membrane and positive for the expression of GFRA1, a consensus marker for early undifferentiated spermatogonia. These findings for the first time indicate that the CDCA8 was transcriptionally activated in testis and thus may play a role in adult spermatogenesis. Moreover, the 1-kb CDCA8 promoter could be used for spermatogonia-specific gene expression in vivo and the transgenic lines constructed here could also be used for recovery of spermatogonia from adult testes.
Collapse
Affiliation(s)
- Yueren Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Sicong Zeng
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Congxiu Miao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha 410008, China
| | - Huixia Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Xiaoming Xu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Liansheng Chen
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Guangxiu Lu
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China.
| | - Can Dai
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China.
| |
Collapse
|
6
|
Matković J, Ghosh S, Ćosić M, Eibes S, Barišić M, Pavin N, Tolić IM. Kinetochore- and chromosome-driven transition of microtubules into bundles promotes spindle assembly. Nat Commun 2022; 13:7307. [PMID: 36435852 PMCID: PMC9701229 DOI: 10.1038/s41467-022-34957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Mitotic spindle assembly is crucial for chromosome segregation and relies on bundles of microtubules that extend from the poles and overlap in the middle. However, how these structures form remains poorly understood. Here we show that overlap bundles arise through a network-to-bundles transition driven by kinetochores and chromosomes. STED super-resolution microscopy reveals that PRC1-crosslinked microtubules initially form loose arrays, which become rearranged into bundles. Kinetochores promote microtubule bundling by lateral binding via CENP-E/kinesin-7 in an Aurora B-regulated manner. Steric interactions between the bundle-associated chromosomes at the spindle midplane drive bundle separation and spindle widening. In agreement with experiments, theoretical modeling suggests that bundles arise through competing attractive and repulsive mechanisms. Finally, perturbation of overlap bundles leads to inefficient correction of erroneous kinetochore-microtubule attachments. Thus, kinetochores and chromosomes drive coarsening of a uniform microtubule array into overlap bundles, which promote not only spindle formation but also chromosome segregation fidelity.
Collapse
Affiliation(s)
- Jurica Matković
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Subhadip Ghosh
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mateja Ćosić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Susana Eibes
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marin Barišić
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nenad Pavin
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Iva M. Tolić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Marsoner T, Yedavalli P, Masnovo C, Fink S, Schmitzer K, Campbell CS. Aurora B activity is promoted by cooperation between discrete localization sites in budding yeast. Mol Biol Cell 2022; 33:ar85. [PMID: 35704464 PMCID: PMC9582632 DOI: 10.1091/mbc.e21-11-0590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Chromosome biorientation is promoted by the four-member chromosomal passenger complex (CPC) through phosphorylation of incorrect kinetochore-microtubule attachments. During chromosome alignment, the CPC localizes to the inner centromere, the inner kinetochore, and spindle microtubules. Here we show that a small domain of the CPC subunit INCENP/Sli15 is required to target the complex to all three of these locations in budding yeast. This domain, the single alpha helix (SAH), is essential for phosphorylation of outer kinetochore substrates, chromosome segregation, and viability. By restoring the CPC to each of its three locations through targeted mutations and fusion constructs, we determined their individual contributions to chromosome biorientation. We find that only the inner centromere localization is sufficient for cell viability on its own. However, when combined, the inner kinetochore and microtubule binding activities are also sufficient to promote accurate chromosome segregation. Furthermore, we find that the two pathways target the CPC to different kinetochore attachment states, as the inner centromere-targeting pathway is primarily responsible for bringing the complex to unattached kinetochores. We have therefore discovered that two parallel localization pathways are each sufficient to promote CPC activity in chromosome biorientation, both depending on the SAH domain of INCENP/Sli15.
Collapse
Affiliation(s)
- Theodor Marsoner
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Poornima Yedavalli
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Chiara Masnovo
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Sarah Fink
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Katrin Schmitzer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Christopher S. Campbell
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
8
|
Liu L, Chen H, Chen X, Yao C, Shen W, Jia C. KNTC1 as a putative tumor oncogene in pancreatic cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04146-3. [DOI: 10.1007/s00432-022-04146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Abstract
Purpose
Recent studies have demonstrated that kinetochore-associated protein 1 (KNTC1) plays a significant role in the carcinogenesis of numerous types of cancer. This study aimed to explore the role and possible mechanisms of KNTC1 in the development of pancreatic cancer.
Methods and results
We analyzed differentially expressed genes by RNA sequencing in three paired pancreatic cancer and para-cancerous tissue samples and found that the expression of KNTC1 was significantly upregulated in pancreatic cancer. A Cancer and Tumor Gene Map pan-analysis showed that high expression of KNTC1 was related to poor prognosis in 9499 tumor samples. With immunohistochemical staining, we found that the high expression of KNTC1 in pancreatic cancer was related to pathological grade and clinical prognosis. Similarly, RT-PCR results indicated that the expression of KNTC1 was higher in three groups of pancreatic cancer cell lines (BxPC-3, PANC-1, and SW1990) than in normal pancreatic ductal cells. We introduced lentivirus-mediated shRNA targeting KNTC1 into PANC-1 and SW1990 cells and found that KNTC1 knockdown significantly decreased cell growth and increased cell apoptosis compared to the control group cells. Bioinformatic analysis of the cell expression profile revealed that differential genes were mainly enriched in the cell cycle, mitosis, and STAT3 signaling pathways, and co-immunoprecipitation confirmed an interaction between KNTC1 and cell division cycle associated 8.
Conclusions
KNTC1 could be linked to the pathophysiology of pancreatic cancer and may be an early diagnostic marker of cervical precancerous lesions.
Collapse
|
9
|
Repton C, Cullen CF, Costa MFA, Spanos C, Rappsilber J, Ohkura H. The phospho-docking protein 14-3-3 regulates microtubule-associated proteins in oocytes including the chromosomal passenger Borealin. PLoS Genet 2022; 18:e1009995. [PMID: 35666772 PMCID: PMC9203013 DOI: 10.1371/journal.pgen.1009995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to bind microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function.
Collapse
Affiliation(s)
- Charlotte Repton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Fiona Cullen
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mariana F. A. Costa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
10
|
Schrock MS, Scarberry L, Stromberg BR, Sears C, Torres AE, Tallman D, Krupinski L, Chakravarti A, Summers MK. MKLP2 functions in early mitosis to ensure proper chromosome congression. J Cell Sci 2022; 135:275559. [PMID: 35638575 DOI: 10.1242/jcs.259560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Mitotic kinesin-like protein 2 (MKLP2) is a motor protein with a well-established function in promoting cytokinesis. However, our results with siRNAs targeting MKLP2 and small molecule inhibitors of MKLP2 (MKLP2i) suggested a function earlier in mitosis, prior to anaphase. In this study we provide direct evidence that MKLP2 facilitates chromosome congression in prometaphase. We employed live imaging to observe HeLa cells with fluorescently tagged histones treated with MKLP2i and discovered a pronounced chromosome congression defect. We show that MKLP2 facilitates error correction as inhibited cells had a significant increase in unstable, syntelic kinetochore-microtubule attachments. We find that the aberrant attachments are accompanied by elevated Aurora Kinase (A/B) activity and phosphorylation of the downstream target, pHEC1 (Ser 55). Lastly, we show that MKLP2 inhibition results in aneuploidy, confirming that MKLP2 safeguards cells against chromosomal instability.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Luke Scarberry
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, 43210, USA
| | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, 43210, USA
| | - Claire Sears
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Undergraduate Studies, Kenyon College, Gambier, OH, 43022, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - David Tallman
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Lucas Krupinski
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
11
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
12
|
SWAP, SWITCH, and STABILIZE: Mechanisms of Kinetochore–Microtubule Error Correction. Cells 2022; 11:cells11091462. [PMID: 35563768 PMCID: PMC9104000 DOI: 10.3390/cells11091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
For correct chromosome segregation in mitosis, eukaryotic cells must establish chromosome biorientation where sister kinetochores attach to microtubules extending from opposite spindle poles. To establish biorientation, any aberrant kinetochore–microtubule interactions must be resolved in the process called error correction. For resolution of the aberrant interactions in error correction, kinetochore–microtubule interactions must be exchanged until biorientation is formed (the SWAP process). At initiation of biorientation, the state of weak kinetochore–microtubule interactions should be converted to the state of stable interactions (the SWITCH process)—the conundrum of this conversion is called the initiation problem of biorientation. Once biorientation is established, tension is applied on kinetochore–microtubule interactions, which stabilizes the interactions (the STABILIZE process). Aurora B kinase plays central roles in promoting error correction, and Mps1 kinase and Stu2 microtubule polymerase also play important roles. In this article, we review mechanisms of error correction by considering the SWAP, SWITCH, and STABILIZE processes. We mainly focus on mechanisms found in budding yeast, where only one microtubule attaches to a single kinetochore at biorientation, making the error correction mechanisms relatively simpler.
Collapse
|
13
|
Doodhi H, Tanaka TU. Swap and stop - Kinetochores play error correction with microtubules: Mechanisms of kinetochore-microtubule error correction: Mechanisms of kinetochore-microtubule error correction. Bioessays 2022; 44:e2100246. [PMID: 35261042 PMCID: PMC9344824 DOI: 10.1002/bies.202100246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error correction. Where relevant, we also compare the findings in budding yeast with mechanisms in higher eukaryotes. Evidence suggests that Aurora B kinase differentially regulates kinetochore attachments to the microtubule end and its lateral side and switches relative strength of the two kinetochore–microtubule attachment modes, which drives the exchange of kinetochore–microtubule interactions to resolve aberrant interactions. However, Aurora B kinase, recruited to centromeres and inner kinetochores, cannot reach its targets at kinetochore–microtubule interface when tension causes kinetochore stretching, which stops the kinetochore–microtubule exchange once biorientation is established.
Collapse
Affiliation(s)
- Harinath Doodhi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
14
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
McKim KS. Highway to hell-thy meiotic divisions: Chromosome passenger complex functions driven by microtubules: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function. Bioessays 2022; 44:e2100202. [PMID: 34821405 PMCID: PMC8688318 DOI: 10.1002/bies.202100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin-microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC-microtubule dependent functions are considered in the context of the first meiotic division. Acentrosomal spindle assembly is a process that depends on transfer of the CPC from the chromosomes to the microtubules. Furthermore, transfer to the microtubules is not only to position the CPC for a later role in cytokinesis; metaphase I error correction and subsequent bi-orientation of bivalents may depend on microtubule associated CPC interacting with the kinetochores.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
16
|
Changing places: Chromosomal Passenger Complex relocation in early anaphase. Trends Cell Biol 2021; 32:165-176. [PMID: 34663523 DOI: 10.1016/j.tcb.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
The Chromosomal Passenger Complex (CPC) regulates a plethora of processes during multiple stages of nuclear and cytoplasmic division. Early during mitosis, the CPC is recruited to centromeres and kinetochores, and ensures that the duplicated chromosomes become properly connected to microtubules from opposite poles of the mitotic spindle. Progression into anaphase is accompanied by a striking relocation of the CPC from centromeres to the antiparallel microtubule overlaps of the anaphase spindle and to the equatorial cortex. This translocation requires direct interactions of the CPC with the kinesin-6 family member MKLP2/KIF20A, and the inactivation of cyclin B-cyclin-dependent kinase-1 (CDK1). Here, we review recent progress in the regulation of this relocation event. Furthermore, we discuss why the CPC must be relocated during early anaphase in light of recent advances in the functions of the CPC post metaphase.
Collapse
|
17
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
18
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
19
|
Barisic M, Rajendraprasad G. Mitotic poleward flux: Finding balance between microtubule dynamics and sliding. Bioessays 2021; 43:e2100079. [PMID: 34085708 DOI: 10.1002/bies.202100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
Continuous poleward motion of microtubules in metazoan mitotic spindles has been fascinating generations of cell biologists over the last several decades. In human cells, this so-called poleward flux was recently shown to be driven by the coordinated action of four mitotic kinesins. The sliding activities of kinesin-5/EG5 and kinesin-12/KIF15 are sequentially supported by kinesin-7/CENP-E at kinetochores and kinesin-4/KIF4A on chromosome arms, with the individual contributions peaking during prometaphase and metaphase, respectively. Although recent data elucidate the molecular mechanism underlying this cellular phenomenon, the functional roles of microtubule poleward flux during cell division remain largely elusive. Here, we discuss potential contribution of microtubule flux engine to various essential processes at different stages of mitosis.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| |
Collapse
|
20
|
Rakshit T, Melters DP, Dimitriadis EK, Dalal Y. Mechanical properties of nucleoprotein complexes determined by nanoindentation spectroscopy. Nucleus 2021; 11:264-282. [PMID: 32954931 PMCID: PMC7529419 DOI: 10.1080/19491034.2020.1816053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interplay between transcription factors, chromatin remodelers, 3-D organization, and mechanical properties of the chromatin fiber controls genome function in eukaryotes. Besides the canonical histones which fold the bulk of the chromatin into nucleosomes, histone variants create distinctive chromatin domains that are thought to regulate transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether histone variants translate distinctive biochemical or biophysical properties to their associated chromatin structures, and whether these properties impact chromatin dynamics as the genome undergoes a multitude of transactions, is an important question in biology. Here, we describe single-molecule nanoindentation tools that we developed specifically to determine the mechanical properties of histone variant nucleosomes and their complexes. These methods join an array of cutting-edge new methods that further our quantitative understanding of the response of chromatin to intrinsic and extrinsic forces which act upon it during biological transactions in the nucleus.
Collapse
Affiliation(s)
- Tatini Rakshit
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA.,Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Salt Lake, India
| | - Daniël P Melters
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| |
Collapse
|
21
|
Chen GY, Renda F, Zhang H, Gokden A, Wu DZ, Chenoweth DM, Khodjakov A, Lampson MA. Tension promotes kinetochore-microtubule release by Aurora B kinase. J Cell Biol 2021; 220:212027. [PMID: 33904910 PMCID: PMC8082439 DOI: 10.1083/jcb.202007030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/06/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore–microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Huaiying Zhang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Alper Gokden
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Daniel Z Wu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Wang LI, DeFosse T, Jang JK, Battaglia RA, Wagner VF, McKim KS. Borealin directs recruitment of the CPC to oocyte chromosomes and movement to the microtubules. J Cell Biol 2021; 220:211972. [PMID: 33836043 PMCID: PMC8185691 DOI: 10.1083/jcb.202006018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
The chromosomes in the oocytes of many animals appear to promote bipolar spindle assembly. In Drosophila oocytes, spindle assembly requires the chromosome passenger complex (CPC), which consists of INCENP, Borealin, Survivin, and Aurora B. To determine what recruits the CPC to the chromosomes and its role in spindle assembly, we developed a strategy to manipulate the function and localization of INCENP, which is critical for recruiting the Aurora B kinase. We found that an interaction between Borealin and the chromatin is crucial for the recruitment of the CPC to the chromosomes and is sufficient to build kinetochores and recruit spindle microtubules. HP1 colocalizes with the CPC on the chromosomes and together they move to the spindle microtubules. We propose that the Borealin interaction with HP1 promotes the movement of the CPC from the chromosomes to the microtubules. In addition, within the central spindle, rather than at the centromeres, the CPC and HP1 are required for homologous chromosome bi-orientation.
Collapse
Affiliation(s)
- Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Tyler DeFosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Rachel A Battaglia
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Victoria F Wagner
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| |
Collapse
|
23
|
The right place at the right time: Aurora B kinase localization to centromeres and kinetochores. Essays Biochem 2021; 64:299-311. [PMID: 32406506 DOI: 10.1042/ebc20190081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key "orchestrators" of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.
Collapse
|
24
|
Hadders MA, Hindriksen S, Truong MA, Mhaskar AN, Wopken JP, Vromans MJM, Lens SMA. Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J Cell Biol 2020; 219:133700. [PMID: 32027339 PMCID: PMC7054988 DOI: 10.1083/jcb.201907087] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase–dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT–MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B–dependent kinetochore phosphorylation.
Collapse
Affiliation(s)
- Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne Hindriksen
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aditya N Mhaskar
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J Pepijn Wopken
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Martijn J M Vromans
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Broad AJ, DeLuca KF, DeLuca JG. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J Cell Biol 2020; 219:133701. [PMID: 32028528 PMCID: PMC7055008 DOI: 10.1083/jcb.201905144] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.
Collapse
Affiliation(s)
- Amanda J Broad
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
26
|
Audett MR, Maresca TJ. The whole is greater than the sum of its parts: at the intersection of order, disorder, and kinetochore function. Essays Biochem 2020; 64:349-358. [PMID: 32756877 PMCID: PMC8011995 DOI: 10.1042/ebc20190069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
The kinetochore (KT) field has matured tremendously since Earnshaw first identified CENP-A, CENP-B, and CENP-C [1,2]. In the past 35 years, the accumulation of knowledge has included: defining the parts list, identifying epistatic networks of interdependence within the parts list, understanding the spatial organization of subcomplexes into a massive structure - hundreds of megadaltons in size, and dissecting the functions of the KT in its entirety as well as of its individual parts. Like nearly all cell and molecular biology fields, the structure-function paradigm has been foundational to advances in the KT field. A point nicely highlighted by the fact that we are at the precipice of the in vitro reconstitution of a functional KT holo complex. Yet conventional notions of structure cannot provide a complete picture of the KT especially since it contains an abundance of unstructured or intrinsically disordered constituents. The combination of structured and disordered proteins within the KT results in an assembled system that is functionally greater than the sum of its parts.
Collapse
Affiliation(s)
- Margaux R Audett
- Biology Department, University of Massachusetts, Amherst, MA, U.S.A
| | - Thomas J Maresca
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|
27
|
Establishing correct kinetochore-microtubule attachments in mitosis and meiosis. Essays Biochem 2020; 64:277-287. [PMID: 32406497 DOI: 10.1042/ebc20190072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Faithful chromosome segregation in mitosis and meiosis requires that chromosomes properly attach to spindle microtubules. Initial kinetochore-microtubule attachments are often incorrect and rely on error correction mechanisms to release improper attachments, allowing the formation of new attachments. Aurora B kinase and, in mammalian germ cells, Aurora C kinase function as the enzymatic component of the Chromosomal Passenger Complex (CPC), which localizes to the inner centromere/kinetochore and phosphorylates kinetochore proteins for microtubule release during error correction. In this review, we discuss recent findings of the molecular pathways that regulate the chromosomal localization of Aurora B and C kinases in human cell lines, mice, fission yeast, and budding yeast. We also discuss differences in the importance of localization pathways between mitosis and meiosis.
Collapse
|
28
|
Trivedi P, Stukenberg PT. A Condensed View of the Chromosome Passenger Complex. Trends Cell Biol 2020; 30:676-687. [PMID: 32684321 PMCID: PMC10714244 DOI: 10.1016/j.tcb.2020.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/02/2023]
Abstract
The inner centromere is a region on the mitotic chromosome that serves as a platform for mitotic signaling and possesses unique biophysical properties that enable it to withstand relatively large pulling forces that are generated by kinetochores (KTs) during chromosome segregation. The chromosomal passenger complex (CPC) localizes to and is the key regulator of inner centromere organization and function during mitosis. Recently, we demonstrated that in addition to its kinase and histone code-reading activities, the CPC also can undergo liquid-liquid phase separation (LLPS) and proposed that the inner centromere is a membraneless organelle scaffolded by the CPC. In this perspective, we explore mechanisms that can allow the formation and dissolution of this membraneless body. The cell-cycle-regulated spatially defined assembly and disassembly of the CPC condensate at the inner centromere can reveal general principles about how histone modifications control chromatin-bound membraneless organelles. We further explore how the ability of the CPC to undergo LLPS may contribute to the organization and function of the inner centromere during mitosis.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Bonner MK, Haase J, Saunders H, Gupta H, Li BI, Kelly AE. The Borealin dimerization domain interacts with Sgo1 to drive Aurora B-mediated spindle assembly. Mol Biol Cell 2020; 31:2207-2218. [PMID: 32697622 PMCID: PMC7550704 DOI: 10.1091/mbc.e20-05-0341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chromosomal passenger complex (CPC), which includes the kinase Aurora B, is a master regulator of meiotic and mitotic processes that ensure the equal segregation of chromosomes. Sgo1 is thought to play a major role in the recruitment of the CPC to chromosomes, but the molecular mechanism and contribution of Sgo1-dependent CPC recruitment is currently unclear. Using Xenopus egg extracts and biochemical reconstitution, we found that Sgo1 interacts directly with the dimerization domain of the CPC subunit Borealin. Borealin and the PP2A phosphatase complex can bind simultaneously to the coiled-coil domain of Sgo1, suggesting that Sgo1 can integrate Aurora B and PP2A activities to modulate Aurora B substrate phosphorylation. A Borealin mutant that specifically disrupts the Sgo1–Borealin interaction results in defects in CPC chromosomal recruitment and Aurora B–dependent spindle assembly, but not in spindle assembly checkpoint signaling at unattached kinetochores. These findings establish a direct molecular connection between Sgo1 and the CPC and have major implications for the different functions of Aurora B, which promote the proper interaction between spindle microtubules and chromosomes.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julian Haase
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hayden Saunders
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hindol Gupta
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Biyun Iris Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Alexander E Kelly
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
30
|
Adriaans IE, Hooikaas PJ, Aher A, Vromans MJ, van Es RM, Grigoriev I, Akhmanova A, Lens SM. MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger Complex during Anaphase. Curr Biol 2020; 30:2628-2637.e9. [DOI: 10.1016/j.cub.2020.04.081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023]
|
31
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
32
|
Abstract
The conserved serine-threonine kinase, Cdc7, plays a crucial role in initiation of DNA replication by facilitating the assembly of an initiation complex. Cdc7 is expressed at a high level and exhibits significant kinase activity not only during S-phase but also during G2/M-phases. A conserved mitotic kinase, Aurora B, is activated during M-phase by association with INCENP, forming the chromosome passenger complex with Borealin and Survivin. We show that Cdc7 phosphorylates and stimulates Aurora B kinase activity in vitro. We identified threonine-236 as a critical phosphorylation site on Aurora B that could be a target of Cdc7 or could be an autophosphorylation site stimulated by Cdc7-mediated phosphorylation elsewhere. We found that threonines at both 232 (that has been identified as an autophosphorylation site) and 236 are essential for the kinase activity of Aurora B. Cdc7 down regulation or inhibition reduced Aurora B activity in vivo and led to retarded M-phase progression. SAC imposed by paclitaxel was dramatically reversed by Cdc7 inhibition, similar to the effect of Aurora B inhibition under the similar situation. Our data show that Cdc7 contributes to M-phase progression and to spindle assembly checkpoint most likely through Aurora B activation.
Collapse
|
33
|
Simunić J, Subramanian R. Meeting report - Mitotic spindle: from living and synthetic systems to theory. J Cell Sci 2019; 132:132/17/jcs237602. [PMID: 31477579 DOI: 10.1242/jcs.237602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leading scientists from the field of mitotic spindle research gathered from 24-27 March 2019 to participate in the first 'Mitotic spindle: From living and synthetic systems to theory' conference. This meeting was held in Split, Croatia, organized by Nenad Pavin (Faculty of Science, University of Zagreb) and Iva Tolić (Ruđer Bošković Institute, Zagreb). Around 75 participants presented the latest advances in mitotic spindle research, ranging from live-cell imaging, in vitro reconstitution experiments and theoretical models of spindle assembly. The meeting successfully created an environment for interesting scientific discussions, initiation of new collaborations and development of fresh ideas. In this report, we will highlight and summarize new data challenging the established models of spindle architecture, advances in spindle reconstitution assays, discovery of new regulators of spindle size and shape as well as theoretical approaches for investigating motor protein function.
Collapse
Affiliation(s)
- Juraj Simunić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Trivedi P, Palomba F, Niedzialkowska E, Digman MA, Gratton E, Stukenberg PT. The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex. Nat Cell Biol 2019; 21:1127-1137. [PMID: 31481798 PMCID: PMC7341897 DOI: 10.1038/s41556-019-0376-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Francesco Palomba
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Michelle A Digman
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Ilan Y. Randomness in microtubule dynamics: an error that requires correction or an inherent plasticity required for normal cellular function? Cell Biol Int 2019; 43:739-748. [DOI: 10.1002/cbin.11157] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Yaron Ilan
- Department of MedicineHadassah‐Hebrew University Medical CenterJerusalem IL91120 Israel
| |
Collapse
|