1
|
Xia B, Shaheen N, Chen H, Zhao J, Guo P, Zhao Y. RNA aptamer-mediated RNA nanotechnology for potential treatment of cardiopulmonary diseases. Pharmacol Res 2025; 213:107659. [PMID: 39978660 DOI: 10.1016/j.phrs.2025.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Ribonucleic acid (RNA) aptamers are single-stranded RNAs that bind to target proteins or other molecules with high specificity and affinity, modulating biological functions through distinct mechanisms. These aptamers can act n as antagonists to block pathological interactions, agonists to activate signaling pathways, or delivery vehicles for therapeutic cargos such as siRNAs and miRNAs. The advances in RNA nanotechnology further enhances the versatility of RNA aptamers, offering scalable platforms for engineering. In this review, we have summarized recent developments in RNA aptamer-mediated RNA nanotechnology and provide an overview of its potential in treating cardiovascular and respiratory disorders, including atherosclerosis, acute coronary syndromes, heart failure, lung cancer, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), acute lung injury, viral respiratory infections, and pulmonary fibrosis. By integrating aptamer technologies with innovative delivery systems, RNA aptamers hold the potential to revolutionize the treatment landscape for cardiopulmonary diseases.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Huilong Chen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Kim H, Kim D, Moon S, Lee JB. Efficient circular RNA synthesis through Gap-DNA splint-mediated ligation. NANOSCALE 2024; 16:15529-15532. [PMID: 39102212 DOI: 10.1039/d4nr01770f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic heightened interest in circular RNA (C-RNA) for RNA therapeutics, offering advantages over linear mRNAs. Circular mRNA facilitates uncapped molecule development, and C-RNAs ensure stability in RNA interference therapeutics. The synthesis method, RNA ligation, is employed in C-RNA-based therapeutics. Stable DNA-RNA hybrid constructs enable efficient RNA ligase-based circularization.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
3
|
Kim JE, Kang JH, Kwon WH, Lee I, Park SJ, Kim CH, Jeong WJ, Choi JS, Kim K. Self-assembling biomolecules for biosensor applications. Biomater Res 2023; 27:127. [PMID: 38053161 PMCID: PMC10696764 DOI: 10.1186/s40824-023-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
4
|
Liang H, Jiang L, Li H, Zhang J, Zhuo Y, Yuan R, Yang X. DNA-Guided One-Dimensional Plasmonic Nanostructures for the SERS Bioassay. ACS Sens 2023; 8:1192-1199. [PMID: 36915228 DOI: 10.1021/acssensors.2c02574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Plasmonic nanostructures have a desirable surface-enhanced Raman scattering (SERS) response related to particle spacing. However, precisely controlling the distance of plasmonic nanostructures is still a challenge. DNA has the merit of specific recognition, and flexible modification of functional groups, which can be used to flexibly adjust the gaps between plasmonic nanostructures for improving the stability of SERS. In this paper, DNA-guided gold nanoparticles formed one-dimensional ordered structures and they were self-assembled at the water-oil interface by a bottom-up approach. Notably, an output switching strategy successfully transfers a small amount of target into a large amount of reporter DNA; thereby, Raman probes are captured on the sensing interface and achieve the SERS assay of microRNA 155 (miRNA-155). This study is an exciting strategy for obtaining ordered plasmonic structures and providing surveillance, which is important for the clinical diagnosis of early-stage cancer.
Collapse
Affiliation(s)
- Huan Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hongying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
5
|
Wang W, Chen Y, Yin H, Lv J, Lin M, Wu ZS. Center backbone-rigidified DNA polygonal nanostructures and bottom face-templated polyhedral pyramids with structural stability in a complex biological medium. Acta Biomater 2023; 161:100-111. [PMID: 36905953 DOI: 10.1016/j.actbio.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Due to the sequence programmability, good biocompatibility, versatile functionalities and vast sequence space, DNA oligonucleotides are considered to be ideal building blocks for the assembly of diverse nanostructures in one, two and three dimensions that are capable of engineering of multiple functional nucleic acids into a useful tool to implement intended tasks in biological and medical field. However, the construction of wireframe nanostructures consisting of only a few DNA strands remains quite challenging mainly because of the molecular flexibility-based uncontrollability of size and shape. In this contribution, utilizing gel electrophoretic analysis and atomic force microscopy, we demonstrate the modeling assembly technique for the construction of wireframe DNA nanostructures that can be divided into two categories: rigid center backbone-guided modeling (RBM) and bottom face-templated assembly (BTA) that are responsible for the construction of DNA polygons and polyhedral pyramids, respectively. The highest assembly efficiency (AE) is about 100%, while the lowest AE is not less than 50%. Moreover, when adding one edge for polygons or one side face for pyramids, we only need to add one oligonucleotide strand. Especially, the advanced polygons (e.g., pentagon and hexagon) of definite shape are for the first time constructed. Along this line, introduction of cross-linking strands enables the hierarchical assembly of polymer polygons and polymer pyramids. These wireframe DNA nanostructures exhibit the substantially enhanced resistance to nuclease degradation and maintain their structural integrity in fetal bovine serum for several hours even if the vulnerable nicks are not sealed. The proposed modeling assembly technique represents important progress toward the development of DNA nanotechnology and is expected to promote the application of DNA nanostructures in biological and biomedical fields. STATEMENT OF SIGNIFICANCE: DNA oligonucleotides are considered to be ideal building blocks for the assembly of diverse nanostructures. However, the construction of wireframe nanostructures consisting of only a few DNA strands remains quite challenging. In this contribution, we demonstrate the modeling technique for the construction of different wireframe DNA nanostructures: rigid center backbone-guided modeling (RBM) and bottom face-templated assembly (BTA) that are responsible for the assembly of DNA polygons and polyhedral pyramids, respectively. Moreover, cross-linking strands enables the hierarchical assembly of polymer polygons and polymer pyramids. These wireframe DNA nanostructures exhibit the substantially enhanced resistance to nuclease degradation and maintain their structural integrity in fetal bovine serum for several hours, promoting the application of DNA nanostructures in biological and biomedical fields.
Collapse
Affiliation(s)
- Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongwei Yin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jingrui Lv
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Mengling Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Doe E, Hayth HL, Brumett R, Khisamutdinov EF. Effective, Rapid, and Small-Scale Bioconjugation and Purification of "Clicked" Small-Molecule DNA Oligonucleotide for Nucleic Acid Nanoparticle Functionalization. Int J Mol Sci 2023; 24:4797. [PMID: 36902228 PMCID: PMC10003352 DOI: 10.3390/ijms24054797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Nucleic acid-based therapeutics involves the conjugation of small molecule drugs to nucleic acid oligomers to surmount the challenge of solubility, and the inefficient delivery of these drug molecules into cells. "Click" chemistry has become popular conjugation approach due to its simplicity and high conjugation efficiency. However, the major drawback of the conjugation of oligonucleotides is the purification of the products, as traditionally used chromatography techniques are usually time-consuming and laborious, requiring copious quantities of materials. Herein, we introduce a simple and rapid purification methodology to separate the excess of unconjugated small molecules and toxic catalysts using a molecular weight cut-off (MWCO) centrifugation approach. As proof of concept, we deployed "click" chemistry to conjugate a Cy3-alkyne moiety to an azide-functionalized oligodeo-xynucleotide (ODN), as well as a coumarin azide to an alkyne-functionalized ODN. The calculated yields of the conjugated products were found to be 90.3 ± 0.4% and 86.0 ± 1.3% for the ODN-Cy3 and ODN-coumarin, respectively. Analysis of purified products by fluorescence spectroscopy and gel shift assays demonstrated a drastic amplitude of fluorescent intensity by multiple folds of the reporter molecules within DNA nanoparticles. This work is intended to demonstrate a small-scale, cost-effective, and robust approach to purifying ODN conjugates for nucleic acid nanotechnology applications.
Collapse
|
7
|
Duan C, Chen Y, Hou Z, Li D, Jiao J, Sun W, Xiang Y. Heteromultivalent scaffolds fabricated by biomimetic co-assembly of DNA-RNA building blocks for the multi-analysis of miRNAs. J Mater Chem B 2023; 11:1478-1485. [PMID: 36723144 DOI: 10.1039/d2tb02663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heteromultivalent scaffolds with different repeated monomers have great potential in biomedicine, but convenient construction strategies for integrating various functional modules to achieve multiple biological functions are still lacking. Here, taking advantage of the heteromultivalent effect of dendritic nucleic acids and the specific biochemical properties of microRNAs (miRNAs), we assembled novel heteromultivalent nucleic acid scaffolds by biomimetic co-assembly of DNA-RNA building blocks. In our approach, two miRNAs were used to initiate and maintain dendritic structures in an interdependent manner; so, the heteromultivalent nanostructure can only form in the presence of both miRNAs. The proposed nanostructure can be used for one-step analysis of two miRNAs in an AND logic format. Taking miR-18b-5p and miR-342-3p which are associated with Alzheimer's disease as an example, a FRET sensing system was fabricated for the simultaneous analysis of two miRNAs within one hour at picomolar concentration. Further studies show that the designed device may have the potential to distinguish between AD patients and the healthy population by analysis of two miRNAs in CSF (cerebrospinal fluid) samples, suggesting its possible applicability in clinics.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Weihao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
8
|
Parsons MF, Allan MF, Li S, Shepherd TR, Ratanalert S, Zhang K, Pullen KM, Chiu W, Rouskin S, Bathe M. 3D RNA-scaffolded wireframe origami. Nat Commun 2023; 14:382. [PMID: 36693871 PMCID: PMC9872083 DOI: 10.1038/s41467-023-36156-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid RNA:DNA origami, in which a long RNA scaffold strand folds into a target nanostructure via thermal annealing with complementary DNA oligos, has only been explored to a limited extent despite its unique potential for biomedical delivery of mRNA, tertiary structure characterization of long RNAs, and fabrication of artificial ribozymes. Here, we investigate design principles of three-dimensional wireframe RNA-scaffolded origami rendered as polyhedra composed of dual-duplex edges. We computationally design, fabricate, and characterize tetrahedra folded from an EGFP-encoding messenger RNA and de Bruijn sequences, an octahedron folded with M13 transcript RNA, and an octahedron and pentagonal bipyramids folded with 23S ribosomal RNA, demonstrating the ability to make diverse polyhedral shapes with distinct structural and functional RNA scaffolds. We characterize secondary and tertiary structures using dimethyl sulfate mutational profiling and cryo-electron microscopy, revealing insight into both global and local, base-level structures of origami. Our top-down sequence design strategy enables the use of long RNAs as functional scaffolds for complex wireframe origami.
Collapse
Affiliation(s)
- Molly F Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthew F Allan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shanshan Li
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tyson R Shepherd
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Inscripta, Inc., Boulder, CO, 80027, USA
| | - Sakul Ratanalert
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kaiming Zhang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Abstract
Nucleic-acid nanostructures, which have been designed and constructed with atomic precision, have been used as scaffolds for different molecules and proteins, as nanomachines, as computational components, and more. In particular, RNA has garnered tremendous interest as a building block for the self-assembly of sophisticated and functional nanostructures by virtue of its ease of synthesis by in vivo or in vitro transcription, its superior mechanical and thermodynamic properties, and its functional roles in nature. In this Topical Review, we describe recent developments in the use of RNA for the design and construction of nanostructures. We discuss the differences between RNA and DNA that make RNA attractive as a building block for the construction of nucleic-acid nanostructures, and we present the uses of different nanostructures─RNA alone, RNA-DNA, and functional RNA nanostructures.
Collapse
Affiliation(s)
- Ofer I Wilner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Singh S, Melnik R. Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures. CHEMOSENSORS (BASEL, SWITZERLAND) 2022; 10:157. [PMID: 35909810 PMCID: PMC9171916 DOI: 10.3390/chemosensors10050157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022]
Abstract
Low-dimensional nanostructures have many advantages when used in sensors compared to the traditional bulk materials, in particular in their sensitivity and specificity. In such nanostructures, the motion of carriers can be confined from one, two, or all three spatial dimensions, leading to their unique properties. New advancements in nanosensors, based on low-dimensional nanostructures, permit their functioning at scales comparable with biological processes and natural systems, allowing their efficient functionalization with chemical and biological molecules. In this article, we provide details of such sensors, focusing on their several important classes, as well as the issues of their designs based on mathematical and computational models covering a range of scales. Such multiscale models require state-of-the-art techniques for their solutions, and we provide an overview of the associated numerical methodologies and approaches in this context. We emphasize the importance of accounting for coupling between different physical fields such as thermal, electromechanical, and magnetic, as well as of additional nonlinear and nonlocal effects which can be salient features of new applications and sensor designs. Our special attention is given to nanowires and nanotubes which are well suited for nanosensor designs and applications, being able to carry a double functionality, as transducers and the media to transmit the signal. One of the key properties of these nanostructures is an enhancement in sensitivity resulting from their high surface-to-volume ratio, which leads to their geometry-dependant properties. This dependency requires careful consideration at the modelling stage, and we provide further details on this issue. Another important class of sensors analyzed here is pertinent to sensor and actuator technologies based on smart materials. The modelling of such materials in their dynamics-enabled applications represents a significant challenge as we have to deal with strongly nonlinear coupled problems, accounting for dynamic interactions between different physical fields and microstructure evolution. Among other classes, important in novel sensor applications, we have given our special attention to heterostructures and nucleic acid based nanostructures. In terms of the application areas, we have focused on chemical and biomedical fields, as well as on green energy and environmentally-friendly technologies where the efficient designs and opportune deployments of sensors are both urgent and compelling.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- BCAM-Basque Centre for Applied Mathematics, E-48009 Bilbao, Spain
| |
Collapse
|
11
|
Kahn J, Xiong Y, Huang J, Gang O. Cascaded Enzyme Reactions over a Three-Dimensional, Wireframe DNA Origami Scaffold. JACS AU 2022; 2:357-366. [PMID: 35252986 PMCID: PMC8889550 DOI: 10.1021/jacsau.1c00387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 05/31/2023]
Abstract
DNA nanotechnology has increasingly been used as a platform to scaffold enzymes based on its unmatched ability to structure enzymes in a desired format. The capability to organize enzymes has taken many forms from more traditional 2D pairings on individual scaffolds to recent works introducing enzyme organizations in 3D lattices. As the ability to define nanoscale structure has grown, it is critical to fully deconstruct the impact of enzyme organization at the single-scaffold level. Here, we present an open, three-dimensional (3D) DNA wireframe octahedron which is used to create a library of spatially arranged organizations of glucose oxidase and horseradish peroxidase. We explore the contribution of enzyme spacing, arrangement, and location on the 3D scaffold to cascade activity. The experiments provide insight into enzyme scaffold design, including the insignificance of scaffold sequence makeup on activity, an increase in activity at small enzyme spacings of <10 nm, and activity changes that arise from discontinuities in scaffold architecture. Most notably, the experiments allow us to determine that enzyme colocalization itself on the DNA scaffold dominates over any specific enzyme arrangement.
Collapse
Affiliation(s)
- Jason
S. Kahn
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yan Xiong
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - James Huang
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Oleg Gang
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York New York 10027, United States
| |
Collapse
|
12
|
Qu N, Ying Y, Qin J, Chen AK. Rational design of self-assembled RNA nanostructures for HIV-1 virus assembly blockade. Nucleic Acids Res 2021; 50:e44. [PMID: 34967412 PMCID: PMC9071489 DOI: 10.1093/nar/gkab1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Many pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions. The resulting STL-decorated nanostructures (double and triple stem-loop structures denoted as Dumbbell and Tribell, respectively) can elicit more pronounced viral blockade than their building blocks, with the inhibition arising as a result of nanostructures interfering with Gag multimerization. These findings could open up new avenues for RNA-based therapy.
Collapse
Affiliation(s)
- Na Qu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Jinshan Qin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Ji Y, Kim D, Kim H, Han S, Lee JB. Construction of a two-dimensional DNA-RNA hybridized membrane for collecting tumor-derived exosomes. Chem Commun (Camb) 2021; 58:266-269. [PMID: 34878445 DOI: 10.1039/d1cc05924f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Macroscopic nucleic acid-based structures have attracted much attention in biomedical fields. Here, we introduce a novel DNA-RNA hybridized membrane structure via enzymatic dual polymerization. The membrane exhibited enhanced rigidity and functionality. Encoded with an aptamer, the membrane showed great potential as a collecting platform of tumor-derived exosomes without additional labeling.
Collapse
Affiliation(s)
- Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
14
|
Chen K, Zhang Y, Zhu L, Chu H, Huang K, Shao X, Asakiya C, Huang K, Xu W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J Control Release 2021; 341:869-891. [PMID: 34952045 DOI: 10.1016/j.jconrel.2021.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Over the past few decades, rapid advances of nucleic acid nanotechnology always drive the development of nanoassemblies with programmable design, powerful functionality, excellent biocompatibility and outstanding biosafety. Nowadays, nucleic acid-based self-assembling nanocarriers (NASNs) play an increasingly greater role in the research and development in biomedical studies, particularly in drug delivery, release and targeting. In this review, NASNs are systematically summarized the strategies cooperated with their broad applications in drug delivery. We first discuss the self-assembling methods of nanocarriers comprised of DNA, RNA and composite materials, and summarize various categories of targeting media, including aptamers, small molecule ligands and proteins. Furthermore, drug release strategies by smart-responding multiple kinds of stimuli are explained, and various applications of NASNs in drug delivery are discussed, including protein drugs, nucleic acid drugs, small molecule drugs and nanodrugs. Lastly, we propose limitations and potential of NASNs in the future development, and expect that NASNs enable facilitate the development of new-generation drug vectors to assist in solving the growing demands on disease diagnosis and therapy or other biomedicine-related applications in the real world.
Collapse
Affiliation(s)
- Keren Chen
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Yangzi Zhang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Xiangli Shao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Charles Asakiya
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
15
|
Lyu J, Yang M, Zhang C, Luo Y, Qin T, Su Z, Huang Z. DNA nanostructures directed by RNA clamps. NANOSCALE 2021; 13:19870-19874. [PMID: 34825903 DOI: 10.1039/d1nr03919a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA chains can be folded rationally by using DNA staples, and the programmed structures are of great potential in nanomaterial studies. However, due to the short DNA staples forming duplexes and displaying limitations in structural diversity and stability, the folded DNA nanostructures are usually generated with structural mis-formations, low yields and poor efficiencies, which can restrict their folding patterns and applications. To overcome these problems, we set out to use RNA as a clamp to form polygons, and herein demonstrated the ability to use a structural RNA-but not its corresponding DNA-to fold DNA chains into nanostructures with high efficiency (up to a 95.1% yield). Furthermore, we discovered that the 2'-methylated version of the RNA can, compared to the unmodified RNA, even more efficiently fold DNA chains (up to a 98.5% yield). Interestingly, the RNA clamp can fold DNA scaffolds with one, two or four folding units into the same square shape. Furthermore, the RNA can direct the DNA chains with three, four and five folding units into triangular, square and pentagonal nano-shapes, respectively. In addition, we confirmed their enlarged nano-shapes by performing electron microscopy (EM) imaging. These formed nanostructures revealed the potential cooperation between the DNA scaffold and RNA clamp. Moreover, our research demonstrated a novel strategy, involving using RNA clamps displaying structural diversity and duplex stability, for folding DNA into diverse nanostructures.
Collapse
Affiliation(s)
- Jiazhen Lyu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, China
| | - Mei Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Tong Qin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhen Huang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, China.,SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610000, Sichuan, P. R. China.
| |
Collapse
|
16
|
Chen S, Hermann T. RNA-DNA Hybrid Nanoshape Synthesis by Facile Module Exchange. J Am Chem Soc 2021; 143:20356-20362. [PMID: 34818893 DOI: 10.1021/jacs.1c09739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The preparation of nucleic acid nanostructures has relied predominantly on procedures of additive fabrication in which complex architectures are assembled by concerted self-assembly and sequential addition of building blocks. We had previously established RNA-DNA hybrid nanoshapes with modular architectures that enable multistep synthetic approaches inspired by organic molecular synthesis where additive and transformative steps are used to prepare complex molecular architectures. We report the establishment of module replacement and strand exchange as synthetic transformations in nucleic acid hybrid nanoshapes, which are enabled by minimally destabilizing sequence elements such as a single unpaired overhang nucleotide or a mismatch base pair. Module exchange facilitated by thermodynamic lability triggers adds a powerful transformative approach to the repertoire of additive and transformative synthetic methods for the preparation of complex composite materials.
Collapse
|
17
|
Liu J, Yan L, He S, Hu J. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. NANO RESEARCH 2021; 15:3504-3513. [PMID: 35401944 PMCID: PMC8983328 DOI: 10.1007/s12274-021-3869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson-Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.
Collapse
Affiliation(s)
- Jingxin Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
- Shenzhen Bey Laboratory, Shenzhen, 518132 China
| |
Collapse
|
18
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
19
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
20
|
Chen S, Xing L, Zhang D, Monferrer A, Hermann T. Nano-sandwich composite by kinetic trapping assembly from protein and nucleic acid. Nucleic Acids Res 2021; 49:10098-10105. [PMID: 34500473 PMCID: PMC8464029 DOI: 10.1093/nar/gkab797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Design and preparation of layered composite materials alternating between nucleic acids and proteins has been elusive due to limitations in occurrence and geometry of interaction sites in natural biomolecules. We report the design and kinetically controlled stepwise synthesis of a nano-sandwich composite by programmed noncovalent association of protein, DNA and RNA modules. A homo-tetramer protein core was introduced to control the self-assembly and precise positioning of two RNA–DNA hybrid nanotriangles in a co-parallel sandwich arrangement. Kinetically favored self-assembly of the circularly closed nanostructures at the protein was driven by the intrinsic fast folding ability of RNA corner modules which were added to precursor complex of DNA bound to the protein. The 3D architecture of this first synthetic protein–RNA–DNA complex was confirmed by fluorescence labeling and cryo-electron microscopy studies. The synthesis strategy for the nano-sandwich composite provides a general blueprint for controlled noncovalent assembly of complex supramolecular architectures from protein, DNA and RNA components, which expand the design repertoire for bottom-up preparation of layered biomaterials.
Collapse
Affiliation(s)
- Shi Chen
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Li Xing
- Irvine Materials Research Institute, University of California, Irvine, CA 92697, USA
| | - Douglas Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alba Monferrer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- To whom correspondence should be addressed. Tel: +1 858 534 4467; Fax: +1 858 534 0202;
| |
Collapse
|
21
|
Zhou L, Chandrasekaran AR, Yan M, Valsangkar VA, Feldblyum JI, Sheng J, Halvorsen K. A mini DNA-RNA hybrid origami nanobrick. NANOSCALE ADVANCES 2021; 3:4048-4051. [PMID: 34355117 PMCID: PMC8276786 DOI: 10.1039/d1na00026h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/04/2021] [Indexed: 05/11/2023]
Abstract
DNA origami is typically used to fold a long single-stranded DNA scaffold into nanostructures with complex geometries using many short DNA staple strands. Integration of RNA into nucleic acid nanostructures is also possible, but has been less studied. In this research, we designed and characterized a hybrid RNA-scaffolded origami nanostructure with dimensions of ∼12 nm. We used 12 DNA staple strands to fold a 401 nt RNA scaffold into a ten-helix bundle with a honeycomb cross section. We verified the construction of the nanostructure using gel electrophoresis and atomic force microscopy. The DNA-RNA hybrid origami showed higher resistance to ribonuclease compared to a DNA-RNA duplex control. Our work shows potential use in folding long RNA, such as messenger RNA, into origami nanostructures that can be delivered into targeted cells as medicine or a vaccine.
Collapse
Affiliation(s)
- Lifeng Zhou
- The RNA Institute, University at Albany, State University of New York Albany NY, USA
| | | | - Mengwen Yan
- Department of Chemistry, University at Albany, State University of New York Albany NY USA
| | - Vibhav A Valsangkar
- The RNA Institute, University at Albany, State University of New York Albany NY, USA
- Department of Chemistry, University at Albany, State University of New York Albany NY USA
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York Albany NY USA
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York Albany NY, USA
- Department of Chemistry, University at Albany, State University of New York Albany NY USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York Albany NY, USA
| |
Collapse
|
22
|
Wang ST, Minevich B, Liu J, Zhang H, Nykypanchuk D, Byrnes J, Liu W, Bershadsky L, Liu Q, Wang T, Ren G, Gang O. Designed and biologically active protein lattices. Nat Commun 2021; 12:3702. [PMID: 34140491 PMCID: PMC8211860 DOI: 10.1038/s41467-021-23966-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023] Open
Abstract
Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - James Byrnes
- Energy Sciences Directorate/Photon Science Division, NSLS II, Brookhaven National Laboratory, Upton, NY, USA
| | - Wu Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lev Bershadsky
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Tong Wang
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York City, NY, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Chemical Engineering, Columbia University, New York City, NY, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Agarwal S, Klocke MA, Pungchai PE, Franco E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat Commun 2021; 12:3557. [PMID: 34117248 PMCID: PMC8196065 DOI: 10.1038/s41467-021-23850-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Bottom-up synthetic biology aims to engineer artificial cells capable of responsive behaviors by using a minimal set of molecular components. An important challenge toward this goal is the development of programmable biomaterials that can provide active spatial organization in cell-sized compartments. Here, we demonstrate the dynamic self-assembly of nucleic acid (NA) nanotubes inside water-in-oil droplets. We develop methods to encapsulate and assemble different types of DNA nanotubes from programmable DNA monomers, and demonstrate temporal control of assembly via designed pathways of RNA production and degradation. We examine the dynamic response of encapsulated nanotube assembly and disassembly with the support of statistical analysis of droplet images. Our study provides a toolkit of methods and components to build increasingly complex and functional NA materials to mimic life-like functions in synthetic cells.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Melissa A Klocke
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Passa E Pungchai
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
A simple screening strategy for complex RNA-DNA hybrid nanoshapes. Methods 2021; 197:106-111. [PMID: 33631308 DOI: 10.1016/j.ymeth.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The design of hybrid nucleic acid nanomaterials capitalizes on the partitioning of architectural and functional roles between structurally diverse RNA modules and chemically robust DNA components. Selecting optimal combinations of RNA and DNA building blocks is the key to preparing stable polygonal RNA-DNA hybrid nanoshapes. Here, we outline a simple screening strategy by gel electrophoresis under native folding conditions to identify combinations of RNA and DNA modules that self-assemble to robust polygonal hybrid nanoshapes. As a proof of concept, we outline the preparation of RNA-DNA hybrid nanoshapes containing a set of different RNA architectural joints, including internal loop motifs and three-way junction (3WJ) folds. For each hybrid nanoshape, we demonstrate the selection process used to identify optimal DNA modules from a library of DNA connectors. The simple screening strategy outlined here provides a general robust method to identify and prepare RNA-DNA hybrid nanoshapes from diverse libraries of discrete nucleic acid building blocks.
Collapse
|
25
|
Dong H, Zhang W, Zhou S, Huang J, Wang P. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv 2021; 53:107721. [PMID: 33631185 DOI: 10.1016/j.biotechadv.2021.107721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
With the demand for green, safe, and continuous biocatalysis, bioscaffolds, compared with synthetic scaffolds, have become a desirable candidate for constructing enzyme assemblages because of their biocompatibility and regenerability. Biocompatibility makes bioscaffolds more suitable for safe and green production, especially in food processing, production of bioactive agents, and diagnosis. The regenerability can enable the engineered biocatalysts regenerate through simple self-proliferation without complex re-modification, which is attractive for continuous biocatalytic processes. In view of the unique biocompatibility and regenerability of bioscaffolds, they can be classified into non-living (polysaccharide, nucleic acid, and protein) and living (virus, bacteria, fungi, spore, and biofilm) bioscaffolds, which can fully satisfy these two unique properties, respectively. Enzymes assembled onto non-living bioscaffolds are based on single or complex components, while enzymes assembled onto living bioscaffolds are based on living bodies. In terms of their unique biocompatibility and regenerability, this review mainly covers the current advances in the research and application of non-living and living bioscaffolds with focus on engineering strategies for enzyme assembly. Finally, the future development of bioscaffolds for enzyme assembly is also discussed. Hopefully, this review will attract the interest of researchers in various fields and empower the development of biocatalysis, biomedicine, environmental remediation, therapy, and diagnosis.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
26
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
27
|
Xu C, Zhang K, Yin H, Li Z, Krasnoslobodtsev A, Zheng Z, Ji Z, Guo S, Li S, Chiu W, Guo P. 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. NANO RESEARCH 2020; 13:3241-3247. [PMID: 34484616 PMCID: PMC8412138 DOI: 10.1007/s12274-020-2996-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 05/12/2023]
Abstract
Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.
Collapse
Affiliation(s)
- Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kaiming Zhang
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alexey Krasnoslobodtsev
- Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Nanoimaging Core Facility, Office of Vice-Chancellor for Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhen Zheng
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shanshan Li
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
29
|
Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Zhang S, Chen C, Xue C, Chang D, Xu H, Salena BJ, Li Y, Wu Z. Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angew Chem Int Ed Engl 2020; 59:14584-14592. [DOI: 10.1002/anie.202005624] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Shuxin Zhang
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Chang Chen
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Bruno J. Salena
- Department of Medicine McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Zai‐Sheng Wu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| |
Collapse
|
31
|
Kasprzak WK, Ahmed NA, Shapiro BA. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr Opin Biotechnol 2020; 63:16-25. [DOI: 10.1016/j.copbio.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
32
|
Chen S, Hermann T. RNA-DNA hybrid nanoshapes that self-assemble dependent on ligand binding. NANOSCALE 2020; 12:3302-3307. [PMID: 31971536 DOI: 10.1039/c9nr09706f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of nucleic acid nanostructures is driven by selective association of oligonucleotide modules through base pairing between complementary sequences. Herein, we report the development of RNA-DNA hybrid nanoshapes that conditionally assemble under the control of an adenosine ligand. The design concept for the nanoshapes relies on ligand-dependent stabilization of DNA aptamers that serve as connectors between marginally stable RNA corner modules. Ligand-dependent RNA-DNA nanoshapes self-assemble in an all-or-nothing process by coupling adenosine binding to the formation of circularly closed structures which are stabilized through continuous base stacking in the resulting polygons. By screening combinations of various DNA aptamer constructs with RNA corner modules for the formation of stable complexes, we identified adenosine-dependent nanosquares whose shape was confirmed by atomic force microscopy. As a proof-of-concept for sensor applications, adenosine-responsive FRET-active nanosquares were obtained by dye conjugation of the DNA aptamer components.
Collapse
Affiliation(s)
- Shi Chen
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA. and Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Guo S, Xu C, Yin H, Hill J, Pi F, Guo P. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1582. [PMID: 31456362 DOI: 10.1002/wnan.1582] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The past decade has shown exponential growth in the field of RNA nanotechnology. The rapid advances of using RNA nanoparticles for biomedical applications, especially targeted cancer therapy, suggest its potential as a new generation of drug. After the first milestone of small molecule drugs and the second milestone of antibody drugs, it was predicted that RNA drugs, either RNA itself or chemicals/ligands that target RNA, will be the third milestone in drug development. Thus, a comprehensive assessment of the current therapeutic RNA nanoparticles is urgently needed to meet the drug evaluation criteria. Specifically, the pharmacological and immunological profiles of RNA nanoparticles need to be systematically studied to provide insights in rational design of RNA-based therapeutics. By virtue of its programmability and biocompatibility, RNA molecules can be designed to construct sophisticated nanoparticles with versatile functions/applications and highly tunable physicochemical properties. This intrinsic characteristic allows the systemic study of the effects of various properties of RNA nanoparticles on their in vivo behaviors such as cancer targeting and immune responses. This review will focus on the recent progress of RNA nanoparticles in cancer targeting, and summarize the effects of common physicochemical properties such as size and shape on the RNA nanoparticles' biodistribution and immunostimulation profiles. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
34
|
Niu Q, Bao C, Cao X, Liu C, Wang H, Lu W. Ni-Fe PBA hollow nanocubes as efficient electrode materials for highly sensitive detection of guanine and hydrogen peroxide in human whole saliva. Biosens Bioelectron 2019; 141:111445. [PMID: 31272059 DOI: 10.1016/j.bios.2019.111445] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 11/27/2022]
Abstract
A sensor for the determination of guanine (G) and hydrogen peroxide (H2O2) is developed based on Ni-Fe Prussian blue analogues hollow nanocubes (Ni-Fe PBA HNCs) for the first time. As a remarkable redox probe towards G and H2O2 oxidation, Ni-Fe PBA HNCs exhibit a series of predominant sensing performances as follows: lower limit of detection, broader linear range and higher selectivity due to the homogeneous hollow structure, high specific surface and the enhanced electron transfer ability of Ni-Fe PBA HNCs. As a G sensor, it exhibits a wide linear range (0.05-4.0 mM) and a low detection limit of 0.0104 μM (S/N = 3). As a H2O2 sensor, the Ni-Fe PBA HNCs show superior sensing performances with a low detection limit of 0.291 μM (S/N = 3) and a wide detection range of 0.1-20 mM. By cause of these advantages, the real-time detection of G and H2O2 in human saliva are triumphantly accomplishment, indicating the applicability of Ni-Fe PBA HNCs.
Collapse
Affiliation(s)
- Qiangqiang Niu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, China
| | - Cancan Bao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Chang Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Hui Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, China.
| |
Collapse
|
35
|
Nuthanakanti A, Walunj MB, Torris A, Badiger MV, Srivatsan SG. Self-assemblies of nucleolipid supramolecular synthons show unique self-sorting and cooperative assembling process. NANOSCALE 2019; 11:11956-11966. [PMID: 31188377 DOI: 10.1039/c9nr01863h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The inherent control of the self-sorting and co-assembling process that has evolved in multi-component biological systems is not easy to emulate in vitro using synthetic supramolecular synthons. Here, using the basic component of nucleic acids and lipids, we describe a simple platform to build hierarchical assemblies of two component systems, which show an interesting self-sorting and co-assembling behavior. The assembling systems are made of a combination of amphiphilic purine and pyrimidine ribonucleoside-fatty acid conjugates (nucleolipids), which were prepared by coupling fatty acid acyl chains of different lengths at the 2'-O- and 3'-O-positions of the ribose sugar. Individually, the purine and pyrimidine nucleolipids adopt a distinct morphology, which either supports or does not support the gelation process. Interestingly, due to the subtle difference in the order of formation and stability of individual assemblies, different mixtures of supramolecular synthons and complementary ribonucleosides exhibit a cooperative and disruptive self-sorting and co-assembling behavior. A systematic morphological analysis combined with single crystal X-ray crystallography, powder X-ray diffraction (PXRD), NMR, CD, rheological and 3D X-ray microtomography studies provided insights into the mechanism of the self-sorting and co-assembling process. Taken together, this approach has enabled the construction of assemblies with unique higher ordered architectures and gels with remarkably enhanced mechanical strength that cannot be derived from the respective single component systems.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | | | | | |
Collapse
|
36
|
Agarwal S, Franco E. Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes. J Am Chem Soc 2019; 141:7831-7841. [PMID: 31042366 DOI: 10.1021/jacs.9b01550] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Living cells have the ability to control the dynamics of responsive assemblies such as the cytoskeleton by temporally activating and deactivating inert precursors. While DNA nanotechnology has demonstrated many synthetic supramolecular assemblies that rival biological ones in size and complexity, dynamic control of their formation is still challenging. Taking inspiration from nature, we developed a DNA-RNA nanotube system whose assembly and disassembly can be temporally controlled at physiological temperature using transcriptional programs. Nanotubes assemble when inert DNA monomers are directly and selectively activated by RNA molecules that become embedded in the structure, producing hybrid DNA-RNA assemblies. The reactions and molecular programs controlling nanotube formation are fueled by enzymes that produce or degrade RNA. We show that the speed of assembly and disassembly of the nanotubes can be controlled by tuning various reaction parameters in the transcriptional programs. We anticipate that these hybrid structures are a starting point to build integrated biological circuits and functional scaffolds inside natural and artificial cells, where RNA produced by gene networks could fuel the assembly of nucleic acid components on demand.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Mechanical Engineering , University of California at Riverside , Riverside , California 90095 , United States
| | - Elisa Franco
- Department of Mechanical Engineering , University of California at Riverside , Riverside , California 90095 , United States
| |
Collapse
|