1
|
Fouks B, Miller KJ, Ross C, Jones C, Rueppell O. Alternative double strand break repair pathways shape the evolution of high recombination in the honey bee, Apis mellifera. INSECT MOLECULAR BIOLOGY 2025; 34:185-202. [PMID: 39297191 PMCID: PMC11705527 DOI: 10.1111/imb.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 01/11/2025]
Abstract
Social insects, particularly honey bees, have exceptionally high genomic frequencies of genetic recombination. This phenomenon and underlying mechanisms are poorly understood. To characterise the patterns of crossovers and gene conversion in the honey bee genome, a recombination map of 187 honey bee brothers was generated by whole-genome resequencing. Recombination events were heterogeneously distributed without many true hotspots. The tract lengths between phase shifts were bimodally distributed, indicating distinct crossover and gene conversion events. While crossovers predominantly occurred in G/C-rich regions and seemed to cause G/C enrichment, the gene conversions were found predominantly in A/T-rich regions. The nucleotide composition of sequences involved in gene conversions that were associated with or distant from crossovers corresponded to the differences between crossovers and gene conversions. These combined results suggest two types of DNA double-strand break repair during honey bee meiosis: non-canonical homologous recombination, leading to gene conversion and A/T enrichment of the genome, and the canonical homologous recombination based on completed double Holliday Junctions, which can result in gene conversion or crossover and is associated with G/C bias. This G/C bias may be selected for to balance the A/T-rich base composition of eusocial hymenopteran genomes. The lack of evidence for a preference of the canonical homologous recombination for double-strand break repair suggests that the high genomic recombination rate of honey bees is mainly the consequence of a high rate of double-strand breaks, which could in turn result from the life history of honey bees and their A/T-rich genome.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
- CIRAD, UMR AGAP InstitutMontpellierFrance
| | - Katelyn J. Miller
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- Smithers PDSGaithersburgMarylandUSA
| | - Caitlin Ross
- Department of Computer SciencesUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- KitwareMinneapolisMinnesotaUSA
| | - Corbin Jones
- Department of BiologyUniversity of North Carolina at Chapel Hill & Carolina Center for Genome SciencesChapel HillNorth CarolinaUSA
| | - Olav Rueppell
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
3
|
Stojanovic N, Hernández RO, Ramírez NT, Martínez OME, Hernández AH, Shibuya H. CCDC28A deficiency causes head-tail coupling defects and immotility in murine spermatozoa. Sci Rep 2024; 14:26808. [PMID: 39500989 PMCID: PMC11538371 DOI: 10.1038/s41598-024-78453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Male infertility presents a substantial challenge in reproductive medicine, often attributed to impaired sperm motility. The present study investigates the role of CCDC28A, a protein expressed specifically in male germ cells, whose paralog CCDC28B has been implicated in ciliogenesis. We identify unique expression patterns for CCDC28A and CCDC28B within the mouse testes, where CCDC28A is expressed in germ cells, whereas CCDC28B is expressed in supporting somatic cells. Through knockout mouse models and histological analyses, we reveal that CCDC28A deficiency results in diminished sperm motility and structural aberrations in sperm tails, notably affecting the head-tail coupling apparatus (HTCA), thereby causing male infertility. Fine structural analyses by transmission electron microscopy reveal disruptions at the capitulum-basal plate junction of the HTCA in the CCDC28A mutants. This results in the bending of the head within the neck region, often accompanied by thickening of the tail midpiece. Our discovery demonstrates that CCDC28A plays an essential role in male fertility and sperm tail morphogenesis through the formation of HTCA.
Collapse
Affiliation(s)
- Nena Stojanovic
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Rosario Ortiz Hernández
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Nayeli Torres Ramírez
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Olga Margarita Echeverría Martínez
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Abrahan Hernández Hernández
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, 06720, México
- Science for Life Laboratory, Department of Cell and Molecular Biology, National Genomics Infrastructure, Karolinska Institute, Stockholm, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Osaka, Japan.
| |
Collapse
|
4
|
Dunce JM, Davies OR. BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode. Nat Commun 2024; 15:8292. [PMID: 39333100 PMCID: PMC11436757 DOI: 10.1038/s41467-024-52699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments. However, the mechanism of filament stabilisation has hitherto remained unknown. Here, we report the crystal structure of a BRCA2-DMC1 complex, revealing how core interaction sites of PhePP motifs bind to recombinases. The interaction mode is conserved for RAD51 and DMC1, which selectively bind to BRCA2's two distinct PhePP motifs via subtly divergent binding pockets. PhePP motif sequences surrounding their core interaction sites protect nucleoprotein filaments from BRC-mediated disruption. Hence, we report the structural basis of how BRCA2's PhePP motifs stabilise RAD51 and DMC1 nucleoprotein filaments for their essential roles in mitotic and meiotic recombination.
Collapse
Affiliation(s)
- James M Dunce
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK.
| |
Collapse
|
5
|
Gurusaran M, Zhang J, Zhang K, Shibuya H, Davies OR. MEILB2-BRME1 forms a V-shaped DNA clamp upon BRCA2-binding in meiotic recombination. Nat Commun 2024; 15:6552. [PMID: 39095423 PMCID: PMC11297322 DOI: 10.1038/s41467-024-50920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
DNA double-strand break repair by homologous recombination has a specialised role in meiosis by generating crossovers that enable the formation of haploid germ cells. This requires meiosis-specific MEILB2-BRME1, which interacts with BRCA2 to facilitate loading of recombinases onto resected DNA ends. Here, we report the crystal structure of the MEILB2-BRME1 2:2 core complex, revealing a parallel four-helical assembly that recruits BRME1 to meiotic double-strand breaks in vivo. It forms an N-terminal β-cap that binds to DNA, and a MEILB2 coiled-coil that bridges to C-terminal ARM domains. Upon BRCA2-binding, MEILB2-BRME1 2:2 complexes dimerize into a V-shaped 2:4:4 complex, with rod-like MEILB2-BRME1 components arranged at right-angles. The β-caps located at the tips of the MEILB2-BRME1 limbs are separated by 25 nm, allowing them to bridge between DNA molecules. Thus, we propose that BRCA2 induces MEILB2-BRME1 to function as a DNA clamp, connecting resected DNA ends or homologous chromosomes to facilitate meiotic recombination.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Nie L, Wang X, Wang S, Hong Z, Wang M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod Biol Endocrinol 2024; 22:94. [PMID: 39095891 PMCID: PMC11295921 DOI: 10.1186/s12958-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Linhang Nie
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Xiaojie Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Second Clinical Hospital of WuHan University, Wuhan, Hubei, P.R. China
| | - Songyuan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
7
|
Ishiguro KI. Mechanisms of meiosis initiation and meiotic prophase progression during spermatogenesis. Mol Aspects Med 2024; 97:101282. [PMID: 38797021 DOI: 10.1016/j.mam.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
8
|
Bai L, Li P, Xiang Y, Jiao X, Chen J, Song L, Liang Z, Liu Y, Zhu Y, Lu LY. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci U S A 2024; 121:e2401386121. [PMID: 38696471 PMCID: PMC11087798 DOI: 10.1073/pnas.2401386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Peng Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yu Xiang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Jiyuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Licun Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Yidan Liu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Zhejiang University Cancer Center, Hangzhou310029, China
| |
Collapse
|
9
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
10
|
Chen L, Weir JR. The molecular machinery of meiotic recombination. Biochem Soc Trans 2024; 52:379-393. [PMID: 38348856 PMCID: PMC10903461 DOI: 10.1042/bst20230712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Meiotic recombination, a cornerstone of eukaryotic diversity and individual genetic identity, is essential for the creation of physical linkages between homologous chromosomes, facilitating their faithful segregation during meiosis I. This process requires that germ cells generate controlled DNA lesions within their own genome that are subsequently repaired in a specialised manner. Repair of these DNA breaks involves the modulation of existing homologous recombination repair pathways to generate crossovers between homologous chromosomes. Decades of genetic and cytological studies have identified a multitude of factors that are involved in meiotic recombination. Recent work has started to provide additional mechanistic insights into how these factors interact with one another, with DNA, and provide the molecular outcomes required for a successful meiosis. Here, we provide a review of the recent developments with a focus on protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Linda Chen
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - John R. Weir
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Ghouil R, Miron S, Sato K, Ristic D, van Rossum-Fikkert SE, Legrand P, Ouldali M, Winter JM, Ropars V, David G, Arteni AA, Wyman C, Knipscheer P, Kanaar R, Zelensky AN, Zinn-Justin S. BRCA2-HSF2BP oligomeric ring disassembly by BRME1 promotes homologous recombination. SCIENCE ADVANCES 2023; 9:eadi7352. [PMID: 37889963 PMCID: PMC10610910 DOI: 10.1126/sciadv.adi7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simona Miron
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Sari E. van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gabriel David
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Alex N. Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Liu C, Wang L, Li Y, Guo M, Hu J, Wang T, Li M, Yang Z, Lin R, Xu W, Chen Y, Luo M, Gao F, Chen JY, Sun Q, Liu H, Sun B, Li W. RNase H1 facilitates recombinase recruitment by degrading DNA-RNA hybrids during meiosis. Nucleic Acids Res 2023; 51:7357-7375. [PMID: 37378420 PMCID: PMC10415156 DOI: 10.1093/nar/gkad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
DNA-RNA hybrids play various roles in many physiological progresses, but how this chromatin structure is dynamically regulated during spermatogenesis remains largely unknown. Here, we show that germ cell-specific knockout of Rnaseh1, a specialized enzyme that degrades the RNA within DNA-RNA hybrids, impairs spermatogenesis and causes male infertility. Notably, Rnaseh1 knockout results in incomplete DNA repair and meiotic prophase I arrest. These defects arise from the altered RAD51 and DMC1 recruitment in zygotene spermatocytes. Furthermore, single-molecule experiments show that RNase H1 promotes recombinase recruitment to DNA by degrading RNA within DNA-RNA hybrids and allows nucleoprotein filaments formation. Overall, we uncover a function of RNase H1 in meiotic recombination, during which it processes DNA-RNA hybrids and facilitates recombinase recruitment.
Collapse
Affiliation(s)
- Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengmeng Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Teng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wei Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430072, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zhang J, Wang T, Bi J, Ke M, Ren Y, Wang M, Du Z, Liu W, Hu L, Zhang X, Liu X, Wang B, Wu Z, Lv Y, Meng L, Wu R. Overexpression of HSF2 binding protein suppresses endoplasmic reticulum stress via regulating subcellular localization of CDC73 in hepatocytes. Cell Biosci 2023; 13:64. [PMID: 36964632 PMCID: PMC10039577 DOI: 10.1186/s13578-023-01010-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress plays an important role in the occurrence and development of various liver diseases. However, there are no effective prevention and treatment strategies. We aimed to determine the role of heat shock factor 2 binding protein (HSF2BP) in ER stress. METHODS HSF2BP expression in mice and cultured hepatocytes was measured during ER stress induced by tunicamycin, and its importance in ER stress was evaluated in hepatocyte-specific HSF2BP transgenic (TG) and knockout (KO) mice. The effects and mechanisms of HSF2BP on ER stress were further probed in hepatic ischemia-reperfusion (I/R) injury. RESULTS HSF2BP expression was significantly upregulated during tunicamycin-induced ER stress in mice and cultured hepatocytes. Liver injury and ER stress were reduced in HSF2BP overexpressing mice after treating with tunicamycin, but were aggravated in HSF2BP knockout mice compared to the controls. In hepatic I/R injury, HSF2BP expression was significantly upregulated, and HSF2BP overexpressing mice had reduced liver injury and inflammation. These improvements were associated with ER stress inhibition. However, these results were reversed in hepatocyte-specific HSF2BP knockout mice. HSF2BP overexpression increased cytoplasmic CDC73 levels and inhibited the JNK signaling pathway. CDC73 knockdown using siRNA eliminated the protection exerted by HSF2BP overexpression in hypoxia/reoxygenation (H/R)-induced ER stress in hepatocytes. CONCLUSION HSF2BP is a previously uncharacterized regulatory factor in ER stress-likely acts by regulating CDC73 subcellular localization. The feasibility of HSF2BP-targeted treatment in ER stress-related liver disease deserves future research.
Collapse
Affiliation(s)
- Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaogang Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuemin Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lingzhong Meng
- Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
14
|
Li Y, Wu Y, Khan I, Zhou J, Lu Y, Ye J, Liu J, Xie X, Hu C, Jiang H, Fan S, Zhang H, Zhang Y, Jiang X, Xu B, Ma H, Shi Q. M1AP interacts with the mammalian ZZS complex and promotes male meiotic recombination. EMBO Rep 2023; 24:e55778. [PMID: 36440627 PMCID: PMC9900333 DOI: 10.15252/embr.202255778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Following meiotic recombination, each pair of homologous chromosomes acquires at least one crossover, which ensures accurate chromosome segregation and allows reciprocal exchange of genetic information. Recombination failure often leads to meiotic arrest, impairing fertility, but the molecular basis of recombination remains elusive. Here, we report a homozygous M1AP splicing mutation (c.1074 + 2T > C) in patients with severe oligozoospermia owing to meiotic metaphase I arrest. The mutation abolishes M1AP foci on the chromosome axes, resulting in decreased recombination intermediates and crossovers in male mouse models. M1AP interacts with the mammalian ZZS (an acronym for yeast proteins Zip2-Zip4-Spo16) complex components, SHOC1, TEX11, and SPO16. M1AP localizes to chromosomal axes in a SPO16-dependent manner and colocalizes with TEX11. Ablation of M1AP does not alter SHOC1 localization but reduces the recruitment of TEX11 to recombination intermediates. M1AP shows cytoplasmic localization in fetal oocytes and is dispensable for fertility and crossover formation in female mice. Our study provides the first evidence that M1AP acts as a copartner of the ZZS complex to promote crossover formation and meiotic progression in males.
Collapse
Affiliation(s)
- Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yufan Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Ihsan Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yue Lu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Jingwei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Junyan Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xuefeng Xie
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Congyuan Hu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
15
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
16
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
17
|
Bi J, Zhang J, Ke M, Wang T, Wang M, Liu W, Du Z, Ren Y, Zhang S, Wu Z, Lv Y, Wu R. HSF2BP protects against acute liver injury by regulating HSF2/HSP70/MAPK signaling in mice. Cell Death Dis 2022; 13:830. [PMID: 36167792 PMCID: PMC9515097 DOI: 10.1038/s41419-022-05282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
Heat shock proteins (HSPs) depletion and protein misfolding are important causes of hepatocyte death and liver regeneration disorder in liver injury. HSF2BP, as its name implies, is a binding protein of HSF2, but the specific role of HSF2BP in heat shock response (HSR) remains unknown. The aim of this study is to identify the role of HSF2BP in HSR and acute liver injury. In this study, we found that HSF2BP expression increased significantly within 24 h after APAP administration, and the trend was highly consistent with that of HSP70. hsf2bp-KO and hsf2bp-TG mouse models demonstrated HSF2BP reduced hepatocyte death, ameliorated inflammation, and improved liver function in APAP- or D-GalN/LPS- induced liver injury. Meanwhile, a significant increase of the survival rate was observed in hsf2bp-TG mice after APAP administration. Further studies showed that HSF2BP upregulated the expression of HSF2 and HSP70 and inhibited the activation of Jnk1/2 and P38 MAPK. Additionally, HSP70 siRNA pretreatment abolished the effect of HSF2BP on the MAPK pathway in APAP-treated hepatocytes. The results reveal that HSF2BP is a protective factor in acute liver injury, and the HSF2BP/HSP70/MAPK regulatory axis is crucial for the pathogenesis of liver injury. HSF2BP is a potential therapeutic target for liver injury.
Collapse
Affiliation(s)
- Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengyun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zheng Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
18
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
19
|
Agrawal R, Gillies JP, Zang JL, Zhang J, Garrott SR, Shibuya H, Nandakumar J, DeSantis ME. The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor. eLife 2022; 11:e78201. [PMID: 35703493 PMCID: PMC9242646 DOI: 10.7554/elife.78201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.
Collapse
Affiliation(s)
- Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - John P Gillies
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Juliana L Zang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sharon R Garrott
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
20
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
21
|
Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis. Commun Biol 2022; 5:504. [PMID: 35618762 PMCID: PMC9135715 DOI: 10.1038/s42003-022-03449-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
Mammalian spermatogenesis is a heat-vulnerable process that occurs at low temperatures, and elevated testicular temperatures cause male infertility. However, the current reliance on in vivo assays limits their potential to detail temperature dependence and destructive processes. Using ex vivo cultures of mouse testis explants at different controlled temperatures, we found that spermatogenesis failed at multiple steps, showing sharp temperature dependencies. At 38 °C (body core temperature), meiotic prophase I is damaged, showing increased DNA double-strand breaks (DSBs) and compromised DSB repair. Such damaged spermatocytes cause asynapsis between homologous chromosomes and are eliminated by apoptosis at the meiotic checkpoint. At 37 °C, some spermatocytes survive to the late pachytene stage, retaining high levels of unrepaired DSBs but do not complete meiosis with compromised crossover formation. These findings provide insight into the mechanisms and significance of heat vulnerability in mammalian spermatogenesis.
Collapse
|
22
|
Shang Y, Huang J, Li W, Zhang Y, Zhou X, Shao Q, Tan T, Yin S, Zhang L, Wang S. MEIOK21 regulates oocyte quantity and quality via modulating meiotic recombination. FASEB J 2022; 36:e22357. [PMID: 35593531 DOI: 10.1096/fj.202101950r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
The reproductive life span of females is largely determined by the number and quality of oocytes. Previously, we identified MEIOK21 as a meiotic recombination regulator required for male fertility. Here, we characterize the important roles of MEIOK21 in regulating female meiosis and oocyte number and quality. MEIOK21 localizes at recombination sites as a component of recombination bridges in oogenesis like in spermatogenesis. Meiok21-/- female mice show subfertility. Consistently, the size of the primordial follicle pool in Meiok21-/- females is only ~40% of wild-type females because a great number of oocytes with defects in meiotic recombination and/or synapsis are eliminated. Furthermore, the numbers of primordial and growing follicles show a more marked decrease in an age-dependent manner compared with wild-type females. Further analysis shows Meiok21-/- oocytes also have reduced rates of germinal vesicle breakdown and the first polar body extrusion when cultured in vitro, indicating poor oocyte quality. Additionally, Meiok21-/- oocytes have more chromosomes bearing a single distally localized crossover (chiasmata), suggesting a possible defect in crossover maturation. Taken together, our findings indicate critical roles for MEIOK21 in ensuring the number and quality of oocytes in the follicles.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Ju Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Weidong Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yanan Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xu Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qiqi Shao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| |
Collapse
|
23
|
Guan Y, Lin H, Leu NA, Ruthel G, Fuchs SY, Busino L, Luo M, Wang PJ. SCF ubiquitin E3 ligase regulates DNA double-strand breaks in early meiotic recombination. Nucleic Acids Res 2022; 50:5129-5144. [PMID: 35489071 PMCID: PMC9122608 DOI: 10.1093/nar/gkac304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Homeostasis of meiotic DNA double strand breaks (DSB) is critical for germline genome integrity and homologous recombination. Here we demonstrate an essential role for SKP1, a constitutive subunit of the SCF (SKP1-Cullin-F-box) ubiquitin E3 ligase, in early meiotic processes. SKP1 restrains accumulation of HORMAD1 and the pre-DSB complex (IHO1-REC114-MEI4) on the chromosome axis in meiotic germ cells. Loss of SKP1 prior to meiosis leads to aberrant localization of DSB repair proteins and a failure in synapsis initiation in meiosis of both males and females. Furthermore, SKP1 is crucial for sister chromatid cohesion during the pre-meiotic S-phase. Mechanistically, FBXO47, a meiosis-specific F-box protein, interacts with SKP1 and HORMAD1 and targets HORMAD1 for polyubiquitination and degradation in HEK293T cells. Our results support a model wherein the SCF ubiquitin E3 ligase prevents hyperactive DSB formation through proteasome-mediated degradation of HORMAD1 and subsequent modulation of the pre-DSB complex during meiosis.
Collapse
Affiliation(s)
- Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Liu J, Zhang Y, Tao J, Yu T, Zhang T. Heat shock factor 2-binding protein promotes tumor progression via activation of MAPK signaling pathway in lung adenocarcinoma. Bioengineered 2022; 13:10324-10334. [PMID: 35435115 PMCID: PMC9161939 DOI: 10.1080/21655979.2022.2063561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor that causes a serious public health burden. The biological functions and potential mechanism of heat shock factor 2-binding protein (HSF2BP) in LUAD have not been studied. This study aimed to explore the HSF2BP expression pattern and its potential biological function in LUAD. The transcriptome data and relevant clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database. The mRNA levels and prognosis of HSF2BP were determined using TCGA datasets. The protein and mRNA expression levels of HSF2BP were identified by conducting western blot analysis and quantitative real-time polymerase chain reaction in tissues and cells, respectively. To determine whether HSF2BP affected the biological function of LUAD cell lines, a series of functional experiments were performed in vitro and in vivo. In addition, gene set enrichment analysis was applied to determine the pathways that HSF2BP regulated, which was further confirmed by western blotting, and the high expression of HSF2BP was observed in LUAD, which was correlated with the unfavorable prognosis in LUAD patients. Clinical correlation analysis revealed that tumor stage was positively correlated with high HSF2BP expression. Furthermore, HSF2BP could serve as an independent risk factor for overall survival. In vitro, HSF2BP knockdown suppressed the proliferation and migration of A549 and H1299 cells. We observed the same results in vivo experiments. Mechanistically, the HSF2BP regulates the mitogen-activated protein kinase signaling pathway to perform its biological function. The HSF2BP plays a role in the development of LUAD and could be a useful anticancer target for the treatment of LUAD.
Collapse
Affiliation(s)
- Junyuan Liu
- Department of Thoracic Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Yuting Zhang
- Department of Geriatrics, The Fifth Clinical Medical College of Xinjiang Medical University, Urumqi, XinjiangChina
| | - Jie Tao
- Department of Thoracic Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Tingting Yu
- Department of Thoracic Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Ishiguro KI. Sexually Dimorphic Properties in Meiotic Chromosome. Sex Dev 2022; 16:423-434. [PMID: 35130542 DOI: 10.1159/000520682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/22/2021] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Meiosis is a crucial process for germ cell development. It consists of 1 round of DNA replication followed by 2 rounds of chromosome segregation, producing haploid gametes from diploid cells. During meiotic prophase, chromosomes are organized into axis-loop structures, which underlie meiosis-specific events such as meiotic recombination and homolog synapsis. Meiosis-specific cohesin plays a pivotal role in establishing higher-order chromosome architecture and regulating chromosome dynamics. SUMMARY Notably, sexually dimorphic properties of chromosome architecture are prominent during meiotic prophase, despite the same axial proteins being conserved between male and female. The difference in chromosome structure between the sexes gives sexual differences in the regulation of meiotic recombination and crossover distribution. KEY MESSAGES This review mainly focuses on the sexual differences of meiosis from the viewpoint of chromosome structure in mammals, elucidating the differences in meiotic recombination and homolog synapsis between the sexes.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Li S, Xu W, Xu B, Gao S, Zhang Q, Qin Y, Guo T. Pathogenic Variations of Homologous Recombination Gene HSF2BP Identified in Sporadic Patients With Premature Ovarian Insufficiency. Front Cell Dev Biol 2022; 9:768123. [PMID: 35174157 PMCID: PMC8841426 DOI: 10.3389/fcell.2021.768123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Premature ovarian insufficiency (POI) is defined as depletion of ovarian function before 40 years of age, which affects 3.7% of women in reproductive age. The etiology of POI is heterogeneous. Recently, with the widespread use of whole-exome sequencing (WES), the DNA repair genes, especially for those involved in meiosis progress, were enriched in the causative gene spectrum of POI. In this study, through the largest in-house WES database of 1,030 patients with sporadic POI, we identified two novel homozygous variations in HSF2BP (c.382T>C, p.C128R; c.557T>C, p.L186P). An in vitro functional study revealed that both variations impaired the nuclear location of HSF2BP and affected its DNA repair capacity. Our studies highlighted the essential role of meiotic homologous recombination genes in the pathogenesis of sporadic POI.
Collapse
Affiliation(s)
- Shan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Weiwei Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Shuchang Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
27
|
Zhang K, Tarczykowska A, Gupta DK, Pendlebury DF, Zuckerman C, Nandakumar J, Shibuya H. The TERB1 MYB domain suppresses telomere erosion in meiotic prophase I. Cell Rep 2022; 38:110289. [PMID: 35081355 PMCID: PMC8867601 DOI: 10.1016/j.celrep.2021.110289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The meiosis-specific telomere-binding protein TERB1 anchors telomeres to the nuclear envelope and drives chromosome movements for the pairing of homologous chromosomes. TERB1 has an MYB-like DNA-binding (MYB) domain, which is a hallmark of telomeric DNA-binding proteins. Here, we demonstrate that the TERB1 MYB domain has lost its canonical DNA-binding activity. The analysis of Terb1 point mutant mice expressing TERB1 lacking its MYB domain showed that the MYB domain is dispensable for telomere localization of TERB1 and the downstream TERB2-MAJIN complex, the promotion of homologous pairing, and even fertility. Instead, the TERB1 MYB domain regulates the enrichment of cohesin and promotes the remodeling of axial elements in the early-to-late pachytene transition, which suppresses telomere erosion. Considering its conservation across metazoan phyla, the TERB1 MYB domain is likely to be important for the maintenance of telomeric DNA and thus for genomic integrity by suppressing meiotic telomere erosion over long evolutionary timescales.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Agata Tarczykowska
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Deepesh Kumar Gupta
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden.
| |
Collapse
|
28
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Ishiguro KI, Shimada R. MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes Genet Syst 2021; 97:27-39. [PMID: 34955498 DOI: 10.1266/ggs.21-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meiosis is a crucial process for spermatogenesis and oogenesis. Initiation of meiosis coincides with spermatocyte differentiation and is followed by meiotic prophase, a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, chromosomes are organized into axis-loop structures, which underlie meiosis-specific events such as meiotic recombination and homolog synapsis. In spermatocytes, meiotic prophase is accompanied by robust alterations of gene expression programs and chromatin status for subsequent sperm production. The mechanisms regulating meiotic initiation and subsequent meiotic prophase programs are enigmatic. Recently, we discovered MEIOSIN (Meiosis initiator), a DNA-binding protein that directs the switch from mitosis to meiosis. This review mainly focuses on how MEIOSIN is involved in meiotic initiation and the meiotic prophase program during spermatogenesis. Further, we discuss the downstream genes activated by MEIOSIN, which are crucial for meiotic prophase-specific events, from the viewpoint of chromosome dynamics and the gene expression program.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| |
Collapse
|
30
|
Qu W, Liu C, Xu YT, Xu YM, Luo MC. The formation and repair of DNA double-strand breaks in mammalian meiosis. Asian J Androl 2021; 23:572-579. [PMID: 34708719 PMCID: PMC8577251 DOI: 10.4103/aja202191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) are necessary for meiosis in mammals. A sufficient number of DSBs ensure the normal pairing/synapsis of homologous chromosomes. Abnormal DSB repair undermines meiosis, leading to sterility in mammals. The DSBs that initiate recombination are repaired as crossovers and noncrossovers, and crossovers are required for correct chromosome separation. Thus, the placement, timing, and frequency of crossover formation must be tightly controlled. Importantly, mutations in many genes related to the formation and repair of DSB result in infertility in humans. These mutations cause nonobstructive azoospermia in men, premature ovarian insufficiency and ovarian dysgenesis in women. Here, we have illustrated the formation and repair of DSB in mammals, summarized major factors influencing the formation of DSB and the theories of crossover regulation.
Collapse
Affiliation(s)
- Wei Qu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Ting Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Min Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Cheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Zhang J, Nandakumar J, Shibuya H. BRCA2 in mammalian meiosis. Trends Cell Biol 2021; 32:281-284. [PMID: 34625364 DOI: 10.1016/j.tcb.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer type 2 susceptibility protein (BRCA2) is a central regulator of homologous recombination in somatic cells and safeguards genomic integrity against DNA double-strand breaks (DSBs). Recent evidence suggests that association with unique meiosis-specific cofactors allows BRCA2 to facilitate homologous recombination in germ cells.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden.
| |
Collapse
|
32
|
Jay A, Reitz D, Namekawa SH, Heyer WD. Cancer testis antigens and genomic instability: More than immunology. DNA Repair (Amst) 2021; 108:103214. [PMID: 34481156 PMCID: PMC9196322 DOI: 10.1016/j.dnarep.2021.103214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Cancer testis antigens or genes (CTA, CTG) are predominantly expressed in adult testes while silenced in most or all somatic tissues with sporadic expression in many human cancers. Concerted misexpression of numerous CTA/CTGs is rarely observed. This finding argues against the germ cell theory of cancer. A surprising number of CTA/CTGs are involved in meiotic chromosome metabolism and specifically in meiotic recombination. Recent discoveries with a group of CTGs established that their misexpression in somatic cells results in genomic instability by interfering with homologous recombination (HR), a DNA repair pathway for complex DNA damage such as DNA double-stranded breaks, interstrand crosslinks, and single-stranded DNA gaps. HR-deficient tumors have specific vulnerabilities and show synthetic lethality with inhibition of polyADP-ribose polymerase, opening the possibility that expression of CTA/CTGs that result in an HR-defect could be used as an additional biomarker for HR status. Here, we review the repertoire of CTA/CTGs focusing on a cohort that functions in meiotic chromosome metabolism by interrogating relevant cancer databases and discussing recent discoveries.
Collapse
Affiliation(s)
- Ash Jay
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616-8665, USA.
| |
Collapse
|
33
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
34
|
Pendlebury DF, Zhang J, Agrawal R, Shibuya H, Nandakumar J. Structure of a meiosis-specific complex central to BRCA2 localization at recombination sites. Nat Struct Mol Biol 2021; 28:671-680. [PMID: 34373645 DOI: 10.1038/s41594-021-00635-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022]
Abstract
Meiotic cells invoke breast cancer susceptibility gene 2 (BRCA2) to repair programmed double-stranded DNA breaks and accomplish homologous recombination. The meiosis-specific protein MEILB2 facilitates BRCA2 recruitment to meiotic recombination sites. Here, we combine crystallography, biochemical analysis and a mouse meiosis model to reveal a robust architecture that ensures meiotic BRCA2 recruitment. The crystal structure of the MEILB2-BRCA2 complex reveals how two MEILB2 homodimers sandwich two chains of BRCA2 to afford a 4:2 architecture. The sandwich lacks close contact between the two MEILB2 dimers or the two BRCA2 chains. Instead, the two halves of each BRCA2 chain bridge two MEILB2 subunits from different homodimers to form the MEILB2-BRCA2-MEILB2 sandwich. Several identical residues from the two MEILB2 subunits are employed to engage the BRCA2 halves, justifying their strict conservation. Mutational analysis of the interface reveals a synergistic mechanism for MEILB2-BRCA2 recruitment during meiosis. Overall, these studies demonstrate how BRCA2 efficiently localizes in the cell to facilitate meiosis.
Collapse
Affiliation(s)
- Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.,Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ritvija Agrawal
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA. .,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Ghouil R, Miron S, Koornneef L, Veerman J, Paul MW, Le Du MH, Sleddens-Linkels E, van Rossum-Fikkert SE, van Loon Y, Felipe-Medina N, Pendas AM, Maas A, Essers J, Legrand P, Baarends WM, Kanaar R, Zinn-Justin S, Zelensky AN. BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination. Nat Commun 2021; 12:4605. [PMID: 34326328 PMCID: PMC8322138 DOI: 10.1038/s41467-021-24871-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Lieke Koornneef
- Department of Developmental Biology, Oncode Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jasper Veerman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yvette van Loon
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Julien M, Ghouil R, Petitalot A, Caputo SM, Carreira A, Zinn-Justin S. Intrinsic Disorder and Phosphorylation in BRCA2 Facilitate Tight Regulation of Multiple Conserved Binding Events. Biomolecules 2021; 11:1060. [PMID: 34356684 PMCID: PMC8301801 DOI: 10.3390/biom11071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.
Collapse
Affiliation(s)
- Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Ambre Petitalot
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Aura Carreira
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
- Unité Intégrité du Génome, ARN et Cancer, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
37
|
Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Front Cell Dev Biol 2021; 9:672191. [PMID: 34109178 PMCID: PMC8181746 DOI: 10.3389/fcell.2021.672191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
A distinguishing feature of meiotic DNA double-strand breaks (DSBs), compared to DSBs in somatic cells, is the fact that they are induced in a programmed and specifically orchestrated manner, which includes chromatin remodeling prior to DSB induction. In addition, the meiotic homologous recombination (HR) repair process that follows, is different from HR repair of accidental DSBs in somatic cells. For instance, meiotic HR involves preferred use of the homolog instead of the sister chromatid as a repair template and subsequent formation of crossovers and non-crossovers in a tightly regulated manner. An important outcome of this distinct repair pathway is the pairing of homologous chromosomes. Central to the initial steps in homology recognition during meiotic HR is the cooperation between the strand exchange proteins (recombinases) RAD51 and its meiosis-specific paralog DMC1. Despite our understanding of their enzymatic activity, details on the regulation of their assembly and subsequent molecular organization at meiotic DSBs in mammals have remained largely enigmatic. In this review, we summarize recent mouse data on recombinase regulation via meiosis-specific factors. Also, we reflect on bulk “omics” studies of initial meiotic DSB processing, compare these with studies using super-resolution microscopy in single cells, at single DSB sites, and explore the implications of these findings for our understanding of the molecular mechanisms underlying meiotic HR regulation.
Collapse
Affiliation(s)
- Aditya N Mhaskar
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, Rotterdam, Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
38
|
Takemoto K, Tani N, Takada-Horisawa Y, Fujimura S, Tanno N, Yamane M, Okamura K, Sugimoto M, Araki K, Ishiguro KI. Meiosis-Specific C19orf57/4930432K21Rik/BRME1 Modulates Localization of RAD51 and DMC1 to DSBs in Mouse Meiotic Recombination. Cell Rep 2021; 31:107686. [PMID: 32460033 DOI: 10.1016/j.celrep.2020.107686] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022] Open
Abstract
Meiotic recombination is critical for genetic exchange and generation of chiasmata that ensures faithful chromosome segregation during meiosis I. Meiotic recombination is initiated by DNA double-strand break (DSB) followed by multiple processes of DNA repair. The exact mechanisms for how recombinases localize to DSB remain elusive. Here, we show that C19orf57/4930432K21Rik/BRME1 is a player for meiotic recombination in mice. C19orf57/4930432K21Rik/BRME1 associates with single-stranded DNA (ssDNA) binding proteins, BRCA2 and MEILB2/HSF2BP, which are critical recruiters of recombinases onto DSB sites. Disruption of C19orf57/4930432K21Rik/BRME1 shows severe impact on DSB repair and male fertility. Remarkably, removal of ssDNA binding proteins from DSB sites is delayed, and reciprocally, the loading of RAD51 and DMC1 onto resected ssDNA is impaired in Brme1 knockout (KO) spermatocytes. We propose that C19orf57/4930432K21Rik/BRME1 modulates localization of recombinases to meiotic DSB sites through the interaction with the BRCA2-MEILB2/HSF2BP complex during meiotic recombination.
Collapse
Affiliation(s)
- Kazumasa Takemoto
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuki Takada-Horisawa
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuhiro Tanno
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Mariko Yamane
- RIKEN, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kaho Okamura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Michihiko Sugimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
39
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
40
|
Ribeiro J, Dupaigne P, Petrillo C, Ducrot C, Duquenne C, Veaute X, Saintomé C, Busso D, Guerois R, Martini E, Livera G. The meiosis-specific MEIOB-SPATA22 complex cooperates with RPA to form a compacted mixed MEIOB/SPATA22/RPA/ssDNA complex. DNA Repair (Amst) 2021; 102:103097. [PMID: 33812231 DOI: 10.1016/j.dnarep.2021.103097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
During meiosis, programmed double-strand breaks are repaired by homologous recombination (HR) to form crossovers that are essential to homologous chromosome segregation. Single-stranded DNA (ssDNA) containing intermediates are key features of HR, which must be highly regulated. RPA, the ubiquitous ssDNA binding complex, was thought to play similar roles during mitotic and meiotic HR until the recent discovery of MEIOB and its partner, SPATA22, two essential meiosis-specific proteins. Here, we show that like MEIOB, SPATA22 resembles RPA subunits and binds ssDNA. We studied the physical and functional interactions existing between MEIOB, SPATA22, and RPA, and show that MEIOB and SPATA22 interact with the preformed RPA complex through their interacting domain and condense RPA-coated ssDNA in vitro. In meiotic cells, we show that MEIOB and SPATA22 modify the immunodetection of the two large subunits of RPA. Given these results, we propose that MEIOB-SPATA22 and RPA form a functional ssDNA-interacting complex to satisfy meiotic HR requirements by providing specific properties to the ssDNA.
Collapse
Affiliation(s)
- Jonathan Ribeiro
- Laboratory of Development of the Gonads, UMR E008 Genetic Stability Stem Cells and Radiations, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| | - Pauline Dupaigne
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Interactions Moléculaires et Cancer, CNRS, Université Paris Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Cynthia Petrillo
- Laboratory of Development of the Gonads, UMR E008 Genetic Stability Stem Cells and Radiations, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| | - Cécile Ducrot
- Laboratory of Development of the Gonads, UMR E008 Genetic Stability Stem Cells and Radiations, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| | - Clotilde Duquenne
- Laboratory of Development of the Gonads, UMR E008 Genetic Stability Stem Cells and Radiations, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| | - Xavier Veaute
- CIGEx, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, Inserm, U1274, F-92260, Fontenay-aux-Roses, France
| | - Carole Saintomé
- MNHN, CNRS UMR 7196, INSERM U1154, Sorbonne Universités, 75231, Paris, France
| | - Didier Busso
- CIGEx, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, Inserm, U1274, F-92260, Fontenay-aux-Roses, France
| | - Raphaël Guerois
- CNRS I2BC UMR 9198, iBiTec-S, SB²SM CEA SACLAY, 91191, Gif sur Yvette, France
| | - Emmanuelle Martini
- Laboratory of Development of the Gonads, UMR E008 Genetic Stability Stem Cells and Radiations, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France.
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMR E008 Genetic Stability Stem Cells and Radiations, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| |
Collapse
|
41
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
42
|
Guo R, Xu Y, Leu NA, Zhang L, Fuchs SY, Ye L, Wang P. The ssDNA-binding protein MEIOB acts as a dosage-sensitive regulator of meiotic recombination. Nucleic Acids Res 2020; 48:12219-12233. [PMID: 33166385 PMCID: PMC7708077 DOI: 10.1093/nar/gkaa1016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Meiotic recombination enables reciprocal exchange of genetic information between parental chromosomes and is essential for fertility. MEIOB, a meiosis-specific ssDNA-binding protein, regulates early meiotic recombination. Here we report that the human infertility-associated missense mutation (N64I) in MEIOB causes protein degradation and reduced crossover formation in mouse testes. Although the MEIOB N64I substitution is associated with human infertility, the point mutant mice are fertile despite meiotic defects. Meiob mutagenesis identifies serine 67 as a critical residue for MEIOB. Biochemically, these two mutations (N64I and S67 deletion) cause self-aggregation of MEIOB and sharply reduced protein half-life. Molecular genetic analyses of both point mutants reveal an important role for MEIOB in crossover formation in late meiotic recombination. Furthermore, we find that the MEIOB protein levels directly correlate with the severity of meiotic defects. Our results demonstrate that MEIOB regulates meiotic recombination in a dosage-dependent manner.
Collapse
Affiliation(s)
- Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lei Zhang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Shang Y, Huang T, Liu H, Liu Y, Liang H, Yu X, Li M, Zhai B, Yang X, Wei Y, Wang G, Chen Z, Wang S, Zhang L. MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis. Nucleic Acids Res 2020; 48:6624-6639. [PMID: 32463460 PMCID: PMC7337969 DOI: 10.1093/nar/gkaa406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination ‘bridges’ between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of ‘bridges’ remain to be investigated. Here we show that MEIOK21 is a newly identified component of meiotic recombination bridges and is required for efficient formation of DMC1/RAD51 foci. MEIOK21 dynamically localizes on chromosomes from on-axis foci to ‘hanging foci’, then to ‘bridges’, and finally to ‘fused foci’ between homolog axes. Its chromosome localization depends on DSBs. Knockout of Meiok21 decreases the numbers of HSF2BP and DMC1/RAD51 foci, disrupting DSB repair, synapsis and crossover recombination and finally causing male infertility. Therefore, MEIOK21 is a novel recombination factor and probably mediates DMC1/RAD51 recruitment to ssDNA or their stability on chromosomes through physical interaction with HSF2BP.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Heng Liang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yudong Wei
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Guoqiang Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zijiang Chen
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
44
|
Felipe-Medina N, Caburet S, Sánchez-Sáez F, Condezo YB, de Rooij DG, Gómez-H L, Garcia-Valiente R, Todeschini AL, Duque P, Sánchez-Martin MA, Shalev SA, Llano E, Veitia RA, Pendás AM. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. eLife 2020; 9:e56996. [PMID: 32845237 PMCID: PMC7498267 DOI: 10.7554/elife.56996] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model. Hsf2bpS167L/S167L females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility.
Collapse
Affiliation(s)
- Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Sandrine Caburet
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Rodrigo Garcia-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Anne Laure Todeschini
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Paloma Duque
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Manuel Adolfo Sánchez-Martin
- Transgenic Facility, Nucleus platform, Universidad de SalamancaSalamancaSpain
- Departamento de Medicina, Universidad de SalamancaSalamancaSpain
| | - Stavit A Shalev
- The Genetic Institute, "Emek" Medical CenterAfulaIsrael
- Bruce and Ruth Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
- Departamento de Fisiología y Farmacología, Universidad de SalamancaSalamancaSpain
| | - Reiner A Veitia
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
- Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l’Energie AtomiqueFontenay aux RosesFrance
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| |
Collapse
|
45
|
Oster S, Aqeilan RI. Programmed DNA Damage and Physiological DSBs: Mapping, Biological Significance and Perturbations in Disease States. Cells 2020; 9:cells9081870. [PMID: 32785139 PMCID: PMC7463922 DOI: 10.3390/cells9081870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are known to be the most toxic and threatening of the various types of breaks that may occur to the DNA. However, growing evidence continuously sheds light on the regulatory roles of programmed DSBs. Emerging studies demonstrate the roles of DSBs in processes such as T and B cell development, meiosis, transcription and replication. A significant recent progress in the last few years has contributed to our advanced knowledge regarding the functions of DSBs is the development of many next generation sequencing (NGS) methods, which have considerably advanced our capabilities. Other studies have focused on the implications of programmed DSBs on chromosomal aberrations and tumorigenesis. This review aims to summarize what is known about DNA damage in its physiological context. In addition, we will examine the advancements of the past several years, which have made an impact on the study of genome landscape and its organization.
Collapse
Affiliation(s)
- Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
46
|
Wells D, Bitoun E, Moralli D, Zhang G, Hinch A, Jankowska J, Donnelly P, Green C, Myers SR. ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. eLife 2020; 9:53392. [PMID: 32744506 PMCID: PMC7494361 DOI: 10.7554/elife.53392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
During meiosis, homologous chromosomes pair and recombine, enabling balanced segregation and generating genetic diversity. In many vertebrates, double-strand breaks (DSBs) initiate recombination within hotspots where PRDM9 binds, and deposits H3K4me3 and H3K36me3. However, no protein(s) recognising this unique combination of histone marks have been identified. We identified Zcwpw1, containing H3K4me3 and H3K36me3 recognition domains, as having highly correlated expression with Prdm9. Here, we show that ZCWPW1 has co-evolved with PRDM9 and, in human cells, is strongly and specifically recruited to PRDM9 binding sites, with higher affinity than sites possessing H3K4me3 alone. Surprisingly, ZCWPW1 also recognises CpG dinucleotides. Male Zcwpw1 knockout mice show completely normal DSB positioning, but persistent DMC1 foci, severe DSB repair and synapsis defects, and downstream sterility. Our findings suggest ZCWPW1 recognition of PRDM9-bound sites at DSB hotspots is critical for synapsis, and hence fertility. Sexual reproduction – that is, the combination of sex cells from two different individuals to produce an embryo – is one of the many mechanisms that have evolved to maintain genetic diversity. Most human cells contain 23 pairs of chromosomes, with each chromosome in a pair carrying either a paternal or maternal copy of the same gene. To form an embryo with the right number of chromosomes, each sex cell (the egg or sperm cell) must only contain one chromosome from each pair. Sex cells are produced from parent cells containing two sets of paternal and maternal chromosomes: these cells then divide twice to form four sex cells which contain only one chromosome from each pair. Before the parent cell divides, a process known as ‘recombination’ takes place, which allows chromosomes in a pair to exchange bits of genetic information. This reshuffling ensures that each chromosome in a sex cell is unique. A protein called PRDM9 helps control which sections of genetic information are recombined by modifying proteins attached to the chromosomes, marking them as locations for exchange. The DNA at each of these sites is then broken and repaired using the genetic sequence of the chromosome it is paired with as a template, thus causing the two chromosomes to swap genes. In 2019, a group of researchers found a set of genes in the testis of mice that are expressed at the same time as the gene for PRDM9. This suggested that another protein called ZCWPW1 is likely involved in recombination, but the precise role of this protein was unclear. To answer this question, Wells, Bitoun et al. – including many of the researchers involved in the 2019 study – examined human cells grown in the laboratory to determine where ZCWPW1 binds to in the chromosome. This revealed that ZCWPW1 can be found at the same sites as PRDM9, which is responsible for bringing it there. Furthermore, cells from male mice lacking the gene for ZCWPW1 cannot complete the exchange of genetic information between chromosomes, meaning that the mice are infertile. As such, ZCWPW1 seems to connect location selection by PRDM9 to the DNA repair mechanisms needed for gene exchange between chromosomes. Infertility is a significant issue for humans affecting as many as one in every six couples. Fertility is complex and many of the biological mechanisms involved are not fully understood. This work suggests that both PRDM9 and ZCWPW1 are key to the production of sex cells and may be worth investigating as factors that affect fertility in humans.
Collapse
Affiliation(s)
- Daniel Wells
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Bitoun
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Gang Zhang
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Anjali Hinch
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Julia Jankowska
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Peter Donnelly
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Catherine Green
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Brandsma I, Sato K, van Rossum-Fikkert SE, van Vliet N, Sleddens E, Reuter M, Odijk H, van den Tempel N, Dekkers DHW, Bezstarosti K, Demmers JAA, Maas A, Lebbink J, Wyman C, Essers J, van Gent DC, Baarends WM, Knipscheer P, Kanaar R, Zelensky AN. HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis. Cell Rep 2020; 27:3790-3798.e7. [PMID: 31242413 DOI: 10.1016/j.celrep.2019.05.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/01/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2.
Collapse
Affiliation(s)
- Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Marcel Reuter
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Joyce Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
48
|
Caburet S, Heddar A, Dardillac E, Creux H, Lambert M, Messiaen S, Tourpin S, Livera G, Lopez BS, Misrahi M. Homozygous hypomorphic BRCA2 variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. J Med Genet 2020; 58:jmedgenet-2019-106672. [PMID: 32482800 DOI: 10.1136/jmedgenet-2019-106672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Primary ovarian insufficiency (POI) affects 1% of women under 40 years and is a public health problem. The genetic causes of POI are highly heterogeneous with isolated or syndromic forms. Recently, variants in genes involved in DNA repair have been shown to cause POI. Notably, syndromic POI with Fanconi anaemia (FA) traits related to biallelic BRCA2 truncated variants has been reported. Here, we report a novel phenotype of isolated POI with a BRCA2 variant in a consanguineous Turkish family. METHODS Exome sequencing (ES) was performed in the patient. We also performed functional studies, including a homologous recombination (HR) test, cell proliferation, radiation-induced RAD51 foci formation assays and chromosome breakage studies in primary and lymphoblastoid immortalised cells. The expression of BRCA2 in human foetal ovaries was studied. RESULTS ES identified a homozygous missense c.8524C>T/p.R2842C-BRCA2 variant. BRCA2 defects induce cancer predisposition and FA. Remarkably, neither the patient nor her family exhibited somatic pathologies. The patient's cells showed intermediate levels of chromosomal breaks, cell proliferation and radiation-induced RAD51 foci formation compared with controls and FA cells. R2842C-BRCA2 only partially complemented HR efficiency compared with wild type-BRCA2. BRCA2 is expressed in human foetal ovaries in pachytene stage oocytes, when meiotic HR occurs. CONCLUSION We describe the functional assessment of a homozygous hypomorphic BRCA2 variant in a patient with POI without cancer or FA trait. Our findings extend the phenotype of BRCA2 biallelic alterations to fully isolated POI. This study has a major impact on the management and genetic counselling of patients with POI.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Université de Paris, Paris, Île-de-France, France
| | - Abdelkader Heddar
- Faculte de Medecine, Universite Paris Saclay, Hopital Bicêtre APHP, Le Kremlin-Bicetre, France
| | - Elodie Dardillac
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Paris, Île-de-France, France
| | - Héléne Creux
- Service de Gynécologie et Médecine de la Reproduction, CHU de Bordeaux, Bordeaux, Aquitaine, France
| | - Marie Lambert
- Service de Gynécologie et Médecine de la Reproduction, CHU de Bordeaux, Bordeaux, Aquitaine, France
| | - Sébastien Messiaen
- UMR Stabilité Génétique, Cellules Souches et Radiations, Université Paris-Saclay, Fontenay aux Roses, Île-de-France, France
| | - Sophie Tourpin
- UMR Stabilité Génétique, Cellules Souches et Radiations, Université Paris-Saclay, Fontenay aux Roses, Île-de-France, France
| | - Gabriel Livera
- UMR Stabilité Génétique, Cellules Souches et Radiations, Université Paris-Saclay, Fontenay aux Roses, Île-de-France, France
| | - Bernard S Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Paris, Île-de-France, France
| | - Micheline Misrahi
- Faculte de Medecine, Universite Paris Saclay, Hopital Bicêtre APHP, Le Kremlin-Bicetre, France
| |
Collapse
|
49
|
Santana dos Santos E, Lallemand F, Petitalot A, Caputo SM, Rouleau E. HRness in Breast and Ovarian Cancers. Int J Mol Sci 2020; 21:E3850. [PMID: 32481735 PMCID: PMC7312125 DOI: 10.3390/ijms21113850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian and breast cancers are currently defined by the main pathways involved in the tumorigenesis. The majority are carcinomas, originating from epithelial cells that are in constant division and subjected to cyclical variations of the estrogen stimulus during the female hormonal cycle, therefore being vulnerable to DNA damage. A portion of breast and ovarian carcinomas arises in the context of DNA repair defects, in which genetic instability is the backdrop for cancer initiation and progression. For these tumors, DNA repair deficiency is now increasingly recognized as a target for therapeutics. In hereditary breast/ovarian cancers (HBOC), tumors with BRCA1/2 mutations present an impairment of DNA repair by homologous recombination (HR). For many years, BRCA1/2 mutations were only screened on germline DNA, but now they are also searched at the tumor level to personalize treatment. The reason of the inactivation of this pathway remains uncertain for most cases, even in the presence of a HR-deficient signature. Evidence indicates that identifying the mechanism of HR inactivation should improve both genetic counseling and therapeutic response, since they can be useful as new biomarkers of response.
Collapse
Affiliation(s)
- Elizabeth Santana dos Santos
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-010, Brazil
| | - François Lallemand
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
| |
Collapse
|
50
|
High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun 2020; 11:2573. [PMID: 32444794 PMCID: PMC7244490 DOI: 10.1038/s41467-020-16141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous nontruncating missense variants of the BRCA2 gene have been identified, but there is a lack of convincing evidence, such as familial data, demonstrating their clinical relevance and they thus remain unactionable. To assess the pathogenicity of variants of unknown significance (VUSs) within BRCA2, here we develop a method, the MANO-B method, for high-throughput functional evaluation utilizing BRCA2-deficient cells and poly (ADP-ribose) polymerase (PARP) inhibitors. The estimated sensitivity and specificity of this assay compared to those of the International Agency for Research on Cancer classification system is 95% and 95% (95% confidence intervals: 77–100% and 82–99%), respectively. We classify the functional impact of 186 BRCA2 VUSs with our computational pipeline, resulting in the classification of 126 variants as normal/likely normal, 23 as intermediate, and 37 as abnormal/likely abnormal. We further describe a simplified, on-demand annotation system that could be used as a companion diagnostic for PARP inhibitors in patients with unknown BRCA2 VUSs. Many germline variants are found in the BRCA2 gene, some of which pre-dispose women to breast and ovarian cancer. Here, the authors develop a method to determine the functional significance of BRCA2 variants and show that it is comparable to the IARC system of classifying variants.
Collapse
|