1
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Kreitz S, Pradier B, Segelcke D, Amirmohseni S, Hess A, Faber C, Pogatzki-Zahn EM. Distinct functional cerebral hypersensitivity networks during incisional and inflammatory pain in rats. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100142. [PMID: 39810939 PMCID: PMC11731594 DOI: 10.1016/j.crneur.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025] Open
Abstract
Although the pathophysiology of pain has been investigated tremendously, there are still many open questions with regard to specific pain entities and their pain-related symptoms. To increase the translational impact of (preclinical) animal neuroimaging pain studies, the use of disease-specific pain models, as well as relevant stimulus modalities, are critical. We developed a comprehensive framework for brain network analysis combining functional magnetic resonance imaging (MRI) with graph-theory (GT) and data classification by linear discriminant analysis. This enabled us to expand our knowledge of stimulus modalities processing under incisional (INC) and pathogen-induced inflammatory (CFA) pain entities compared to acute pain conditions. GT-analysis has uncovered specific features in pain modality processing that align well with those previously identified in humans. These include areas such as S1, M1, CPu, HC, piriform, and cingulate cortex. Additionally, we have identified unique Network Signatures of Pain Hypersensitivity (NSPH) for INC and CFA. This leads to a diminished ability to differentiate between stimulus modalities in both pain models compared to control conditions, while also enhancing aversion processing and descending pain modulation. Our findings further show that different pain entities modulate sensory input through distinct NSPHs. These neuroimaging signatures are an important step toward identifying novel cerebral pain biomarkers for certain diseases and relevant outcomes to evaluate target engagement of novel therapeutic and diagnostic options, which ultimately can be translated to the clinic.
Collapse
Affiliation(s)
- Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bruno Pradier
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany
- Clinic of Radiology, University of Muenster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany
| | | | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- FAU NeW - Research Center for New Bioactive Compounds, Erlangen, Germany
| | | | - Esther M. Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany
| |
Collapse
|
3
|
Holter KM, Klausner MG, Hite MH, Moriarty CT, Barth SH, Pierce BE, Iannucci AN, Sheffler DJ, Cosford NDP, Bimonte-Nelson HA, Raab-Graham KF, Gould RW. 17β-estradiol status alters NMDAR function and antipsychotic-like activity in female rats. Mol Psychiatry 2025:10.1038/s41380-025-02996-0. [PMID: 40185905 DOI: 10.1038/s41380-025-02996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Low 17β-estradiol (E2) in females of reproductive age, and marked E2 decline with menopause, contributes to heightened symptom severity in schizophrenia (i.e. cognitive dysfunction) and diminished response to antipsychotic medications. However, the underlying mechanisms are unknown. N-methyl-D-aspartate receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia, yet impact of E2 depletion on NMDAR function is not well characterized. Quantitative electroencephalography (qEEG), specifically gamma power, is a well-established functional readout of cortical activity that is elevated in patients with schizophrenia and is sensitive to alterations in NMDAR function. Using qEEG and touchscreen cognitive assessments, present studies investigated the effects of E2 on NMDAR function by administering MK-801 (NMDAR antagonist) to ovariectomized rats with or without E2 implants (Ovx+E and Ovx, respectively). Ovx rats were more sensitive to MK-801-induced elevations in gamma power and attentional impairments compared to Ovx+E rats. Further investigation revealed these effects were mediated by reduced synaptic GluN2A expression. Consistent with clinical reports, olanzapine (second-generation antipsychotic) was less effective in mitigating MK-801-induced elevations in gamma power in Ovx rats. Lastly, we examined antipsychotic-like activity of a Group II metabotropic glutamate receptor (mGlu2/3) positive allosteric modulator (PAM), SBI-0646535, as a novel therapeutic in E2-deprived conditions. SBI-0646535 reversed MK-801-induced elevations in gamma power regardless of E2 status. Collectively, these studies established a relationship between E2 deprivation and NMDAR function that is in part GluN2A-dependent, supporting the notion that E2 deprivation increases susceptibility to NMDAR hypofunction. This highlights the need to examine age/hormone-specific factors when considering antipsychotic response and designing novel pharmacotherapies.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - McKenna G Klausner
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mary Hunter Hite
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carson T Moriarty
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel H Barth
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bethany E Pierce
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexandria N Iannucci
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Douglas J Sheffler
- Cancer Molecular Therapeutics Program. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nicholas D P Cosford
- Cancer Molecular Therapeutics Program. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Kimberly F Raab-Graham
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Robert W Gould
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Li M, Liu K, Xu M, Chen Z, Yu L, Zhang J, Wang C, Long C, Jiang J. Anterior Cingulate Cortex-Anterior Insular Cortex Circuit Mediates Hyperalgesia in Adolescent Mice Experiencing Early Life Stress. ACS Chem Neurosci 2025; 16:920-931. [PMID: 39957557 DOI: 10.1021/acschemneuro.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Understanding neurobiological mechanisms underlying changes in behavior and neural activity caused by early life stress (ELS) is essential for improving these adverse outcomes in individuals. ELS incited by exposure to maternal separation (MS) can be defined as a form of social pain, but little is known about the neural mechanism in adolescents with ELS-induced pain sensitization. Employing an MS-induced ELS paradigm in mice, we reported here that both male and female MS mice aged 1-2 months exhibited mechanical and thermal hyperalgesia using paw-withdrawal and hot/cold plate tests. The increased high gamma (γhigh) oscillations accompanied by the activation of parvalbumin-positive interneurons (PVINs) in the anterior insular cortex (AIC), but not the anterior cingulate cortex (ACC), were shown in MS mice. Moreover, ACC-driven AIC connectivity was enhanced in MS mice, characterized by amplified phase coherence in the delta (δ) and theta (θ) bands and an escalation in the coupling of the ACC θ phase and AIC γ amplitude. Chemogenetic inactivation of AIC PVINs relieved hyperalgesia and altered the ACC-AIC connectivity in MS mice. The observed increase in δ-θ synchronization and PVIN activation in the ACC-AIC circuit indicates this pathway is a therapeutic target for ELS-induced hyperalgesia.
Collapse
Affiliation(s)
- Meng Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kefang Liu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mingyu Xu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhaoyi Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lu Yu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jingquan Zhang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jinxiang Jiang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Yue L, Bao C, Zhang L, Zhang F, Zhou W, Iannetti GD, Hu L. Neuronal mechanisms of nociceptive-evoked gamma-band oscillations in rodents. Neuron 2025; 113:769-784.e6. [PMID: 39809278 DOI: 10.1016/j.neuron.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain. These findings provide causal evidence that nociceptive-evoked GBOs preferentially encoding pain intensity are generated by PV interneurons in S1, thereby laying a solid foundation for developing GBO-based targeted pain therapies.
Collapse
Affiliation(s)
- Lupeng Yue
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chongyu Bao
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Libo Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fengrui Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Zhou
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Li Hu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Holter KM, Klausner M, Hite MH, Moriarty C, Barth S, Pierce B, Iannucci A, Sheffler D, Cosford N, Bimonte-Nelson H, Raab-Graham KF, Gould RW. 17β-estradiol status alters NMDAR function and antipsychotic-like activity in female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637465. [PMID: 39990384 PMCID: PMC11844370 DOI: 10.1101/2025.02.10.637465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Low 17β-estradiol (E2) in females of reproductive age, and marked E2 decline with menopause, contributes to heightened symptom severity in schizophrenia (i.e. cognitive dysfunction) and diminished response to antipsychotic medications. However, the underlying mechanisms are unknown. N-methyl-D-aspartate receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia, yet impact of E2 depletion on NMDAR function is not well characterized. Quantitative electroencephalography (qEEG), specifically gamma power, is a well-established functional readout of cortical activity that is elevated in patients with schizophrenia and is sensitive to alterations in NMDAR function. Using qEEG and touchscreen cognitive assessments, present studies investigated the effects of E2 on NMDAR function by administering MK-801 (NMDAR antagonist) to ovariectomized rats with or without E2 implants (Ovx+E and Ovx, respectively). Ovx rats were more sensitive to MK-801-induced elevations in gamma power and attentional impairments compared to Ovx+E rats. Further investigation revealed these effects were mediated by reduced synaptic GluN2A expression. Consistent with clinical reports, olanzapine (second-generation antipsychotic) was less effective in mitigating MK-801-induced elevations in gamma power in Ovx rats. Lastly, we examined antipsychotic-like activity of a Group II metabotropic glutamate receptor (mGlu2/3) positive allosteric modulator (PAM), SBI-0646535, as a novel therapeutic in E2-deprived conditions. SBI-0646535 reversed MK-801-induced elevations in gamma power equally regardless of E2 status. Collectively, these studies established a relationship between E2 deprivation and NMDAR function that is in part GluN2A-dependent, supporting the notion that E2 deprivation increases susceptibility to NMDAR hypofunction. This highlights the need to examine age/hormone-specific factors when considering antipsychotic response and designing novel pharmacotherapies.
Collapse
|
7
|
Ma C, Wang C, Zhu D, Chen M, Zhang M, He J. The Investigation of the Relationship Between Individual Pain Perception, Brain Electrical Activity, and Facial Expression Based on Combined EEG and Facial EMG Analysis. J Pain Res 2025; 18:21-32. [PMID: 39776765 PMCID: PMC11705972 DOI: 10.2147/jpr.s477658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Pain is a multidimensional, unpleasant emotional and sensory experience, and accurately assessing its intensity is crucial for effective management. However, individuals with cognitive impairments or language deficits may struggle to accurately report their pain. EEG provides insight into the neurological aspects of pain, while facial EMG captures the sensory and peripheral muscle responses. Our objective is to explore the relationship between individual pain perception, brain activity, and facial expressions through a combined analysis of EEG and facial EMG, aiming to provide an objective and multidimensional approach to pain assessment. Methods We investigated pain perception in response to electrical stimulation of the middle finger in 26 healthy subjects. The 32-channel EEG and 3-channel facial EMG signals were simultaneously recorded during a pain rating task. Group difference and correlation analysis were employed to investigate the relationship between individual pain perception, EEG, and facial EMG. The general linear model (GLM) was used for multidimensional pain assessment. Results The EEG analysis revealed that painful stimuli induced N2-P2 complex waveforms and gamma oscillations, with substantial variability in response to different stimuli. The facial EMG signals also demonstrated significant differences and variability correlated with subjective pain ratings. A combined analysis of EEG and facial EMG data using a general linear model indicated that both N2-P2 complex waveforms and the zygomatic muscle responses significantly contributed to pain assessment. Conclusion Facial EMG signals provide pain descriptions which are not sufficiently captured by EEG signals, and integrating both signals offers a more comprehensive understanding of pain perception. Our study underscores the potential of multimodal neurophysiological measurements in pain perception, offering a more comprehensive framework for evaluating pain.
Collapse
Affiliation(s)
- Chaozong Ma
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Military Medical Psychology School, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, People’s Republic of China
| | - Dan Zhu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Mingfang Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Juan He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
8
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Hu N, Shi JX, Chen C, Xu HH, Chang ZH, Hu PF, Guo D, Zhang XW, Shao WW, Fan X, Zuo JC, Ming D, Li XH. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat Commun 2024; 15:9580. [PMID: 39505863 PMCID: PMC11541701 DOI: 10.1038/s41467-024-53858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly, there is increasing potential for generalized BCIs to input information into the brains to restore damage, but their effectiveness is limited when a large injured cavity is caused. Notably, it might be overcome by transplantation of brain organoids into the damaged region. Here, we construct innovative BCIs mediated by implantable organoids, coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs, and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain, promising to repair the damaged brain via regenerating and regulating, potentially directing neurons to preselected targets and recovering functional neural networks in the future.
Collapse
Affiliation(s)
- Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Peng-Fei Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China.
| |
Collapse
|
10
|
Li XH, Guo D, Chen LQ, Chang ZH, Shi JX, Hu N, Chen C, Zhang XW, Bao SQ, Chen MM, Ming D. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. Brain 2024; 147:3817-3833. [PMID: 38739753 DOI: 10.1093/brain/awae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Human brain organoids represent a remarkable platform for modelling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses revealed that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays revealed that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, Bi YZ, Lu XJ, Hu L. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med 2024; 5:101784. [PMID: 39383872 PMCID: PMC11513815 DOI: 10.1016/j.xcrm.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Identifying neural biomarkers of pain has long been a central theme in pain neuroscience. Here, we review the state-of-the-art candidates for neural biomarkers of acute and chronic pain. We classify these potential neural biomarkers into five categories based on the nature of their target variables, including neural biomarkers of (1) within-individual perception, (2) between-individual sensitivity, and (3) discriminability for acute pain, as well as (4) assessment and (5) prospective neural biomarkers for chronic pain. For each category, we provide a synthesized review of candidate biomarkers developed using neuroimaging techniques including functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), and electroencephalography (EEG). We also discuss the conceptual and practical challenges in developing neural biomarkers of pain. Addressing these challenges, optimal biomarkers of pain can be developed to deepen our understanding of how the brain represents pain and ultimately help alleviate patients' suffering and improve their well-being.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yi Geng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Rui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Zhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Ma L, Yue L, Liu S, Xu S, Tong J, Sun X, Su L, Cui S, Liu FY, Wan Y, Yi M. A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation. Nat Commun 2024; 15:7922. [PMID: 39256428 PMCID: PMC11387830 DOI: 10.1038/s41467-024-52243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The absence of a comprehensive understanding of the neural basis of spontaneous pain limits the development of therapeutic strategies targeting this primary complaint of patients with chronic pain. Here we report a distinct neuronal ensemble within the prelimbic cortex which processes signals related to spontaneous pain in rats with chronic inflammatory pain. This neuronal ensemble specifically encodes spontaneous pain-related behaviors, independently of other locomotive and evoked behaviors. Activation of this neuronal ensemble elicits marked spontaneous pain-like behaviors and enhances nociceptive responses, whereas prolonged silencing of its activities alleviates spontaneous pain and promotes overall recovery from inflammatory pain. Notably, afferents from the primary somatosensory cortex and infralimbic cortex bidirectionally modulate the activities of the spontaneous pain-responsive prelimbic cortex neuronal ensemble and pain behaviors. These findings reveal the cortical basis of spontaneous pain at the neuronal level, highlighting a distinct neuronal ensemble within the prelimbic cortex and its associated pain-regulatory brain networks.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, China.
| |
Collapse
|
13
|
Li XH, Hu N, Chang ZH, Shi JX, Fan X, Chen MM, Bao SQ, Chen C, Zuo JC, Zhang XW, Wang JJ, Ming D. Brain organoid maturation and implantation integration based on electrical signals input. J Adv Res 2024:S2090-1232(24)00378-3. [PMID: 39243942 DOI: 10.1016/j.jare.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better-transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jing-Jing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Kim MG, Yu K, Yeh CY, Fouda R, Argueta D, Kiven S, Ni Y, Niu X, Chen Q, Kim K, Gupta K, He B. Low-intensity transcranial focused ultrasound suppresses pain by modulating pain-processing brain circuits. Blood 2024; 144:1101-1115. [PMID: 38976875 PMCID: PMC11406192 DOI: 10.1182/blood.2023023718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
ABSTRACT There is an urgent and unmet clinical need to develop nonpharmacological interventions for chronic pain management because of the critical side effects of opioids. Low-intensity transcranial focused ultrasound (tFUS) is an emerging noninvasive neuromodulation technology with high spatial specificity and deep brain penetration. Here, we developed a tightly focused 128-element ultrasound transducer to specifically target small mouse brains using dynamic focus steering. We demonstrate that tFUS stimulation at pain-processing brain circuits can significantly alter pain-associated behaviors in mouse models in vivo. Our findings indicate that a single-session focused ultrasound stimulation to the primary somatosensory cortex (S1) significantly attenuates heat pain sensitivity in wild-type mice and modulates heat and mechanical hyperalgesia in a humanized mouse model of chronic pain in sickle cell disease. Results further revealed a sustained behavioral change associated with heat hypersensitivity by targeting deeper cortical structures (eg, insula) and multisession focused ultrasound stimulation to S1 and insula. Analyses of brain electrical rhythms through electroencephalography demonstrated a significant change in noxious heat hypersensitivity-related and chronic hyperalgesia-associated neural signals after focused ultrasound treatment. Validation of efficacy was carried out through control experiments, tuning ultrasound parameters, adjusting interexperiment intervals, and investigating effects on age, sex, and genotype in a head-fixed awake model. Importantly, tFUS was found to be safe, causing no adverse effects on motor function or the brain's neuropathology. In conclusion, the validated proof-of-principle experimental evidence demonstrates the translational potential of novel focused ultrasound neuromodulation for next-generation pain treatment without adverse effects.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Chih-Yu Yeh
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Raghda Fouda
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Donovan Argueta
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Stacy Kiven
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Yunruo Ni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Xiaodan Niu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Qiyang Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kang Kim
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Kalpna Gupta
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
15
|
Utashiro N, MacLaren DAA, Liu YC, Yaqubi K, Wojak B, Monyer H. Long-range inhibition from prelimbic to cingulate areas of the medial prefrontal cortex enhances network activity and response execution. Nat Commun 2024; 15:5772. [PMID: 38982042 PMCID: PMC11233578 DOI: 10.1038/s41467-024-50055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf and Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Wojak
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Viellard J, Bouali-Benazzouz R, Benazzouz A, Fossat P. Modulating Neural Circuits of Pain in Preclinical Models: Recent Insights for Future Therapeutics. Cells 2024; 13:997. [PMID: 38920628 PMCID: PMC11202162 DOI: 10.3390/cells13120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic pain is a pathological state defined as daily pain sensation over three consecutive months. It affects up to 30% of the general population. Although significant research efforts have been made in the past 30 years, only a few and relatively low effective molecules have emerged to treat chronic pain, with a considerable translational failure rate. Most preclinical models have focused on sensory neurotransmission, with particular emphasis on the dorsal horn of the spinal cord as the first relay of nociceptive information. Beyond impaired nociceptive transmission, chronic pain is also accompanied by numerous comorbidities, such as anxiety-depressive disorders, anhedonia and motor and cognitive deficits gathered under the term "pain matrix". The emergence of cutting-edge techniques assessing specific neuronal circuits allow in-depth studies of the connections between "pain matrix" circuits and behavioural outputs. Pain behaviours are assessed not only by reflex-induced responses but also by various or more complex behaviours in order to obtain the most complete picture of an animal's pain state. This review summarises the latest findings on pain modulation by brain component of the pain matrix and proposes new opportunities to unravel the mechanisms of chronic pain.
Collapse
Affiliation(s)
- Juliette Viellard
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
17
|
Hirao A, Hojo Y, Murakami G, Ito R, Hashizume M, Murakoshi T, Uozumi N. Effects of systemic inflammation on the network oscillation in the anterior cingulate cortex and cognitive behavior. PLoS One 2024; 19:e0302470. [PMID: 38701101 PMCID: PMC11068183 DOI: 10.1371/journal.pone.0302470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 μg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 μM of KA, theta band (3-8 Hz); 3.0 μM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.
Collapse
Affiliation(s)
- Ayumi Hirao
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Gen Murakami
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Miki Hashizume
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Naonori Uozumi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| |
Collapse
|
18
|
Li Z, Zhang L, Zhang F, Yue L, Hu L. Deciphering Authentic Nociceptive Thalamic Responses in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0348. [PMID: 38617991 PMCID: PMC11014087 DOI: 10.34133/research.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
The thalamus and its cortical connections play a pivotal role in pain information processing, yet the exploration of its electrophysiological responses to nociceptive stimuli has been limited. Here, in 2 experiments we recorded neural responses to nociceptive laser stimuli in the thalamic (ventral posterior lateral nucleus and medial dorsal nucleus) and cortical regions (primary somatosensory cortex [S1] and anterior cingulate cortex) within the lateral and medial pain pathways. We found remarkable similarities in laser-evoked brain responses that encoded pain intensity within thalamic and cortical regions. Contrary to the expected temporal sequence of ascending information flow, the recorded thalamic response (N1) was temporally later than its cortical counterparts, suggesting that it may not be a genuine thalamus-generated response. Importantly, we also identified a distinctive component in the thalamus, i.e., the early negativity (EN) occurring around 100 ms after the onset of nociceptive stimuli. This EN component represents an authentic nociceptive thalamic response and closely synchronizes with the directional information flow from the thalamus to the cortex. These findings underscore the importance of isolating genuine thalamic neural responses, thereby contributing to a more comprehensive understanding of the thalamic function in pain processing. Additionally, these findings hold potential clinical implications, particularly in the advancement of closed-loop neuromodulation treatments for neurological diseases targeting this vital brain region.
Collapse
Affiliation(s)
- Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
19
|
García-Rosales F, Schaworonkow N, Hechavarria JC. Oscillatory Waveform Shape and Temporal Spike Correlations Differ across Bat Frontal and Auditory Cortex. J Neurosci 2024; 44:e1236232023. [PMID: 38262724 PMCID: PMC10919256 DOI: 10.1523/jneurosci.1236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in the cortex relates to local physiology and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e., in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shapes, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in the frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in the frontal and auditory cortex possesses distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
20
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
21
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Carroll A, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The secondary somatosensory cortex gates mechanical and heat sensitivity. Nat Commun 2024; 15:1289. [PMID: 38346995 PMCID: PMC10861531 DOI: 10.1038/s41467-024-45729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aloe Carroll
- College of Sciences, Northeastern University, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Liu M, Gu H, Hu J, Liu M, Luo Y, Yuan Y, Wu J, Zhou Y, Juan R, Cheng X, Zhuang S, Shen Y, Jin H, Chen J, Li K, Wang F, Liu C, Mao C. Higher cortical excitability to negative emotions involved in musculoskeletal pain in Parkinson's disease. Neurophysiol Clin 2024; 54:102936. [PMID: 38382137 DOI: 10.1016/j.neucli.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Changes in brain structure and neurotransmitter systems are involved in pain in Parkinson's disease (PD), and emotional factors are closely related to pain. Our study applied electroencephalography (EEG) to investigate the role of emotion in PD patients with chronic musculoskeletal pain. METHODS Forty-two PD patients with chronic musculoskeletal pain and 38 without were enrolled. EEG data were recorded under resting conditions, and while viewing pictures with neutral, positive, and negative content. We compared spectrum power, functional connectivity, and late positive potential (LPP), an event-related potential (ERP), between the groups. RESULTS PD patients with pain tended to have higher scores for the Hamilton Rating Scale for Depression (HRSD). In the resting EEG, mean β-band amplitude was significantly higher in patients with pain than in those without. Logistic regression analysis showed that higher HRSD scores and higher mean β-band amplitude were associated with pain. ERP analysis revealed that the amplitudes of LPP difference waves (the absolute difference between positive and negative condition LPP and neutral condition LPP) at the central-parietal region were significantly reduced in patients with pain (P = 0.029). Spearman correlation analysis showed that the amplitudes of late (700-1000 ms) negative versus neutral condition LPP difference waves were negatively correlated with pain intensity, assessed by visual analogue scale, (r = -0.393, P = 0.010) and HRSD scores (r = -0.366, P = 0.017). CONCLUSION Dopaminergic and non-dopaminergic systems may be involved in musculoskeletal pain in PD by increasing β-band activity and weakening the connection of the θ-band at the central-parietal region. PD patients with musculoskeletal pain have higher cortical excitability to negative emotions. The changes in pain-related EEG may be used as electrophysiological markers and therapeutic targets in PD patients with chronic pain.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; The First People's Hospital of Zhangjiagang City, Suzhou, China
| | - Hanying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingzhe Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Manhua Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yajun Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Yuan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ru Juan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Zhuang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Withey SL, Pizzagalli DA, Bergman J. Translational In Vivo Assays in Behavioral Biology. Annu Rev Pharmacol Toxicol 2024; 64:435-453. [PMID: 37708432 DOI: 10.1146/annurev-pharmtox-051921-093711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The failure of preclinical research to advance successful candidate medications in psychiatry has created a paradigmatic crisis in psychiatry. The Research Domain Criteria (RDoC) initiative was designed to remedy this situation with a neuroscience-based approach that employs multimodal and cross-species in vivo methodology to increase the probability of translational findings and, consequently, drug discovery. The present review underscores the feasibility of this methodological approach by briefly reviewing, first, the use of multidimensional and cross-species methodologies in traditional behavioral pharmacology and, subsequently, the utility of this approach in contemporary neuroimaging and electrophysiology research-with a focus on the value of functionally homologous studies in nonhuman and human subjects. The final section provides a brief review of the RDoC, with a focus on the potential strengths and weaknesses of its domain-based underpinnings. Optimistically, this mechanistic and multidimensional approach in neuropsychiatric research will lead to novel therapeutics for the management of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts, USA;
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Jack Bergman
- Preclinical Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts, USA;
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
25
|
Sandoval Ortega RA, Renard M, Cohen MX, Nevian T. Interactive effects of pain and arousal state on heart rate and cortical activity in the mouse anterior cingulate and somatosensory cortices. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100157. [PMID: 38764613 PMCID: PMC11099324 DOI: 10.1016/j.ynpai.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Sensory disconnection is a hallmark of sleep, yet the cortex retains some ability to process sensory information. Acute noxious stimulation during sleep increases the heart rate and the likelihood of awakening, indicating that certain mechanisms for pain sensing and processing remain active. However, processing of somatosensory information, including pain, during sleep remains underexplored. To assess somatosensation in natural sleep, we simultaneously recorded heart rate and local field potentials in the anterior cingulate (ACC) and somatosensory (S1) cortices of naïve, adult male mice, while applying noxious and non-noxious stimuli to their hind paws throughout their sleep-wake cycle. Noxious stimuli evoked stronger heart rate increases in both wake and non-rapid eye movement sleep (NREMS), and resulted in larger awakening probability in NREMS, as compared to non-noxious stimulation, suggesting differential processing of noxious and non-noxious information during sleep. Somatosensory information differentially reached S1 and ACC in sleep, eliciting complex transient and sustained responses in the delta, alpha, and gamma frequency bands as well as somatosensory evoked potentials. These dynamics depended on sleep state, the behavioral response to the stimulation and stimulation intensity (non-noxious vs. noxious). Furthermore, we found a correlation of the heart rate with the gamma band in S1 in the absence of a reaction in wake and sleep for noxious stimulation. These findings confirm that somatosensory information, including nociception, is sensed and processed during sleep even in the absence of a behavioral response.
Collapse
Affiliation(s)
| | - Margot Renard
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Michael X. Cohen
- Synchronization in Neural Systems Lab, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
26
|
Rivera-Villaseñor A, Higinio-Rodríguez F, López-Hidalgo M. Astrocytes in Pain Perception: A Systems Neuroscience Approach. ADVANCES IN NEUROBIOLOGY 2024; 39:193-212. [PMID: 39190076 DOI: 10.1007/978-3-031-64839-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes play an active role in the function of the brain integrating neuronal activity and regulating back neuronal dynamic. They have recently emerged as active contributors of brain's emergent properties such as perceptions. Here, we analyzed the role of astrocytes in pain perception from the lens of systems neuroscience, and we do this by analyzing how astrocytes encode nociceptive information within brain processing areas and how they are key regulators of the internal state that determines pain perception. Specifically, we discuss the dynamic interactions between astrocytes and neuromodulators, such as noradrenaline, highlighting their role in shaping the level of activation of the neuronal ensemble, thereby influencing the experience of pain. Also, we will discuss the possible implications of an "Astro-NeuroMatrix" in the integration of pain across sensory, affective, and cognitive dimensions of pain perception.
Collapse
Affiliation(s)
- Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
| | - Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico.
| |
Collapse
|
27
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
28
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Kim JY, Shin J, Kim L, Kim SH. Electroencephalography characteristics related to risk of sudden unexpected death in epilepsy in patients with Dravet syndrome. Front Neurol 2023; 14:1222721. [PMID: 37745659 PMCID: PMC10512954 DOI: 10.3389/fneur.2023.1222721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Objective To investigate the quantitative electroencephalography (EEG) features associated with a high risk of sudden unexpected death in epilepsy (SUDEP) in patients with Dravet syndrome (DS). Methods Patients with DS and healthy controls (HCs) who underwent EEG were included in the study. EEG signals were recorded using a 21 channel digital EEG system, and pre-processed data were analyzed to identify quantitative EEG features associated with a high SUDEP risk. To assess the risk of SUDEP, SUDEP-7 scores were used. Results A total of 64 patients with DS [38 males and 26 females, aged: 128.51 ± 75.50 months (range: 23-380 months)], and 13 HCs [7 males and 6 females, aged: 95.46 ± 86.48 months (range: 13-263 months)] were included. For the absolute band power, the theta power was significantly higher in the high-SUDEP group than in the low-SUDEP group in the central brain region. For the relative band power, the theta power was also significantly higher in the high-SUDEP group than in the low-SUDEP group in the central and occipital brain regions. The alpha power was significantly lower in the high-SUDEP group than in the low-SUDEP group in the central and parietal brain regions. Conclusion Patients with high SUDEP-7 scores have different EEG features from those with low SUDEP-7 scores, suggesting that EEG may be used as a biomarker of SUDEP in DS. Significance Early intervention in patients with DS at a high risk of SUDEP can reduce mortality and morbidity. Patients with high theta band powers warrant high-level supervision.
Collapse
Affiliation(s)
- Jeong-Youn Kim
- Electronics and Telecommunication Research Institute (ETRI), Daejeon, Republic of Korea
| | - Jeongyoon Shin
- School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
- Yonsei Biomedical Research Institute, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Laehyun Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, Republic of Korea
| | - Se Hee Kim
- Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
31
|
Gousset S, Torta DM, Mouraux A, Lambert J, van den Broeke EN. Pinprick-induced gamma-band oscillations are not a useful electrophysiological marker of pinprick hypersensitivity in humans. Clin Neurophysiol 2023; 153:102-110. [PMID: 37473484 DOI: 10.1016/j.clinph.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate scalp gamma-band oscillations (GBOs) induced by mechanical stimuli activating skin nociceptors before and after the induction of mechanical hypersensitivity using high-frequency electrical stimulation (HFS) of the skin. METHODS In twenty healthy volunteers, we recorded the electroencephalogram during robot-controlled mechanical pinprick stimulation (512 mN) applied at the right ventral forearm before and after HFS. RESULTS HFS induced a significant increase in mechanical pinprick sensitivity, but this increased pinprick sensitivity was, at the group level, not accompanied by a significant increase in GBOs. Visual inspection of the individual data revealed that possible GBOs were present in eight out of twenty participants (40%) and the frequency of these GBOs varied substantially across participants. CONCLUSIONS Based on the low number of participants showing GBOs we question the (clinical) utility of mechanically-induced GBOs as an electrophysiological marker of pinprick hypersensitivity in humans. SIGNIFICANCE Mechanical pinprick-induced scalp GBOs are not useful for evaluating mechanical pinprick hypersensitivity in humans.
Collapse
Affiliation(s)
- S Gousset
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - D M Torta
- Health Psychology Group, University of Leuven (KUL), Leuven, Belgium
| | - A Mouraux
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - J Lambert
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - E N van den Broeke
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium; Health Psychology Group, University of Leuven (KUL), Leuven, Belgium.
| |
Collapse
|
32
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2976953. [PMID: 37461707 PMCID: PMC10350168 DOI: 10.21203/rs.3.rs-2976953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
Affiliation(s)
- Daniel G. Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Gu HW, Zhang GF, Liu PM, Pan WT, Tao YX, Zhou ZQ, Yang JJ. Contribution of activating lateral hypothalamus-lateral habenula circuit to nerve trauma-induced neuropathic pain in mice. Neurobiol Dis 2023; 182:106155. [PMID: 37182721 DOI: 10.1016/j.nbd.2023.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023] Open
Abstract
Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity. LH glutamatergic neurons are activated and display enhanced responses to normally non-noxious stimuli following chronic constriction injury. Chemogenetic inhibition of LH glutamatergic neurons or excitatory LH-LHb circuit blocked CCI-induced nociceptive hypersensitivity. Activation of the LH-LHb circuit led to augmented responses to mechanical and thermal stimuli in mice without nerve injury. These findings suggest that LH neurons and their triggered LH-LHb circuit participate in central mechanisms underlying neuropathic pain and may be targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.
| |
Collapse
|
34
|
Guo Z, Ni H, Cui Z, Zhu Z, Kang J, Wang D, Ke Z. Pain sensitivity related to gamma oscillation of parvalbumin interneuron in primary somatosensory cortex in Dync1i1 -/- mice. Neurobiol Dis 2023:106170. [PMID: 37257662 DOI: 10.1016/j.nbd.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Cytoplasmic dynein is an important intracellular motor protein that plays an important role in neuronal growth, axonal polarity formation, dendritic differentiation, and dendritic spine development among others. The intermediate chain of dynein, encoded by Dync1i1, plays a vital role in the dynein complex. Therefore, we assessed the behavioral and related neuronal activities in mice with dync1i1 gene knockout. Neuronal activities in primary somatosensory cortex were recorded by in vivo electrophysiology and manipulated by optogenetic and chemogenetics. Nociception of mechanical, thermal, and cold pain in Dync1i1-/- mice were impaired. The activities of parvalbumin (PV) interneurons and gamma oscillation in primary somatosensory were also impaired when exposed to mechanical nociceptive stimulation. This neuronal dysfunction was rescued by optogenetic activation of PV neurons in Dync1i1-/- mice, and mimicked by suppressing PV neurons using chemogenetics in WT mice. Impaired pain sensations in Dync1i1-/- mice were correlated with impaired gamma oscillations due to a loss of interneurons, especially the PV type. This genotype-driven approach revealed an association between impaired pain sensation and cytoplasmic dynein complex.
Collapse
Affiliation(s)
- Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 201203, China
| | - Zilu Zhu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiansheng Kang
- Clinical Systems Biology Laboratories East District of The first affiliated hospital of ZhengZhou University, Zhengzhou 450018, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
36
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
37
|
Black CJ, Saab CY, Borton DA. Transient gamma events delineate somatosensory modality in S1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534945. [PMID: 37034800 PMCID: PMC10081264 DOI: 10.1101/2023.03.30.534945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gamma band activity localized to the primary somatosensory cortex (S1) in humans and animals is implicated in the higher order neural processing of painful and tactile stimuli. However, it is unclear if gamma band activity differs between these distinct somatosensory modalities. Here, we coupled a novel behavioral approach with chronic extracellular electrophysiology to investigate differences in S1 gamma band activity elicited by noxious and innocuous hind paw stimulation in transgenic mice. Like prior studies, we found that trial-averaged gamma power in S1 increased following both noxious and innocuous stimuli. However, on individual trials, we noticed that evoked gamma band activity was not a continuous oscillatory signal but a series of transient spectral events. Upon further analysis we found that there was a significantly higher incidence of these gamma band events following noxious stimulation than innocuous stimulation. These findings suggest that somatosensory stimuli may be represented by specific features of gamma band activity at the single trial level, which may provide insight to mechanisms underlying acute pain.
Collapse
|
38
|
Tanner J, Keefer E, Cheng J, Helms Tillery S. Dynamic peripheral nerve stimulation can produce cortical activation similar to punctate mechanical stimuli. Front Hum Neurosci 2023; 17:1083307. [PMID: 37033904 PMCID: PMC10079952 DOI: 10.3389/fnhum.2023.1083307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
During contact, phasic and tonic responses provide feedback that is used for task performance and perceptual processes. These disparate temporal dynamics are carried in peripheral nerves, and produce overlapping signals in cortex. Using longitudinal intrafascicular electrodes inserted into the median nerve of a nonhuman primate, we delivered composite stimulation consisting of onset and release bursts to capture rapidly adapting responses and sustained stochastic stimulation to capture the ongoing response of slowly adapting receptors. To measure the stimulation's effectiveness in producing natural responses, we monitored the local field potential in somatosensory cortex. We compared the cortical responses to peripheral nerve stimulation and vibrotactile/punctate stimulation of the fingertip, with particular focus on gamma band (30-65 Hz) responses. We found that vibrotactile stimulation produces consistently phase locked gamma throughout the duration of the stimulation. By contrast, punctate stimulation responses were phase locked at the onset and release of stimulation, but activity maintained through the stimulation was not phase locked. Using these responses as guideposts for assessing the response to the peripheral nerve stimulation, we found that constant frequency stimulation produced continual phase locking, whereas composite stimulation produced gamma enhancement throughout the stimulus, phase locked only at the onset and release of the stimulus. We describe this response as an "Appropriate Response in the gamma band" (ARγ), a trend seen in other sensory systems. Our demonstration is the first shown for intracortical somatosensory local field potentials. We argue that this stimulation paradigm produces a more biomimetic response in somatosensory cortex and is more likely to produce naturalistic sensations for readily usable neuroprosthetic feedback.
Collapse
Affiliation(s)
- Justin Tanner
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | | | - Jonathan Cheng
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen Helms Tillery
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
39
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
40
|
Liang YW, Lai ML, Chiu FM, Tseng HY, Lo YC, Li SJ, Chang CW, Chen PC, Chen YY. Experimental Verification for Numerical Simulation of Thalamic Stimulation-Evoked Calcium-Sensitive Fluorescence and Electrophysiology with Self-Assembled Multifunctional Optrode. BIOSENSORS 2023; 13:265. [PMID: 36832031 PMCID: PMC9953878 DOI: 10.3390/bios13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons.
Collapse
Affiliation(s)
- Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Feng-Mao Chiu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
41
|
Sun G, McCartin M, Liu W, Zhang Q, Kenefati G, Chen ZS, Wang J. Temporal pain processing in the primary somatosensory cortex and anterior cingulate cortex. Mol Brain 2023; 16:3. [PMID: 36604739 PMCID: PMC9817351 DOI: 10.1186/s13041-022-00991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Pain is known to have sensory and affective components. The sensory pain component is encoded by neurons in the primary somatosensory cortex (S1), whereas the emotional or affective pain experience is in large part processed by neural activities in the anterior cingulate cortex (ACC). The timing of how a mechanical or thermal noxious stimulus triggers activation of peripheral pain fibers is well-known. However, the temporal processing of nociceptive inputs in the cortex remains little studied. Here, we took two approaches to examine how nociceptive inputs are processed by the S1 and ACC. We simultaneously recorded local field potentials in both regions, during the application of a brain-computer interface (BCI). First, we compared event related potentials in the S1 and ACC. Next, we used an algorithmic pain decoder enabled by machine-learning to detect the onset of pain which was used during the implementation of the BCI to automatically treat pain. We found that whereas mechanical pain triggered neural activity changes first in the S1, the S1 and ACC processed thermal pain with a reasonably similar time course. These results indicate that the temporal processing of nociceptive information in different regions of the cortex is likely important for the overall pain experience.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Weizhuo Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
42
|
Frequency modulation of cortical rhythmicity governs behavioral variability, excitability and synchrony of neurons in the visual cortex. Sci Rep 2022; 12:20914. [PMID: 36463385 PMCID: PMC9719482 DOI: 10.1038/s41598-022-25264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research in cognitive neuroscience has renewed the idea that brain oscillations are a core organization implicated in fundamental brain functions. Growing evidence reveals that the characteristic features of these oscillations, including power, phase and frequency, are highly non-stationary, fluctuating alongside alternations in sensation, cognition and behavior. However, there is little consensus on the functional implications of the instantaneous frequency variation in cortical excitability and concomitant behavior. Here, we capitalized on intracortical electrophysiology in the macaque monkey's visual area MT performing a visuospatial discrimination task with visual cues. We observed that the instantaneous frequency of the theta-alpha oscillations (4-13 Hz) is modulated among specific neurons whose RFs overlap with the cued stimulus location. Interestingly, we found that such frequency modulation is causally correlated with MT excitability at both scales of individual and ensemble of neurons. Moreover, studying the functional relevance of frequency variations indicated that the average theta-alpha frequencies foreshadow the monkey's reaction time. Our results also revealed that the neural synchronization strength alters with the average frequency shift in theta-alpha oscillations, suggesting frequency modulation is critical for mutually adjusting MTs' rhythms. Overall, our findings propose that theta-alpha frequency variations modulate MT's excitability, regulate mutual neurons' rhythmicity and indicate variability in behavior.
Collapse
|
43
|
Lu J, Chen B, Levy M, Xu P, Han BX, Takatoh J, Thompson PM, He Z, Prevosto V, Wang F. Somatosensory cortical signature of facial nociception and vibrotactile touch-induced analgesia. SCIENCE ADVANCES 2022; 8:eabn6530. [PMID: 36383651 PMCID: PMC9668294 DOI: 10.1126/sciadv.abn6530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pain relief by vibrotactile touch is a common human experience. Previous neurophysiological investigations of its underlying mechanism in animals focused on spinal circuits, while human studies suggested the involvement of supraspinal pathways. Here, we examine the role of primary somatosensory cortex (S1) in touch-induced mechanical and heat analgesia. We found that, in mice, vibrotactile reafferent signals from self-generated whisking significantly reduce facial nociception, which is abolished by specifically blocking touch transmission from thalamus to the barrel cortex (S1B). Using a signal separation algorithm that can decompose calcium signals into sensory-evoked, whisking, or face-wiping responses, we found that the presence of whisking altered nociceptive signal processing in S1B neurons. Analysis of S1B population dynamics revealed that whisking pushes the transition of the neural state induced by noxious stimuli toward the outcome of non-nocifensive actions. Thus, S1B integrates facial tactile and noxious signals to enable touch-mediated analgesia.
Collapse
Affiliation(s)
- Jinghao Lu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Bin Chen
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manuel Levy
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Xu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Jun Takatoh
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - P. M. Thompson
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhigang He
- Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vincent Prevosto
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Wang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
44
|
Chang P, Fabrizi L, Fitzgerald M. Early Life Pain Experience Changes Adult Functional Pain Connectivity in the Rat Somatosensory and the Medial Prefrontal Cortex. J Neurosci 2022; 42:8284-8296. [PMID: 36192150 PMCID: PMC9653276 DOI: 10.1523/jneurosci.0416-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early life pain (ELP) experience alters adult pain behavior and increases injury-induced pain hypersensitivity, but the effect of ELP on adult functional brain connectivity is not known. We have performed continuous local field potential (LFP) recording in the awake adult male rats to test the effect of ELP on functional cortical connectivity related to pain behavior. Primary somatosensory cortex (S1) and medial prefrontal cortex (mPFC) LFPs evoked by mechanical hindpaw stimulation were recorded simultaneously with pain reflex behavior for 10 d after adult incision injury. We show that, after adult injury, sensory evoked S1 LFP δ and γ energy and S1 LFP δ/γ frequency coupling are significantly increased in ELP rats compared with controls. Adult injury also induces increases in S1-mPFC functional connectivity, but this is significantly prolonged in ELP rats, lasting 4 d compared with 1 d in controls. Importantly, the increases in LFP energy and connectivity in ELP rats were directly correlated with increased behavioral pain hypersensitivity. Thus, ELP alters adult brain functional connectivity, both within and between cortical areas involved in sensory and affective dimensions of pain. The results reveal altered brain connectivity as a mechanism underlying the effects of ELP on adult pain perception.SIGNIFICANCE STATEMENT Pain and stress in early life has a lasting impact on pain behavior and may increase vulnerability to chronic pain in adults. Here, we record pain-related cortical activity and simultaneous pain behavior in awake adult male rats previously exposed to pain in early life. We show that functional connectivity within and between the somatosensory cortex and the medial prefrontal cortex (mPFC) is increased in these rats and that these increases are correlated with their behavioral pain hypersensitivity. The results reveal that early life pain (ELP) alters adult brain connectivity, which may explain the impact of childhood pain on adult chronic pain vulnerability.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
45
|
Cui Z, Guo Z, Wei L, Zou X, Zhu Z, Liu Y, Wang J, Chen L, Wang D, Ke Z. Altered pain sensitivity in 5×familial Alzheimer disease mice is associated with dendritic spine loss in anterior cingulate cortex pyramidal neurons. Pain 2022; 163:2138-2153. [PMID: 35384934 PMCID: PMC9578529 DOI: 10.1097/j.pain.0000000000002648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is highly prevalent. Individuals with cognitive disorders such as Alzheimer disease are a susceptible population in which pain is frequently difficult to diagnosis. It is still unclear whether the pathological changes in patients with Alzheimer disease will affect pain processing. Here, we leverage animal behavior, neural activity recording, optogenetics, chemogenetics, and Alzheimer disease modeling to examine the contribution of the anterior cingulate cortex (ACC) neurons to pain response. The 5× familial Alzheimer disease mice show alleviated mechanical allodynia which can be regained by the genetic activation of ACC excitatory neurons. Furthermore, the lower peak neuronal excitation, delayed response initiation, as well as the dendritic spine reduction of ACC pyramidal neurons in 5×familial Alzheimer disease mice can be mimicked by Rac1 or actin polymerization inhibitor in wild-type (WT) mice. These findings indicate that abnormal of pain sensitivity in Alzheimer disease modeling mice is closely related to the variation of neuronal activity and dendritic spine loss in ACC pyramidal neurons, suggesting the crucial role of dendritic spine density in pain processing.
Collapse
Affiliation(s)
- Zhengyu Cui
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilu Zhu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Liu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deheng Wang
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
46
|
Papadogiannis A, Dimitrov E. A Possible Mechanism for Development of Working Memory Impairment in Male Mice Subjected to Inflammatory Pain. Neuroscience 2022; 503:17-27. [PMID: 36100034 PMCID: PMC9588797 DOI: 10.1016/j.neuroscience.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
We studied the effects of inflammatory pain on working memory and correlated the pain effects with changes in dendritic spine density and glutamate signaling in the medial prefrontal cortex (mPFC) of male and female mice. Injection of Complete Freund's Adjuvant (CFA) into the hind paw modeled inflammatory pain. The CFA equally decreased the mechanical thresholds in both sexes. The density of dendritic spines, as a marker for neuronal input, increased on the dendrites of both, pyramidal cells and interneurons in males but only on the dendrites of interneurons in CFA injected females. Next, we injected virus with glutamate sensor (pAAV5.hSyn.iGluSnFr) into the mPFC and used fiber photometry to record glutamate signaling during Y-maze spontaneous alternations test, which is a test for working memory in rodents. The detected fluorescent signal was higher during correct alternations when compared to incorrect alternations in both sexes. The CFA injection did not change the pattern of glutamate fluorescence during the test but the female mice made fewer incorrect alternations than their male counterparts. Furthermore, while the CFA injection decreased the expression of the glutamate transporter VGlut1 on the soma of mPFC neurons in both sexes, the decrease was sex dependent. We concluded that inflammatory pain, which increases sensory input into the mPFC neurons, may impair working memory by altering the glutamate signaling. The glutamate deficit that develops as a result of the pain is more pronounced in male mice in comparison to female mice.
Collapse
Affiliation(s)
- Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| |
Collapse
|
47
|
Chang TT, Chang YH, Du SH, Chen PJ, Wang XQ. Non-invasive brain neuromodulation techniques for chronic low back pain. Front Mol Neurosci 2022; 15:1032617. [PMID: 36340685 PMCID: PMC9627199 DOI: 10.3389/fnmol.2022.1032617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Structural and functional changes of the brain occur in many chronic pain conditions, including chronic low back pain (CLBP), and these brain abnormalities can be reversed by effective treatment. Research on the clinical applications of non-invasive brain neuromodulation (NIBS) techniques for chronic pain is increasing. Unfortunately, little is known about the effectiveness of NIBS on CLBP, which limits its application in clinical pain management. Therefore, we summarized the effectiveness and limitations of NIBS techniques on CLBP management and described the effects and mechanisms of NIBS approaches on CLBP in this review. Overall, NIBS may be effective for the treatment of CLBP. And the analgesic mechanisms of NIBS for CLBP may involve the regulation of pain signal pathway, synaptic plasticity, neuroprotective effect, neuroinflammation modulation, and variations in cerebral blood flow and metabolism. Current NIBS studies for CLBP have limitations, such as small sample size, relative low quality of evidence, and lack of mechanistic studies. Further studies on the effect of NIBS are needed, especially randomized controlled trials with high quality and large sample size.
Collapse
Affiliation(s)
- Tian-Tian Chang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Hao Chang
- Department of Luoyang Postgraduate Training, Henan University of Traditional Chinese Medicine, Luoyang, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Pei-Jie Chen,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
48
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
49
|
Higinio-Rodríguez F, Rivera-Villaseñor A, Calero-Vargas I, López-Hidalgo M. From nociception to pain perception, possible implications of astrocytes. Front Cell Neurosci 2022; 16:972827. [PMID: 36159392 PMCID: PMC9492445 DOI: 10.3389/fncel.2022.972827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Astrocytes are determinants for the functioning of the CNS. They respond to neuronal activity with calcium increases and can in turn modulate synaptic transmission, brain plasticity as well as cognitive processes. Astrocytes display sensory-evoked calcium responses in different brain structures related to the discriminative system of most sensory modalities. In particular, noxious stimulation evoked calcium responses in astrocytes in the spinal cord, the hippocampus, and the somatosensory cortex. However, it is not clear if astrocytes are involved in pain. Pain is a private, personal, and complex experience that warns us about potential tissue damage. It is a perception that is not linearly associated with the amount of tissue damage or nociception; instead, it is constructed with sensory, cognitive, and affective components and depends on our previous experiences. However, it is not fully understood how pain is created from nociception. In this perspective article, we provide an overview of the mechanisms and neuronal networks that underlie the perception of pain. Then we proposed that coherent activity of astrocytes in the spinal cord and pain-related brain areas could be important in binding sensory, affective, and cognitive information on a slower time scale.
Collapse
Affiliation(s)
- Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Mónica López-Hidalgo,
| |
Collapse
|
50
|
Cholinergic basal forebrain nucleus of Meynert regulates chronic pain-like behavior via modulation of the prelimbic cortex. Nat Commun 2022; 13:5014. [PMID: 36008394 PMCID: PMC9411538 DOI: 10.1038/s41467-022-32558-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
The basal nucleus of Meynert (NBM) subserves critically important functions in attention, arousal and cognition via its profound modulation of neocortical activity and is emerging as a key target in Alzheimer's and Parkinson's dementias. Despite the crucial role of neocortical domains in pain perception, however, the NBM has not been studied in models of chronic pain. Here, using in vivo tetrode recordings in behaving mice, we report that beta and gamma oscillatory activity is evoked in the NBM by noxious stimuli and is facilitated at peak inflammatory pain-like behavior. Optogenetic and chemogenetic cell-specific, reversible manipulations of NBM cholinergic-GABAergic neurons reveal their role in endogenous control of nociceptive hypersensitivity, which are manifest via projections to the prelimbic cortex, resulting in layer 5-mediated antinociception. Our data unravel the importance of the NBM in top-down control of neocortical processing of pain-like behavior.
Collapse
|