1
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
2
|
Baghdasaryan O, Contreras-Llano LE, Khan S, Wang A, Hu CMJ, Tan C. Fabrication of cyborg bacterial cells as living cell-material hybrids using intracellular hydrogelation. Nat Protoc 2024; 19:3613-3639. [PMID: 39174659 PMCID: PMC11776454 DOI: 10.1038/s41596-024-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/11/2024] [Indexed: 08/24/2024]
Abstract
The production of living therapeutics, cell-based delivery of drugs and gene-editing tools and the manufacturing of bio-commodities all share a common concept: they use either a synthetic or a living cell chassis to achieve their primary engineering or therapeutic goal. Live-cell chassis face limitations inherent to their auto-replicative nature and the complexity of the cellular context. This limitation highlights the need for a new chassis combining the engineering simplicity of synthetic materials and the functionalities of natural cells. Here, we describe a protocol to assemble a synthetic polymeric network inside bacterial cells, rendering them incapable of cell division and allowing them to resist environmental stressors such as high pH, hydrogen peroxide and cell-wall-targeting antibiotics that would otherwise kill unmodified bacteria. This cellular bioengineering protocol details how bacteria can be transformed into single-lifespan devices that are resistant to environmental stressors and possess programable functionality. We designate the modified bacteria as cyborg bacterial cells. This protocol expands the synthetic biology toolset, conferring precise control over living cells and creating a versatile cell chassis for biotechnology, biomedical engineering and living therapeutics. The protocol, including the preparation of gelation reagents and chassis strain, can be completed in 4 d. The implementation of the protocol requires expertise in microbiology techniques, hydrogel chemistry, fluorescence microscopy and flow cytometry. Further functionalization of the cyborg bacterial cells and adaptation of the protocol requires skills ranging from synthetic genetic circuit engineering to hydrogel polymerization chemistries.
Collapse
Affiliation(s)
| | - Luis E Contreras-Llano
- Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Shahid Khan
- Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan.
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, Davis, CA, USA.
| |
Collapse
|
3
|
He L, Meng F, Chen R, Qin J, Sun M, Fan Z, Du J. Precise Regulations at the Subcellular Level through Intracellular Polymerization, Assembly, and Transformation. JACS AU 2024; 4:4162-4186. [PMID: 39610726 PMCID: PMC11600172 DOI: 10.1021/jacsau.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
A living cell is an intricate machine that creates subregions to operate cell functions effectively. Subcellular dysfunction has been identified as a potential druggable target for successful drug design and therapy. The treatments based on intracellular polymerization, self-assembly, or transformation offer various advantages, including enhanced blood circulation of monomers, long-term drug delivery pharmacokinetics, low drug resistance, and the ability to target deep tissues and organelles. In this review, we discuss the latest developments of intracellular synthesis applied to precisely control cellular functions. First, we discuss the design and applications of endogenous and exogenous stimuli-triggered intracellular polymerization, self-assembly, and dynamic morphology transformation of biomolecules at the subcellular level. Second, we highlight the benefits of these strategies applied in cancer diagnosis and treatment and modulating cellular states or cell metabolism of living systems. Finally, we conclude the recent progress in this field, discuss future perspectives, analyze the challenges of the intracellular functional reactions for regulation, and find future opportunities.
Collapse
Affiliation(s)
- Le He
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Fanying Meng
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Min Sun
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
4
|
Khan S, Lin PR, Tan C. Engineering Cyborg Pathogens through Intracellular Hydrogelation. ACS Synth Biol 2024; 13:3609-3620. [PMID: 39413025 PMCID: PMC11748816 DOI: 10.1021/acssynbio.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Synthetic biology primarily focuses on two kinds of cell chassis: living cells and nonliving systems. Living cells are autoreplicating systems that have active metabolism. Nonliving systems, including artificial cells and nanoparticles, are nonreplicating systems typically lacking active metabolism. In recent work, Cyborg bacteria that are nonreplicating-but-metabolically active have been engineered through intracellular hydrogelation. Intracellular hydrogelation is conducted by infusing gel monomers and photoactivators into cells, followed by the activation of polymerization of the gel monomers inside the cells. However, the previous work investigated only Escherichia coli cells. Extending the Cyborg-Cell method to pathogenic bacteria could enable the exploitation of their pathogenic properties in biomedical applications. Here, we focus on different strains of Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. To synthesize the Cyborg pathogens, we first reveal the impact of different hydrogel concentrations on the metabolism, replication, and intracellular gelation of Cyborg pathogens. Next, we demonstrate that the Cyborg pathogens are taken up by macrophages in a similar magnitude as wild-type pathogens through confocal microscopy and real-time PCR. Finally, we show that the macrophage that takes up the Cyborg pathogen exhibits a similar phenotypic response to the wild-type pathogen. Our work generalizes the intracellular hydrogelation approach from lab strains of E. coli to bacterial pathogens. The new Cyborg pathogens could be applied in biomedical applications ranging from drug delivery to immunotherapy.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Pin-Ru Lin
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Gui Y, Sun Q, Li K, Lin L, Zhou H, Ma J, Li C. Bioinspired gelated cell sheet-supported lactobacillus biofilm for aerobic vaginitis diagnosis and treatment. SCIENCE ADVANCES 2024; 10:eadq2732. [PMID: 39485840 PMCID: PMC11529721 DOI: 10.1126/sciadv.adq2732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Aerobic vaginitis (AV) is a long-standing inflammatory disease that affects female patients. The use of antibiotics is a common means for AV treatment, but it will indiscriminately kill both pathogenic bacteria and beneficial strains, which easily causes vaginal dysbacteriosis and infection recurrence. Herein, we describe a bioinspired strategy for fabricating gelated cell sheet-supported lactobacillus biofilms (GCS-LBs) for AV treatment. Compared with common planktonic probiotic formulations, probiotic biofilms forming on a robust GCS exhibit enhanced stress tolerance and better colonization capacity in the mouse vagina. Moreover, DNA nanodevices are decorated on the GCS and dynamically report the microenvironment change of biofilms for timely evaluating bacterium activity, both in vitro and in vivo. Consequently, GCS-LBs are used for treating AV in an Escherichia coli-infected mouse model, which shows enhanced therapeutic efficacy compared with conventional antibiotic or lactobacillus monotherapy. Overall, the GCS-LB shows promise as a potent multifunctional tool to combat bacterial infection.
Collapse
Affiliation(s)
- Yueyue Gui
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P. R. China
| | - Qingfei Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kexin Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Longjia Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Han Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jiehua Ma
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
6
|
Baghdasaryan O, Lee-Kin J, Tan C. Architectural engineering of Cyborg Bacteria with intracellular hydrogel. Mater Today Bio 2024; 28:101226. [PMID: 39328785 PMCID: PMC11426140 DOI: 10.1016/j.mtbio.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
Synthetic biology primarily uses genetic engineering to control living cells. In contrast, recent work has ushered in the architectural engineering of living cells through intracellular materials. Specifically, Cyborg Bacteria are created by incorporating synthetic PEG-based hydrogel inside cells. Cyborg Bacteria do not replicate but maintain essential cellular functions, including metabolism and protein synthesis. Thus far, Cyborg Bacteria have been engineered using one primary composition of intracellular hydrogel components. Here, we demonstrate the versatility of controlling the physical and biochemical aspects of Cyborg Bacteria using different structures of hydrogels. The intracellular cell-gel architecture is modulated using a different photoinitiator, PEG-diacrylate (PEG-DA) of different molecular weights, 4arm PEG-DA, and dsDNA-PEG. We show that the molecular weight of the PEG-DA affects the generation and metabolism of Cyborg Bacteria. In addition, we show that the hybrid dsDNA-PEG intracellular hydrogel controls protein expression levels of the Cyborg Bacteria through post-transcriptional regulation and polymerase sequestration. Our work creates a new frontier of modulating intracellular gel components to control Cyborg Bacteria function and architecture.
Collapse
Affiliation(s)
| | - Jared Lee-Kin
- Biomedical Engineering, University of California Davis, United States
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, United States
| |
Collapse
|
7
|
Yan JH, Jin SX, Chen QW, Zhang Y, Li QR, Chen Z, Sun Y, Zhong Z, Zhang XZ. Intracellular Gelation-Mediated Living Bacteria for Advanced Biotherapeutics in Mouse Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16605-16614. [PMID: 39039962 DOI: 10.1021/acs.langmuir.4c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite its significant potential in various disease treatments and diagnostics, microbiotherapy is consistently plagued by multiple limitations ranging from manufacturing challenges to in vivo functionality. Inspired by the strategy involving nonproliferating yet metabolically active microorganisms, we report an intracellular gelation approach that can generate a synthetic polymer network within bacterial cells to solve these challenges. Specifically, poly(ethylene glycol dimethacrylate) (PEGDA, 700 Da) monomers are introduced into the bacterial cytosol through a single cycle of freeze-thawing followed by the initiation of intracellular free radical polymerization by UV light to create a macromolecular PEGDA gel within the bacterial cytosol. The molecular crowding resulting from intracytoplasmic gelation prohibits bacterial division and confers robust resistance to simulated gastrointestinal fluids and bile acids while retaining the ability to secrete functional proteins. Biocompatibility assessments demonstrate that the nondividing gelatinized bacteria are effective in alleviating systemic inflammation triggered by intravenous Escherichia coli injection. Furthermore, the therapeutic efficacy of gelatinized Lactobacillus rhamnosus in colitis mice provides additional support for this approach. Collectively, intracellular gelation indicates a universal strategy to manufacture next-generation live biotherapeutics for advanced microbiotherapy.
Collapse
Affiliation(s)
- Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Sheng-Xin Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Ru Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhu Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yunxia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhenlin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
8
|
Baghdasaryan O, Khan S, Lin JC, Lee-Kin J, Hsu CY, Hu CMJ, Tan C. Synthetic control of living cells by intracellular polymerization. Trends Biotechnol 2024; 42:241-252. [PMID: 37743158 PMCID: PMC11132853 DOI: 10.1016/j.tibtech.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
An emerging cellular engineering method creates synthetic polymer matrices inside cells. By contrast with classical genetic, enzymatic, or radioactive techniques, this materials-based approach introduces non-natural polymers inside cells, thus modifying cellular states and functionalities. Here, we cover various materials and chemistries that have been exploited to create intracellular polymer matrices. In addition, we discuss emergent cellular properties due to the intracellular polymerization, including nonreplicating but active metabolism, maintenance of membrane integrity, and resistance to environmental stressors. We also discuss past work and future opportunities for developing and applying synthetic cells that contain intracellular polymers. The materials-based approach will usher in new applications of synthetic cells for broad biotechnological applications.
Collapse
Affiliation(s)
- Ofelya Baghdasaryan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Shahid Khan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Jared Lee-Kin
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA.
| |
Collapse
|
9
|
Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev 2023; 52:8126-8164. [PMID: 37921625 DOI: 10.1039/d2cs00999d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Living organisms fabricate biomacromolecules such as DNA, RNA, and proteins by the self-assembly process. The research on the mechanism of biomacromolecule formation also inspires the exploration of in vivo synthesized biomaterials. By elaborate design, artificial building blocks or precursors can self-assemble or polymerize into functional biomaterials within living organisms. In recent decades, these so-called in vivo synthesized biomaterials have achieved extensive applications in cell-fate manipulation, disease theranostics, bioanalysis, cellular surface engineering, and tissue regeneration. In this review, we classify strategies for in vivo synthesis into non-covalent, covalent, and genetic types. The development of these approaches is based on the chemical principles of supramolecular chemistry and synthetic chemistry, biological cues such as enzymes and microenvironments, and the means of synthetic biology. By summarizing the design principles in detail, some insights into the challenges and opportunities in this field are provided to enlighten further research.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Mateus D, Sebastião AI, Frasco MF, Carrascal MA, Falcão A, Gomes CM, Neves B, Sales MGF, Cruz MT. Artificial Dendritic Cells: A New Era of Promising Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303940. [PMID: 37469192 DOI: 10.1002/smll.202303940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana I Sebastião
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria G F Sales
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| |
Collapse
|
11
|
Xu X, Kwong CHT, Li J, Wei J, Wang R. "Zombie" Macrophages for Targeted Drug Delivery to Treat Acute Pneumonia. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37291057 DOI: 10.1021/acsami.3c06025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A cell-based drug delivery system has emerged as a promising drug delivery platform. Due to their innate inflammatory tropism, natural and engineered macrophages have exhibited targeted accumulation in inflammatory tissues, which has allowed targeted delivery of medicine for the treatment of a variety of inflammatory diseases. Nevertheless, live macrophages may take up the medicine and metabolize it during preparation, storage, and in vivo delivery, sometimes causing unsatisfactory therapeutic efficacy. In addition, live macrophage-based drug delivery systems are usually freshly prepared and injected, due to the poor stability that does not allow storage. "Off-the-shelf" products would be indeed conducive to the timely therapy of acute diseases. Herein, a cryo-shocked macrophage-based drug delivery system was developed via supramolecular conjugation of cyclodextrin (CD)-modified "zombie" macrophages and adamantane (ADA)-functionalized nanomedicine. "Zombie" macrophages exhibited a much better storage stability over time than their counterpart live macrophage drug carriers and maintained cell morphology, membrane integrity, and biological functions. In an acute pneumonia mouse model, "zombie" macrophages carried quercetin-loaded nanomedicine, hand-in-hand, to the inflammatory lung tissues and effectively alleviated the inflammation in mice.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
12
|
Gui Y, Zeng Y, Chen B, Yang Y, Ma J, Li C. A smart pathogen detector engineered from intracellular hydrogelation of DNA-decorated macrophages. Nat Commun 2023; 14:2927. [PMID: 37217531 DOI: 10.1038/s41467-023-38733-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Bacterial infection is a major threat to global public health, which urgently requires useful tools to rapidly analyze pathogens in the early stages of infection. Herein, we develop a smart macrophage (Mø)-based bacteria detector, which can recognize, capture, enrich and detect different bacteria and their secreted exotoxins. We transform the fragile native Møs into robust gelated cell particles (GMøs) using photo-activated crosslinking chemistry, which retains membrane integrity and recognition capacity for different microbes. Meanwhile, these GMøs equipped with magnetic nanoparticles and DNA sensing elements can not only respond to an external magnet for facile bacteria collection, but allow the detection of multiple types of bacteria in a single assay. Additionally, we design a propidium iodide-based staining assay to rapidly detect pathogen-associated exotoxins at ultralow concentrations. Overall, these nanoengineered cell particles have broad applicability in the analysis of bacteria, and could potentially be used for the management and diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Yueyue Gui
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China
| | - Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, 210023, Nanjing, P. R. China
| | - Binrui Chen
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China
| | - Yueping Yang
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China
| | - Jiehua Ma
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, Shanghai, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China.
| |
Collapse
|
13
|
Chen J, Agrawal S, Yi H, Vallejo D, Agrawal A, Lee AP. Cell-Sized Lipid Vesicles as Artificial Antigen-Presenting Cells for Antigen-Specific T Cell Activation. Adv Healthc Mater 2023; 12:e2203163. [PMID: 36645182 PMCID: PMC10175210 DOI: 10.1002/adhm.202203163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Indexed: 01/17/2023]
Abstract
In this study, efficient T cell activation is demonstrated using cell-sized artificial antigen-presenting cells (aAPCs) with protein-conjugated bilayer lipid membranes that mimic biological cell membranes. The highly uniform aAPCs are generated by a facile method based on standard droplet microfluidic devices. These aAPCs are able to activate the T cells in peripheral blood mononuclear cells, showing a 28-fold increase in interferon gamma (IFNγ) secretion, a 233-fold increase in antigen-specific CD8 T cells expansion, and a 16-fold increase of CD4 T cell expansion. The aAPCs do not require repetitive boosting or additional stimulants and can function at a relatively low aAPC-to-T cell ratio (1:17). The research presents strong evidence that the surface fluidity and size of the aAPCs are critical to the effective formation of immune synapses essential for T cell activation. The findings demonstrate that the microfluidic-generated aAPCs can be instrumental in investigating the physiological conditions and mechanisms for T cell activation. Finally, this method demonstrates the feasibility of customizable aAPCs for a cost-effective off-the-shelf approach to immunotherapy.
Collapse
Affiliation(s)
- Jui‐Yi Chen
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | | | - Hsiu‐Ping Yi
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Derek Vallejo
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Anshu Agrawal
- Department of MedicineUniversity of CaliforniaIrvineCA92617USA
| | - Abraham P. Lee
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| |
Collapse
|
14
|
Chien CY, Lin JC, Huang CY, Hsu CY, Yang KC, Chattopadhyay S, Nikoloutsos N, Hsieh PCH, Hu CMJ. In Situ Hydrogelation of Cellular Monolayers Enables Conformal Biomembrane Functionalization for Xeno-Free Feeder Substrate Engineering. Adv Healthc Mater 2023; 12:e2201708. [PMID: 36455286 DOI: 10.1002/adhm.202201708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Indexed: 12/03/2022]
Abstract
The intricate functionalities of cellular membranes have inspired strategies for deriving and anchoring cell-surface components onto solid substrates for biological studies, biosensor applications, and tissue engineering. However, introducing conformal and right-side-out cell membrane coverage onto planar substrates requires cumbersome protocols susceptible to significant device-to-device variability. Here, a facile approach for biomembrane functionalization of planar substrates is demonstrated by subjecting confluent cellular monolayer to intracellular hydrogel polymerization. The resulting cell-gel hybrid, herein termed GELL (gelated cell), exhibits extraordinary stability and retains the structural integrity, membrane fluidity, membrane protein mobility, and topology of living cells. In assessing the utility of GELL layers as a tissue engineering feeder substrate for stem cell maintenance, GELL feeder prepared from primary mouse embryonic fibroblasts not only preserves the stemness of murine stem cells but also exhibits advantages over live feeder cells owing to the GELL's inanimate, non-metabolizing nature. The preparation of a xeno-free feeder substrate devoid of non-human components is further shown with HeLa cells, and the resulting HeLa GELL feeder effectively sustains the growth and stemness of both murine and human induced pluripotent stem cells. The study highlights a novel bio-functionalization strategy that introduces new opportunities for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Chen-Ying Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Kai-Chieh Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | | | | | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
15
|
Contreras‐Llano LE, Liu Y, Henson T, Meyer CC, Baghdasaryan O, Khan S, Lin C, Wang A, Hu CJ, Tan C. Engineering Cyborg Bacteria Through Intracellular Hydrogelation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204175. [PMID: 36628538 PMCID: PMC10037956 DOI: 10.1002/advs.202204175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Indexed: 05/06/2023]
Abstract
Natural and artificial cells are two common chassis in synthetic biology. Natural cells can perform complex tasks through synthetic genetic constructs, but their autonomous replication often causes safety concerns for biomedical applications. In contrast, artificial cells based on nonreplicating materials, albeit possessing reduced biochemical complexity, provide more defined and controllable functions. Here, for the first time, the authors create hybrid material-cell entities termed Cyborg Cells. To create Cyborg Cells, a synthetic polymer network is assembled inside each bacterium, rendering them incapable of dividing. Cyborg Cells preserve essential functions, including cellular metabolism, motility, protein synthesis, and compatibility with genetic circuits. Cyborg Cells also acquire new abilities to resist stressors that otherwise kill natural cells. Finally, the authors demonstrate the therapeutic potential by showing invasion into cancer cells. This work establishes a new paradigm in cellular bioengineering by exploiting a combination of intracellular man-made polymers and their interaction with the protein networks of living cells.
Collapse
Affiliation(s)
| | - Yu‐Han Liu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Tanner Henson
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
- Department of SurgeryUniversity of CaliforniaDavis School of MedicineSacramentoCA95817USA
| | - Conary C. Meyer
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
| | | | - Shahid Khan
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Chi‐Long Lin
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Aijun Wang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
- Department of SurgeryUniversity of CaliforniaDavis School of MedicineSacramentoCA95817USA
| | - Che‐Ming J. Hu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Cheemeng Tan
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
16
|
Abstract
The polymerization of biomolecules is a central operation in biology that connects molecular signals with proliferative and information-rich events in cells. As molecules arrange precisely across 3-D space, they create new functional capabilities such as catalysis and transport highways and exhibit new phase separation phenomena that fuel nonequilibrium dynamics in cells. Hence, the observed polymer chemistry manifests itself as a molecular basis leading to cellular phenotypes, expressed as a multitude of hierarchical structures found in cell biology. Although many milestone discoveries had accompanied the rise of the synthetic polymer era, fundamental studies were realized within a closed, pristine environment and that their behavior in a complex multicomponent system remains challenging and thus unexplored. From this perspective, there is a rich trove of undiscovered knowledge that awaits the polymer science community that can revolutionize understanding in the interactive nanoscale world of the living cell.In this Account, we discuss the strategies that have enabled synthetic polymer chemistry to be conducted within the cells (membrane inclusive) and to establish monomer design principles that offer spatiotemporal control of the polymerization. As reaction considerations such as monomer concentration, polymer growth dynamics, and reactivities are intertwined with the subcellular environment and transport processes, we first provide a chemical narrative of each major cellular compartment. The conditions within each compartment will therefore set the boundaries on the type of polymer chemistry that can be conducted. Both covalent and supramolecular polymerization concepts are explored separately in the context of scaffold design, polymerization mechanism, and activation. To facilitate transport into a localized subcellular space, we show that monomers can be reversibly modified by targeting groups or stimulus-responsive motifs that react within the specific compartment. Upon polymerization, we discuss the characterization of the resultant polymeric structures and how these phase-separated structures would impact biological processes such as cell cycle, metabolism, and apoptosis. As we begin to integrate cellular biochemistry with in situ polymer science, we identify landmark challenges and technological hurdles that, when overcome, would lead to invaluable discoveries in macromolecular therapeutics and biology.
Collapse
|
17
|
Chen YI, Chang CC, Hsu MF, Jeng YM, Tien YW, Chang MC, Chang YT, Hu CM, Lee WH. Homophilic ATP1A1 binding induces activin A secretion to promote EMT of tumor cells and myofibroblast activation. Nat Commun 2022; 13:2945. [PMID: 35618735 PMCID: PMC9135720 DOI: 10.1038/s41467-022-30638-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Tumor cells with diverse phenotypes and biological behaviors are influenced by stromal cells through secretory factors or direct cell-cell contact. Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia with fibroblasts as the major cell type. In the present study, we observe enrichment of myofibroblasts in a juxta-tumoral position with tumor cells undergoing epithelial-mesenchymal transition (EMT) that facilitates invasion and correlates with a worse clinical prognosis in PDAC patients. Direct cell-cell contacts forming heterocellular aggregates between fibroblasts and tumor cells are detected in primary pancreatic tumors and circulating tumor microemboli (CTM). Mechanistically, ATP1A1 overexpressed in tumor cells binds to and reorganizes ATP1A1 of fibroblasts that induces calcium oscillations, NF-κB activation, and activin A secretion. Silencing ATP1A1 expression or neutralizing activin A secretion suppress tumor invasion and colonization. Taken together, these results elucidate the direct interplay between tumor cells and bound fibroblasts in PDAC progression, thereby providing potential therapeutic opportunities for inhibiting metastasis by interfering with these cell-cell interactions.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chin-Chun Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Master Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Biological Chemistry, University of California, Irvine, USA.
| |
Collapse
|
18
|
Liao MY, Huang TC, Chin YC, Cheng TY, Lin GM. Surfactant-Free Green Synthesis of Au@Chlorophyll Nanorods for NIR PDT-Elicited CDT in Bladder Cancer Therapy. ACS APPLIED BIO MATERIALS 2022; 5:2819-2833. [PMID: 35616917 DOI: 10.1021/acsabm.2c00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The facile and straightforward fabrication of NIR-responsive theranostic materials with high biocompatibility is still an unmet need for nanomedicine applications. Here, we used a natural photosensitizer, iron chlorophyll (Chl/Fe), for the J-aggregate template-assisted synthesis of Au@Chl/Fe nanorods with high stability. The assembly of a high amount of Chl/Fe J-aggregate onto the Au surface enabled red-NIR fluorescence for monitoring and tracking residential tumor lesions. The Chl/Fe moieties condensed on the nanorods could change the redox balance by the photon induction of reactive oxygen species and attenuate iron-mediated lipid peroxidation by inducing a Fenton-like reaction. After conjugation with carboxyphenylboronic acid (CPBA) to target the glycoprotein receptor on T24 bladder cancer (BC) cells, the enhanced delivery of Au@Chl/Fe-CPBA nanorods could induce over 85% cell death at extremely low concentrations of 0.16 ppm[Au] at 660 nm and 1.6 ppm[Au] at 785 nm. High lipid peroxidation, as shown by BODIPY staining and GSH depletion, was observed when treated T24 cells were exposed to laser irradiation, suggesting that preliminary photodynamic therapy (PDT) can revitalize Fenton-like reaction-mediated chemodynamic ferroptosis in T24 cells. We also manipulated the localized administration of Au@Chl-Fe combined with PDT at restricted regions in orthotopic tumor-bearing mice to cure malignant BC successfully without recurrence. By intravesical instillation of the Au@Chl/Fe-CPBA nanorods, this localized treatment could prevent the material from entering the systemic circulation, thus minimizing systemic toxicity. Upon activating NIR-PDT-elicited chemodynamic therapy, ultrasound imaging revealed almost complete tumor remission. Anti-tumor efficacy and survival benefit were achieved with a green photosensitizer.
Collapse
Affiliation(s)
- Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Tzu-Chi Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Yu-Cheng Chin
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Ting-Yu Cheng
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Geng-Min Lin
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| |
Collapse
|
19
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Abele T, Messer T, Jahnke K, Hippler M, Bastmeyer M, Wegener M, Göpfrich K. Two-Photon 3D Laser Printing Inside Synthetic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106709. [PMID: 34800321 DOI: 10.1002/adma.202106709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology.
Collapse
Affiliation(s)
- Tobias Abele
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Tobias Messer
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Marc Hippler
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
21
|
Atamas N, Gavryushenko D, Yablochkova K, Lazarenko M, Taranyik G. Temperature and temporal heterogeneities of water dynamics in the physiological temperature range. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Lin JC, Hsu CY, Chen JY, Fang ZS, Chen HW, Yao BY, Shiau GHM, Tsai JS, Gu M, Jung M, Lee TY, Hu CMJ. Facile Transformation of Murine and Human Primary Dendritic Cells into Robust and Modular Artificial Antigen-Presenting Systems by Intracellular Hydrogelation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101190. [PMID: 34096117 DOI: 10.1002/adma.202101190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The growing enthusiasm for cancer immunotherapies and adoptive cell therapies has prompted increasing interest in biomaterials development mimicking natural antigen-presenting cells (APCs) for T-cell expansion. In contrast to conventional bottom-up approaches aimed at layering synthetic substrates with T-cell activation cues, transformation of live dendritic cells (DCs) into artificial APCs (aAPCs) is demonstrated herein using a facile and minimally disruptive hydrogelation technique. Through direct intracellular permeation of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel monomer and UV-activated radical polymerization, intracellular hydrogelation is rapidly accomplished on DCs with minimal influence on cellular morphology and surface antigen display, yielding highly robust and modular cell-gel hybrid constructs amenable to peptide antigen exchange, storable by freezing and lyophilization, and functionalizable with cytokine-releasing carriers for T-cell modulation. The DC-derived aAPCs are shown to induce prolonged T-cell expansion and improve anticancer efficacy of adoptive T-cell therapy in mice compared to nonexpanded control T cells, and the gelation technique is further demonstrated to stabilize primary DCs derived from human donors. The work presents a versatile approach for generating a new class of cell-mimicking biomaterials and opens new venues for immunological interrogation and immunoengineering.
Collapse
Affiliation(s)
- Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, Taiwan, 106, Republic of China
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Gwo Harn M Shiau
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jeng-Shiang Tsai
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Ming Gu
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Meiying Jung
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Tong-Young Lee
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| |
Collapse
|
23
|
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001808. [PMID: 32538494 PMCID: PMC7669572 DOI: 10.1002/adma.202001808] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/13/2020] [Indexed: 05/04/2023]
Abstract
The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sanam Chekuri
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chun Lai Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020. [PMID: 32538494 DOI: 10.1002/adma.v32.3010.1002/adma.202001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sanam Chekuri
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chun Lai Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
25
|
Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901255. [PMID: 31206841 PMCID: PMC6918015 DOI: 10.1002/adma.201901255] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/07/2019] [Indexed: 04/14/2023]
Abstract
While traditional approaches for disease management in the era of modern medicine have saved countless lives and enhanced patient well-being, it is clear that there is significant room to improve upon the current status quo. For infectious diseases, the steady rise of antibiotic resistance has resulted in super pathogens that do not respond to most approved drugs. In the field of cancer treatment, the idea of a cure-all silver bullet has long been abandoned. As a result of the challenges facing current treatment and prevention paradigms in the clinic, there is an increasing push for personalized therapeutics, where plans for medical care are established on a patient-by-patient basis. Along these lines, vaccines, both against bacteria and tumors, are a clinical modality that could benefit significantly from personalization. Effective vaccination strategies could help to address many challenging disease conditions, but current vaccines are limited by factors such as a lack of potency and antigenic breadth. Recently, researchers have turned toward the use of biomimetic nanotechnology as a means of addressing these hurdles. Recent progress in the development of biomimetic nanovaccines for antibacterial and anticancer applications is discussed, with an emphasis on their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Wu L, Ding H, Qu X, Shi X, Yang J, Huang M, Zhang J, Zhang H, Song J, Zhu L, Song Y, Ma Y, Yang C. Fluidic Multivalent Membrane Nanointerface Enables Synergetic Enrichment of Circulating Tumor Cells with High Efficiency and Viability. J Am Chem Soc 2020; 142:4800-4806. [PMID: 32049531 DOI: 10.1021/jacs.9b13782] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitous biomembrane interface, with its dynamic lateral fluidity, allows membrane-bound components to rearrange and localize for high-affinity multivalent ligand-receptor interactions in diverse life activities. Inspired by this, we herein engineered a fluidic multivalent nanointerface by decorating a microfluidic chip with aptamer-functionalized leukocyte membrane nanovesicles for high-performance isolation of circulating tumor cells (CTCs). This fluidic biomimetic nanointerface with active recruitment-binding afforded significant affinity enhancement by 4 orders of magnitude, exhibiting 7-fold higher capture efficiency compared to a monovalent aptamer functionalized-chip in blood. Meanwhile, this soft nanointerface inherited the biological benefits of a natural biomembrane, minimizing background blood cell adsorption and maintaining excellent CTC viability (97.6%). Using the chip, CTCs were successfully detected in all cancer patient samples tested (17/17), suggesting the high potential of this fluidity-enhanced multivalent binding strategy in clinical applications. We expect this bioengineered interface strategy will lead to the design of innovative biomimetic platforms in the biomedical field by leveraging natural cell-cell interaction with a natural biomaterial.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Hongming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xin Qu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, P. R. China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, P. R. China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, P. R. China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Huimin Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|