1
|
Xian X, Zhao X, Zhou X, Liu H, Li C, Wu X, Chen Y, Ye K, Yang H, Li M, Yan J, Zhang X. Honokiol attenuates oxidative stress and vascular calcification via the upregulation of heme oxygenase-1 in chronic kidney disease. Toxicol Appl Pharmacol 2025; 499:117318. [PMID: 40194744 DOI: 10.1016/j.taap.2025.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), with oxidative stress identified as a key contributor to VC progression. Honokiol (HKL), a biphenolic compound derived from plants, has been found to be effective in treating various models of cardiovascular disease through the mitigation of oxidative stress. However, its effects on VC remain unexplored. To elucidate the effects of HKL on VC, a CKD rat model, a vitamin D3-overload-induced mouse model of vascular calcification, and a high-phosphate-induced human vascular smooth muscle cell (VSMC) calcification model were established. Calcification levels were assessed using alizarin red staining, calcium quantification, and western blotting of osteogenic markers. Oxidative stress was assessed by measuring reactive oxygen species. Furthermore, transcriptome sequencing was employed to identify molecules and pathways affected by HKL. HKL was found to significantly reduce calcification in both in vivo and in vitro models. It also mitigated oxidative stress induced by high phosphate in human VSMCs. Mechanistically, HKL upregulated heme oxygenase-1 (HMOX-1), thereby inhibiting oxidative stress and reducing calcification. Pharmacological inhibition of HMOX-1 counteracted the protective effect of HKL against vascular calcification. In summary, the findings suggest that HKL ameliorates VC by upregulating HMOX-1 and decreasing oxidative stress.
Collapse
MESH Headings
- Oxidative Stress/drug effects
- Animals
- Vascular Calcification/drug therapy
- Vascular Calcification/enzymology
- Vascular Calcification/prevention & control
- Vascular Calcification/pathology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Lignans/pharmacology
- Lignans/therapeutic use
- Humans
- Male
- Up-Regulation/drug effects
- Mice
- Rats
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Antioxidants/pharmacology
- Cells, Cultured
- Allyl Compounds
- Phenols
Collapse
Affiliation(s)
- Xuemin Xian
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xin Zhao
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xingchen Zhou
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Hanfang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Changxi Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xinquan Wu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuhang Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Keyue Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Hongwei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| |
Collapse
|
2
|
Yang Y, Li X, Xiao S, Wei Q, Ren L, Yao Y, Liu N. PARylation of POLG Mediated by PARP1 Accelerates Ferroptosis-Induced Vascular Calcification via Activating Adora2a/Rap1 Signaling. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401372 DOI: 10.1161/atvbaha.124.321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Vascular calcification (VC) is associated with diabetes, chronic kidney disease, and aging. VC is found to be a powerful and independent risk factor for cardiovascular mortality. Vascular smooth muscle cell (VSMC) ferroptosis, a form of cell death, is known to be involved in VC. However, whether VSMC ferroptosis is regulated by posttranslational modifications remains undefined. METHODS We explored the potential role and mechanism of PARP1 (poly[ADP-ribose] polymerase 1)-mediated poly(ADP-ribosyl)ation (PARylation) in VSMC ferroptosis during VC. Mouse VSMCs were treated with β-glycerophosphate, and Parp1flox/flox Tagln Cre+ calcified mice were generated with AAV9-sh-POLG (DNA polymerase gamma) injected to establish in vitro and in vivo models, respectively. RNA-sequencing analysis was performed to determine the transcriptomic alterations in VSMCs overexpressing POLG and treated with β-glycerophosphate. RESULTS Both PARP1 expression and PARylation levels were increased in β-glycerophosphate-induced VC, with PARP1 knockdown mitigating VC by improving mitochondrial function and inhibiting the subsequent VSMC ferroptosis. Mechanistically, POLG PARylation levels were increased in calcified VSMCs from PARP1 activation, triggering PARylation-dependent ubiquitination of POLG that resulted in POLG downregulation. This led to mitochondrial dysfunction and Adora2a (adenosine receptor A2A)/Rap1 (Ras-associated protein 1) signaling pathway activation to induce VSMC ferroptosis, which ultimately aggravated VC. CONCLUSIONS Our study establishes the critical role of PARP1-mediated PARylation-dependent ubiquitination of POLG in VSMC ferroptosis-induced VC. These findings suggest that PARP1 inhibitors could potentially serve as novel therapeutic strategies for VC.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoxue Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liqun Ren
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Cheng M, Jin J, Zhang D, Xiao M, Zhao H, Zhao X, Zhang S, Bai Y, Xu J. METTL3 obstructs vascular smooth muscle cells osteogenic reprogramming by methylating Runx2 in chronic kidney disease. Commun Biol 2025; 8:582. [PMID: 40200050 PMCID: PMC11978862 DOI: 10.1038/s42003-025-07972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
The reprogrammed osteogenic phenotype of vascular smooth muscle cells (VSMCs) is considered a critical mechanism of vascular calcification (VC) in chronic kidney disease (CKD). Currently, the RNA N6-methyladenosine (m6A) modification is deciphered to be dynamically and reversibly participated in functional regulation of VSMCs. Here, we discover that serum m6A levels in RNA are dramatically reduced as VC progressed in patients with CKD, and this m6A demethylation is mainly due to the downregulation of methyltransferaselike-3 (METTL3). Functionally, METTL3 depletion exacerbates, whereas its overexpression attenuates calcification progression and osteogenic reprogramming. Mechanistically, Runx2, a crucial osteogenic gene, is identified as a key downstream target of METTL3-mediated m6A methylation. METTL3 negatively regulates Runx2 expression through the m6A modification. Overexpression of METTL3 exacerbates Runx2 mRNA degradation, which is orchestrated by the m6A reader YT521-B homology domain family 2 (YTHDF2) through specifically recognizing its m6A sites in the 3'UTR region. Finally, in vivo METTLs inhibitor SAH treatment aggravates VC and osteogenic conversion in aortas of CKD rats, accompanied by Runx2 expression upregulation. These above data reveal an underlying mechanism by which the m6A writer METTL3 regulates Runx2 expression through YTHDF2-mediated mRNA degradation and suggest a potential therapeutic strategy to reverse the osteogenic reprogramming of VSMCs.
Collapse
MESH Headings
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Osteogenesis/genetics
- Rats
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Methylation
- Rats, Sprague-Dawley
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Cellular Reprogramming
- Adenosine/analogs & derivatives
- Adenosine/metabolism
Collapse
Affiliation(s)
- Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Mei Xiao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Hairong Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Xiaoying Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China.
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China.
| |
Collapse
|
4
|
Jin Q, Lin B, Lu L. Potential therapeutic value of dietary polysaccharides in cardiovascular disease: Extraction, mechanisms, applications, and challenges. Int J Biol Macromol 2025; 296:139573. [PMID: 39793800 DOI: 10.1016/j.ijbiomac.2025.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury. Furthermore, this paper summarises the current status of clinical trials involving polysaccharides in CVD and analyzes the support and challenges posed by these studies for the practical application of polysaccharides. Finally, the major challenges facing the therapeutic use of polysaccharides in CVD are discussed, particularly the issues of low bioavailability and lack of standardized quality control. Through this review, we aimed to provide a reference and guidance for further research on and application of dietary polysaccharides in CVD.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bin Lin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Lingfen Lu
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| |
Collapse
|
5
|
Zecca MA, Greer HF, Müller KH, Duer MJ. Poly(ADP-ribose) binding sites on collagen I fibrils for nucleating intrafibrillar bone mineral. Proc Natl Acad Sci U S A 2025; 122:e2414849122. [PMID: 39977326 PMCID: PMC11873830 DOI: 10.1073/pnas.2414849122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Bone calcification is essential for vertebrate life. The mechanism by which mineral ions are transported into collagen fibrils to induce intrafibrillar mineral formation requires a calcium binding biopolymer that also has highly selective binding to the collagen fibril hole zones where intrafibrillar calcification begins, over other bone extracellular matrix components. Poly(ADP-ribose) (PAR) has been shown to be a candidate biopolymer for this process and we show here that PAR has high affinity, highly conserved binding sites in the collagen type I C-terminal telopeptides. The identification of these PAR-collagen binding sites gives insights into the chemical mechanisms underlying bone calcification and possible mechanisms behind pathologies where there is dysfunctional bone calcification.
Collapse
Affiliation(s)
- Marco A. Zecca
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Heather F. Greer
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Melinda J. Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
6
|
Shen Y, Huang H, Shen L, Yao W, Wang R, Kang M, Huang J, Xie Y, Yang H. ZBTB16 DRIVES VASCULAR CALCIFICATION THROUGH ACCELERATING VSMCS OSTEOBLASTIC TRANSITION IN CHRONIC KIDNEY DISEASE VIA WNT/Β-CATENIN PATHWAY. Shock 2025; 63:312-319. [PMID: 39450908 DOI: 10.1097/shk.0000000000002488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
ABSTRACT Chronic kidney disease (CKD)-related vascular calcification (VC) is a common degenerative phenomenon of the vessel wall and its pathological basis is the phenotypic transformation of vascular smooth muscle cells (VSMCs). Zinc finger and BR-C (Broad-Complex), ttk (tramtrack), and bab (bric à brac) (BTB) domain containing 16 (ZBTB16) have been reported to be expressed in the aortic tissues in a rat model of VC. This work is conducted to reveal the functions of ZBTB16 on VC in CKD and to probe its involved reaction mechanisms. In vivo CKD rat models were established by adenine and VSMC calcification were stimulated with high phosphate (Pi) in vitro . Renal function indexes were estimated with relevant assay kits. Renal tissues were histologically examined with hematoxylin and eosin staining. Alizarin red and von kossa staining were used to measure arterial calcification. Reverse transcription-quantitative PCR and western blot were used to detect ZBTB16 expression. Western blot, immunohistochemistry, and immunofluorescence staining were used to detect osteogenic markers and smooth muscle cell markers. Western blot was used to measure the expressions of proteins implicated in Wnt/β-catenin pathway. In the blood samples of CKD patients with VC, aortic tissues of CKD rats, and Pi-treated VSMCs, ZBTB16 expression was significantly increased. ZBTB16 knockdown reduced renal dysfunction, calcium deposition and inhibited VSMCs osteoblast differentiation both in vitro and in vivo . Moreover, silencing with ZBTB16 inactivated Wingless-related integration site (Wnt)/β-catenin pathway. LiCl (Wnt/β-catenin agonist) reversed the protective effects of ZBTB16 knockdown on the calcification and osteoblastic transformation in vitro . Together, ZBTB16 silencing may downregulate Wnt/β-catenin pathway to protect against CKD-associated VC via repressing the osteoblastic transformation of VSMCs.
Collapse
Affiliation(s)
| | - Huaxing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Lianglan Shen
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wubin Yao
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Meizi Kang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jiashan Huang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Xie
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongli Yang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Hao JB, Wang SY, Chen T, Yuan B, Hao LR. Risk factors for radial artery calcification in patients with and without uremia. BMC Nephrol 2025; 26:18. [PMID: 39799338 PMCID: PMC11724451 DOI: 10.1186/s12882-024-03940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Calcification of the radial artery is one of the main causes of anastomotic stenosis in autogenous arteriovenous fistulas in uremic patients. However, the pathogenesis of calcification is still unknown. This study attempted to screen and validate the risk factors for vascular calcification in patients with uremia. METHODS Serum of blood were collected and tissue samples from radial artery were obtained from 60 uremia patients with or without hemodialysis. General biochemical indicators and calcification-related molecules were collected and detected via ELISA or correlation analysis. In addition, pathological changes and calcification-related molecules in the radial artery were evaluated by HE or immunohistochemical staining. RESULTS There were differences in total calcium, calcium-phosphorus products, allograft inflammatory factor 1 (AIF-1), intact parathyroid hormone (iPTH), vitamin D (VD), fibroblast growth factor 23 (FGF23) and soluble klotho (sKlotho) in the blood of uremic patients with or without hemodialysis. Furthermore, these factors are related to calcification of the radial artery. The expression of AIF-1, PTHR1, VDR, FGF23 and sKlotho was also increased in the calcified radial artery. CONCLUSIONS The levels of AIF-1, PTH, VDR, FGF23 and sKlotho in serum were associated with calcification of the radial artery in patients with uremia. Furthermore, calcification of the radial artery was further aggravated by abnormalities in calcium and phosphorus in maintenance hemodialysis patients.
Collapse
Affiliation(s)
- Jian-Bing Hao
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China.
| | - Si-Yu Wang
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Tong Chen
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Bo Yuan
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Li-Rong Hao
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
8
|
Yang C, Qu J, Cheng Y, Tian M, Wang Z, Wang X, Li X, Zhou S, Zhao B, Guo Y, Zheng L, Tong Q. YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression. J Transl Med 2024; 22:1153. [PMID: 39731187 DOI: 10.1186/s12967-024-05956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/07/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness. However, the functions and regulatory mechanisms of PARP1 in NB progression still remain to be determined. METHODS The association of PARP1 expression with NB patients' survival was analyzed by mining of R2 database. Western blotting, reverse transcription-polymerase chain reaction, MTT colorimetric, soft agar, and matrigel invasion assays were utilized to assess PARP1 expression and its effects on aggressiveness of NB cell lines. Chromatin immunoprecipitation (ChIP) sequencing and ChIP assays were employed to investigate the binding of Yin Yang 1 (YY1) to PARP1 promoter. Protein interactions were explored by BioGRID database analysis, molecular docking, and co-immunoprecipitation assay. RNA sequencing and crosslinking-immunoprecipitation high throughput sequencing datasets were used to identify precursor mRNA splicing targets of non-POU domain containing octamer binding protein (NONO). RESULTS High PARP1 expression was associated with poor survival of NB patients. PARP1 over-expression enhanced the proliferation and invasion of NB cell lines, confirming its oncogenic roles. YY1 was identified as a key transcriptional regulator facilitating PARP1 expression. Additionally, PARP1 interacted with NONO to induce its PARylation, resulting in stabilization of NONO protein via preventing ubiquitin-mediated degradation. NONO facilitated the splicing and mRNA maturation of target genes a disintegrin and metalloproteinase domain 8 (ADAM8) and testis-expressed gene 14 (TEX14) in a PARylation-dependent manner. Rescue experiments indicated that YY1 facilitated PARP1-mediated PARylation of NONO and subsequent mRNA maturation of ADAM8 and TEX14 in NB cells. In clinical NB cases, high expression of YY1, PARP1, NONO, ADAM8, or TEX14 was associated with poor survival of patients. CONCLUSIONS These findings indicate that YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during NB progression.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Zhijie Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xiaolin Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xinyue Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Bosen Zhao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yanhua Guo
- Department of Pediatric Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, People's Republic of China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Shan SK, Lin X, Wu F, Li CC, Guo B, Li FXZ, Zheng MH, Wang Y, Xu QS, Lei LM, Tang KX, Wu YY, Duan JY, Cao YC, Wu YL, Tan CM, Liu ZH, Zhou ZA, Liao XB, Xu F, Yuan LQ. Vascular wall microenvironment: Endothelial cells original exosomes mediated melatonin-suppressed vascular calcification and vascular ageing in a m6A methylation dependent manner. Bioact Mater 2024; 42:52-67. [PMID: 39280584 PMCID: PMC11399808 DOI: 10.1016/j.bioactmat.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Vascular calcification and vascular ageing are "silent" diseases but are highly prevalent in patients with end stage renal failure and type 2 diabetes, as well as in the ageing population. Melatonin (MT) has been shown to induce cardiovascular protection effects. However, the role of MT on vascular calcification and ageing has not been well-identified. In this study, the aortic transcriptional landscape revealed clues for MT related cell-to-cell communication between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in vascular calcification and vascular ageing. Furthermore, we elucidated that it was exosomes that participate in the information transportation from ECs to VSMCs. The exosomes secreted from melatonin-treated ECs (MT-ECs-Exos) inhibited calcification and senescence of VSMCs. Mechanistically, miR-302d-5p was highly enriched in MT-ECs-Exos, while depletion of miR-302d-5p blocked the ability of MT-ECs-Exos to suppress VSMC calcification and senescence. Notably, Wnt3 was a bona fide target of miR-302d-5p and modulated VSMC calcification and senescence. Furthermore, we found that maturation of endothelial derived exosomal miR-302d-5p was promoted by WTAP in an N6-methyladenosine (m6A)-dependent manner. Interestingly, MT alleviated vascular calcification and ageing in 5/6-nephrectomy (5/6 NTP) mice, a chronic kidney disease (CKD) induced vascular calcification and vascular ageing mouse model. MT-ECs-Exos was absorbed by VSMCs in vivo and effectively prevented vascular calcification and ageing in 5/6 NTP mice. ECs-derived miR-302d-5p mediated MT induced anti-calcification and anti-ageing effects in 5/6 NTP mice. Our study suggests that MT-ECs-Exos alleviate vascular calcification and ageing through the miR-302d-5p/Wnt3 signaling pathway, dependent on m6A methylation.
Collapse
Affiliation(s)
- Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Chang-Ming Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Zi-Han Liu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Zhi-Ang Zhou
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
10
|
Liao YR, Tsai YC, Hsieh TH, Tsai MT, Lin FY, Lin SJ, Lin CC, Chiang HY, Chu PH, Li SY. FHL2 in arterial medial calcification in chronic kidney disease. Nephrol Dial Transplant 2024; 39:2025-2039. [PMID: 38664060 PMCID: PMC11596093 DOI: 10.1093/ndt/gfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into an osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS We employed transcriptomic analysis of human data and an animal reporter system to pinpoint four and a half LIM domains 2 (FHL2) as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation and chromatin immunoprecipitation experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2-null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS Among all the potential RUNX2 cofactors, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.
Collapse
MESH Headings
- Animals
- LIM-Homeodomain Proteins/metabolism
- LIM-Homeodomain Proteins/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/complications
- Humans
- Mice
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cells, Cultured
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Vascular Calcification/genetics
- Male
- Cell Transdifferentiation
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Yuan-Ru Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hou-Yu Chiang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Guang University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Kwon DH, Shin S, Nam YS, Choe N, Lim Y, Jeong A, Lee YG, Kim YK, Kook H. CBL-b E3 ligase-mediated neddylation and activation of PARP-1 induce vascular calcification. Exp Mol Med 2024; 56:2246-2259. [PMID: 39349831 PMCID: PMC11541702 DOI: 10.1038/s12276-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated. In our study, we observed that MLN4924, an inhibitor of the NEDD8-activating E1 enzyme, effectively impedes the progression of VC. LC‒MS/MS analysis revealed that poly(ADP‒ribose) polymerase 1 (PARP-1) is subjected to NEDD8 conjugation, leading to an increase in PARP-1 activity during VC. We subsequently revealed that PARP-1 NEDDylation is mediated by the E3 ligase CBL proto-oncogene B (CBL-b) and is reversed by NEDD8-specific protease 1 (NEDP-1) during VC. Furthermore, the CBL-b C373 peptide effectively mitigated the inactive form of the E3 ligase activity of CBL-b, ultimately preventing VC. These findings provide compelling evidence that the NEDD8-dependent activation of PARP-1 represents a novel mechanism underlying vascular calcification and suggests a promising new therapeutic target for VC.
Collapse
Affiliation(s)
- Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yoon Seok Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yongwoon Lim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Anna Jeong
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Gyeong Lee
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Young-Kook Kim
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Li Q, Zhou Q, Li S, Li S, Liao W, Yu L, Liu C, Li M, Xia H. Target analysis and identification of curcumin against vascular calcification. Sci Rep 2024; 14:17344. [PMID: 39069521 PMCID: PMC11284211 DOI: 10.1038/s41598-024-67776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
To investigate the mechanism of curcumin (CUR) on vascular calcification (VC), we screen for common targets of CUR and atherosclerosis and verify the targets genes in vivo and in vitro experiments. The common targets of CUR and AS were screened and obtained using different databases. These target genes were analyzed by GO and KEGG pathway enrichment analysis. PPI network analysis was performed and to analyze the key targets. A rat VC model was constructed and CUR was fed for three weeks. The changes of vascular structure and calcium salt deposition were observed in H&E and Von Kossa staining. Further, the expression of these target proteins was detected in the primary VSMCs of VC. The 31 common targets were obtained. GO functional enrichment analysis obtained 1284 terms and KEGG pathway enriched 66 pathways. The key genes were identified in the cytoHubba plugin. The molecular docking analysis showed that CUR bound strongly to EGFR, STAT3 and BCL2. The animal experiments showed the deposition calcium salt reduced by the CUR administration. These proteins BMP2, RUNX2, EGFR, STAT3 and BAX expression were upregulated in VC group and CUR attenuated the upregulated expression. The signal protein Akt and p65 expression increased in VC group and decreased in CUR group. We identified some common target genes of CUR and AS and identified these key genes. The anti-VC effect of CUR was associated with the inhibition of upregulation of EGFR, STAT3 and RUNX2 expression in VSMCs.
Collapse
Affiliation(s)
- Qingjie Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- The Central Hospital of Zhoukou, Zhoukou, 466001, People's Republic of China
| | - Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Shihuan Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Suqin Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Wenli Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Liangzhu Yu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Mincai Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Hongli Xia
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
- The Central Hospital of Xianning, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
13
|
Avanoglu-Guler A, Campochiaro C, De Luca G, Hughes M, Tufan A, Green L, Del Galdo F, Matucci-Cerinic M, Dagna L. Calcinosis in systemic sclerosis: An update on pathogenesis, related complications, and management: A heavy burden still waiting to be lifted off patients' hands. Semin Arthritis Rheum 2024; 66:152431. [PMID: 38537324 DOI: 10.1016/j.semarthrit.2024.152431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 05/14/2024]
Abstract
In SSc, dystrophic calcinosis is one of the major clinical manifestations, characterized by the deposition of insoluble calcific substances in tissues, predominantly in the chemical form of calcium hydroxyapatite. Furthermore, calcinosis might lead to compressive neuropathies and severe pain. Current evidence suggests that tissue ischemia and repeated trauma are implicated in the development of calcinosis; however, there are still too many unknown areas that need to be investigated. Detection of calcinosis is commonly performed using X-ray or ultrasound. Moreover, quantification of calcinosis with X-ray and dual-energy computed tomography might be useful for the assessment of disease burden and monitoring of the disease. Despite its prevalence and clinical outcomes, there are no approved disease-modifying treatments for calcinosis in SSc. Debulking or surgical intervention might be preferred for calcinosis complicated with infection, compressive symptoms, or relief of pain. Therefore, innovative investigations and tailored therapeutic approaches are urgently needed to lift the burden of calcinosis from the hands of SSc patients.
Collapse
Affiliation(s)
- Aslihan Avanoglu-Guler
- Department of Internal Medicine, Division of Rheumatology, Gazi University, Ankara, Turkey; Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy.
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Michael Hughes
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Group, Salford, UK; Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK
| | - Abdurrahman Tufan
- Department of Internal Medicine, Division of Rheumatology, Gazi University, Ankara, Turkey; Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Lorraine Green
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy; Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology AOUC, Florence, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
14
|
Zhai X, Cao S, Wang J, Qiao B, Liu X, Hua R, Zhao M, Sun S, Han Y, Wu S, Pang J, Yuan Q, Wang B, Xu F, Wei S, Chen Y. Carbonylation of Runx2 at K176 by 4-Hydroxynonenal Accelerates Vascular Calcification. Circulation 2024; 149:1752-1769. [PMID: 38348663 DOI: 10.1161/circulationaha.123.065830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 (ALDH2). ALDH2 knockout (ALDH2-/-) mice, smooth muscle cell-specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing β-glycerophosphate and CaCl2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell-specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE-induced upregulation of Runx2. CONCLUSIONS Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.
Collapse
MESH Headings
- Animals
- Aldehydes/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Humans
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Mice
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Female
- Middle Aged
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/genetics
- Coronary Artery Disease/pathology
- Cells, Cultured
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Aged
Collapse
Affiliation(s)
- Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Rui Hua
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Menglin Zhao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Shuo Wu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Jiaojiao Pang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Bailu Wang
- National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China (B.W.)
| | - Feng Xu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| |
Collapse
|
15
|
Liu C, Li J, Xu F, Chen L, Ni M, Wu J, Zhao H, Wu Y, Li J, Wu X, Chen X. PARP1-DOT1L transcription axis drives acquired resistance to PARP inhibitor in ovarian cancer. Mol Cancer 2024; 23:111. [PMID: 38778348 PMCID: PMC11110363 DOI: 10.1186/s12943-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.
Collapse
Affiliation(s)
- Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangchun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Wang C, Xu M, Bai Y, Pan M, Qi Y, Chen R. Overexpression of miR-204-5p Alleviates Osteogenic Differentiation and Calcification of Human Aortic Vascular Smooth Muscle Cells by Targeting Calcium/Calmodulin-dependent Protein Kinase 1. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:69-78. [PMID: 38780291 DOI: 10.4103/ejpi.ejpi-d-24-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 05/25/2024]
Abstract
ABSTRACT Vascular calcification (VC), a major complication in chronic kidney disease (CKD), is predominantly driven by osteoblastic differentiation. Recent studies have highlighted the crucial role of microRNAs in CKD's pathogenesis. Here, our research focused on the effects of miR-204-5p and its molecular mechanisms within VC. We initially found a notable decrease in miR-204-5p levels in human aortic vascular smooth muscle cells stimulated with inorganic phosphate, using this as a VC model in vitro. Following the overexpression of miR-204-5p, a decrease in VC was observed, as indicated by alizarin red S staining and measurements of calcium content. This decrease was accompanied by lower levels of the osteogenic marker, runt-related transcription factor 2, and higher levels of α-smooth muscle actin, a marker of contractility. Further investigation showed that calcium/calmodulin-dependent protein kinase 1 (CAMK1), which is a predicted target of miR-204-5p, promotes VC. Conversely, overexpressing miR-204-5p reduced VC by suppressing CAMK1 activity. Overexpressing miR-204-5p also effectively mitigated aortic calcification in an in vivo rat model. In summary, our research indicated that targeting the miR-204-5p/CAMK1 pathway could be a viable strategy for mitigating VC in CKD patients.
Collapse
Affiliation(s)
- Chunli Wang
- Blood Purification Center, Hainan General Hospital, Hai-Nan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | | | | | | | | | | |
Collapse
|
17
|
Zhou G, Liu P, Zhang C, Huang Q, Zhao Z, Wu S, Li D, Liu H. HDAC2 counteracts vascular calcification by activating autophagy in chronic kidney disease. FASEB J 2024; 38:e23470. [PMID: 38354035 DOI: 10.1096/fj.202301429r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Vascular calcification is a major risk factor for cardiovascular disease mortality, with a significant prevalence in chronic kidney disease (CKD). Pharmacological inhibition of histone acetyltransferase has been proven to protect against from vascular calcification. However, the role of Histone Deacetylase 2 (HDAC2) and molecular mechanisms in vascular calcification of CKD remains unknown. An in vivo model of CKD was established using mouse fed with a high adenine and phosphate diet, and an in vitro model was produced using human aortic vascular smooth muscle cells (VSMCs) stimulated with β-glycerophosphate (β-GP). HDAC2 expression was found to be reduced in medial artery of CKD mice and β-GP-induced VSMCs. Overexpression of HDAC2 attenuated OPN and OCN upregulation, α-SMA and SM22α downregulation, and calcium deposition in aortas of CKD. The in vitro results also demonstrated that β-GP-induced osteogenic differentiation was inhibited by HDAC2. Furthermore, we found that HDAC2 overexpression caused an increase in LC3II/I, a decrease in p62, and an induction of autophagic flux. Inhibition of autophagy using its specific inhibitor 3-MA blocked HDAC2's protective effect on osteogenic differentiation in β-GP-treated VSMCs. Taken together, these results suggest that HDAC2 may protect against vascular calcification by the activation of autophagy, laying out a novel insight for the molecular mechanism in vascular calcification of CKD.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pai Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongbo Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Gao Q, Liu J, Wang M, Liu X, Jiang Y, Su J. Biomaterials regulates BMSCs differentiation via mechanical microenvironment. BIOMATERIALS ADVANCES 2024; 157:213738. [PMID: 38154401 DOI: 10.1016/j.bioadv.2023.213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Xiangfei Liu
- Department of Orthopedics, Shanghai Zhongye Hospital, NO. 456 Chunlei Road, Shanghai 200941, PR China.
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, NO.1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Li Y, Wang W, Liu C, Zeng M, Xu L, Du R, Wang C. Adiponectin C1q/Tumor Necrosis Factor-Related Protein 13 (CTRP13) Protects against Renal Inflammation and Fibrosis in Obstructive Nephropathy. Biomedicines 2023; 12:51. [PMID: 38255158 PMCID: PMC10812933 DOI: 10.3390/biomedicines12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Renal inflammation and fibrosis are the important pathological phenomena associated with obstructive nephropathy. However, the underlying mechanism associated with this disease has yet to be fully elucidated. The present study, therefore, aimed to investigate the effects mediated by C1q/tumor necrosis factor-related protein 13 (CTRP13) on renal inflammation and fibrosis in addition to elucidating the underlying mechanism. To meet this aim, a mouse unilateral ureteral obstruction (UUO)-mediated renal dysfunction model was established. In addition, hematoxylin-eosin staining (H&E) staining and immunofluorescence experiments as well as Western blotting and reverse transcription quantitative (RT q) PCR analyses were performed. Recombinant CTRP13 was used to investigate the role of CTRP13 in chronic renal inflammation and fibrosis. A decreased expression level of CTRP13 was identified in the plasma of patients with renal fibrosis and in UUO-model mice. The renal histopathological and functional analyses revealed that CTRP13 could both reverse UUO mediated renal dysfunction and ameliorate the conditions of tubulointerstitial fibrosis and tubular injury. Additionally, CTRP13 was found to inhibit the expression levels of extracellular matrix proteins and proinflammatory mediators. In terms of the underlying mechanism, the protective effects on inflammation and fibrosis of the kidneys of CTRP13-treated mice undergoing UUO were found to be associated with the inactivation of the TGF β/Smad and NF κB p65 signaling pathways. Taken together, these findings have suggested that CTRP13 fulfills a vital role in the progression of obstructive nephropathy, thereby uncovering brand new insights into possible leads for the therapeutic treatment of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Yongxia Li
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Wenzhe Wang
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Changxuan Liu
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Min Zeng
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Li Xu
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Cheng Wang
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
20
|
Lian Y, Li Y, Liu A, Ghosh S, Shi Y, Huang H. Dietary antioxidants and vascular calcification: From pharmacological mechanisms to challenges. Biomed Pharmacother 2023; 168:115693. [PMID: 37844356 DOI: 10.1016/j.biopha.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Vascular calcification (VC), an actively regulated process, has been recognized as an independent and strong predictor of cardiovascular disease (CVD) and mortality worldwide. Diet has been shown to have a major role in the progression of VC. Oxidative stress (OS), a common pro-calcification factor, is closely related to VC, and evidence strongly suggests that dietary antioxidants directly prevent VC. Herein, we provided an overview of OS and its key role in VC and underlined the mechanisms of harmful effects of OS on VC. Furthermore, we introduced dietary antioxidants, and discussed about surrounding the challenges of dietary antioxidants in VC management. This review will benefit future research about the effects of dietary antioxidants on cardiovascular health.
Collapse
Affiliation(s)
- Yaxin Lian
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Yue Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Aiting Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Sounak Ghosh
- Department of Internal Medicine, AMRI Hospital, Kolkata, India
| | - Yuncong Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Hui Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China.
| |
Collapse
|
21
|
Zhu Y, Zhang JL, Yan XJ, Ji Y, Wang FF. Exploring a new mechanism between lactate and VSMC calcification: PARP1/POLG/UCP2 signaling pathway and imbalance of mitochondrial homeostasis. Cell Death Dis 2023; 14:598. [PMID: 37679327 PMCID: PMC10484939 DOI: 10.1038/s41419-023-06113-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Lactate leads to the imbalance of mitochondria homeostasis, which then promotes vascular calcification. PARP1 can upregulate osteogenic genes and accelerate vascular calcification. However, the relationship among lactate, PARP1, and mitochondrial homeostasis is unclear. The present study aimed to explore the new molecular mechanism of lactate to promote VSMC calcification by evaluating PARP1 as a breakthrough molecule. A coculture model of VECs and VSMCs was established, and the model revealed that the glycolysis ability and lactate production of VECs were significantly enhanced after incubation in DOM. Osteogenic marker expression, calcium deposition, and apoptosis in VSMCs were decreased after lactate dehydrogenase A knockdown in VECs. Mechanistically, exogenous lactate increased the overall level of PARP and PARylation in VSMCs. PARP1 knockdown inhibited Drp1-mediated mitochondrial fission and partially restored PINK1/Parkin-mediated mitophagy, thereby reducing mitochondrial oxidative stress. Moreover, lactate induced the translocation of PARP1 from the nucleus to the mitochondria, which then combined with POLG and inhibited POLG-mediated mitochondrial DNA synthesis. This process led to the downregulation of mitochondria-encoded genes, disturbance of mitochondrial respiration, and inhibition of oxidative phosphorylation. The knockdown of PARP1 could partially reverse the damage of mitochondrial gene expression and function caused by lactate. Furthermore, UCP2 was upregulated by the PARP1/POLG signal, and UCP2 knockdown inhibited Drp1-mediated mitochondrial fission and partially recovered PINK1/Parkin-mediated mitophagy. Finally, UCP2 knockdown in VSMCs alleviated DOM-caused VSMC calcification in the coculture model. The study results thus suggest that upregulated PARP1 is involved in the mechanism through which lactate accelerates VSMC calcification partly via POLG/UCP2-caused unbalanced mitochondrial homeostasis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, PR China
| | - Jia-Li Zhang
- Department of Gastroenterology Centre, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, PR China
| | - Xue-Jiao Yan
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, PR China
| | - Yuan Ji
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, PR China.
| | - Fang-Fang Wang
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, PR China.
| |
Collapse
|
22
|
Cozzolino M, Maffei Faccioli F, Cara A, Boni Brivio G, Rivela F, Ciceri P, Magagnoli L, Galassi A, Barbuto S, Speciale S, Minicucci C, Cianciolo G. Future treatment of vascular calcification in chronic kidney disease. Expert Opin Pharmacother 2023; 24:2041-2057. [PMID: 37776230 DOI: 10.1080/14656566.2023.2266381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is one of the global leading causes of morbidity and mortality in chronic kidney disease (CKD) patients. Vascular calcification (VC) is a major cause of CVD in this population and is the consequence of complex interactions between inhibitor and promoter factors leading to pathological deposition of calcium and phosphate in soft tissues. Different pathological landscapes are associated with the development of VC, such as endothelial dysfunction, oxidative stress, chronic inflammation, loss of mineralization inhibitors, release of calcifying extracellular vesicles (cEVs) and circulating calcifying cells. AREAS COVERED In this review, we examined the literature and summarized the pathophysiology, biomarkers and focused on the treatments of VC. EXPERT OPINION Even though there is no consensus regarding specific treatment options, we provide the currently available treatment strategies that focus on phosphate balance, correction of vitamin D and vitamin K deficiencies, avoidance of both extremes of bone turnover, normalizing calcium levels and reduction of inflammatory response and the potential and promising therapeutic approaches liketargeting cellular mechanisms of calcification (e.g. SNF472, TNAP inhibitors).Creating novel scores to detect in advance VC and implementing targeted therapies is crucial to treat them and improve the future management of these patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federico Maffei Faccioli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anila Cara
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Boni Brivio
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Rivela
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serena Speciale
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Carlo Minicucci
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Jiang S, Ren J, Zhang Q, Liu W, Liu H, Xu Q, Tian X, Zhang CY. Construction of a Dendritic Nanoassembly-Based Fluorescent Biosensor for Electrostatic Interaction-Independent and Label-Free Measurement of Human Poly(ADP-ribose) Polymerase 1 in Lung Tissues. Anal Chem 2023; 95:11815-11822. [PMID: 37489894 DOI: 10.1021/acs.analchem.3c02376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is responsible for catalyzing the creation of poly(ADP-ribose) polymer and involved in DNA replication and repair. Sensitive measurement of PARP-1 is critical for clinical diagnosis. However, the conventional electrostatic attraction-based PAPR-1 assays usually involve laborious procedures, poor sensitivity, and false positives. Herein, we demonstrate the construction of a dendritic nanoassembly-based fluorescent biosensor for electrostatic interaction-independent and label-free measurement of human PARP-1 in lung tumor tissues. When PARP-1 is present, the specific double-stranded DNA (dsDNA)-activated PARP-1 transfers the ADP-ribosyl group from nicotinamide adenine dinucleotide (NAD+)/biotinylated NAD+ to the PARP-1 itself, resulting in the formation of biotinylated dsDNA-PARP-1-PAR polymer bioconjugates that can be captured by magnetic beads. Upon the addition of TdT, APE1, and NH2-modified T-rich probe, the captured dsDNAs with dual 3'-OH termini initiate TdT-activated APE1-mediated hyperbranched amplification to produce abundant dendritic DNA nanoassemblies that can be stained by SYBR Green I to generate a high fluorescence signal. This biosensor is characterized by a template-free, electrostatic interaction-independent, high sensitivity, and label-free assay. It enables rapid (less than 3 h) measurement of PARP-1 with a limit of detection of 4.37 × 10-8 U/μL and accurate measurement of cellular PARP-1 activity with single-cell sensitivity. Moreover, it is capable of screening potential inhibitors and discriminating the PARP-1 level in normal person tissues and lung cancer patient tissues, with great potential in PARP-1-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jingyi Ren
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenjing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
24
|
Nie L, Liu W, Chen J, Zhou S, Liu C, Li W, Ran Z, Liu Y, Hu J, Zhang Y, Zheng L, Ji P, Zhang H. A Novel Bioimplant Comprising Ad-BMP9-Transfected BMSCs and GelMA Microspheres Produced from Microfluidic Devices for Bone Tissue Engineering. J Tissue Eng Regen Med 2023; 2023:2981936. [PMID: 40226408 PMCID: PMC11918572 DOI: 10.1155/2023/2981936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 04/15/2025]
Abstract
Oral and maxillofacial bone defect repair in patients remains challenging in clinical treatment due to the different morphologies of bone defects. An injectable hydrogel of microspheres with sustained bone morphogenetic protein 9 (BMP9) expression for oral and maxillofacial bone defect repair has been developed. This study is bioinspired by the substantial osteogenesis property of recombinant adenoviruses expressing bone morphogenetic protein 9 (Ad-BMP9) and minimally invasive treatment by injection. A novel scaffold encompassing bone mesenchymal stem cells (BMSCs) transfected with Ad-BMP9 was produced and cocultured on a superficial surface of monodisperse photocrosslinked methacrylate gelatin hydrogel microspheres (GelMA/MS, produced with microfluidic technology). The biological tests including live/dead cell staining, phalloidin staining, cell counting kit-8 (CCK-8) assay, alkaline phosphatase (ALP) activity and staining, alizarin red S staining, and quantitative real-time polymerase chain reaction (RT-qPCR), revealed that the hydrogel microspheres exhibited good biocompatibility and remarkably promoted the osteogenic differentiation of BMSCs in vitro. In addition, a small needle was injected the innovative scaffold beneath the nude mice's skin. The micro-CT and histological staining assay results demonstrated that the new implant, with high blood vessel formation markers (CD31-positive cells) expression over four and eight weeks, achieved significant vascularized bone-like tissue formation. Consequently, the injectable hydrogel microspheres, cocultured with BMSC transfected with Ad-BMP9, enhanced vascularized bone regeneration, therefore representing a facile and promising technique for the minimally invasive treatment of oral and maxillofacial bone defects.
Collapse
Affiliation(s)
- Li Nie
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Wei Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jiajun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Siqi Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Chang Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Wenhui Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Zhiyue Ran
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yaxian Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jing Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
25
|
Guo J, Yang X, Chen J, Wang C, Sun Y, Yan C, Ren S, Xiong H, Xiang K, Zhang M, Li C, Jiang G, Xiang X, Wan G, Jiang T, Kang Y, Xu X, Chen Z, Li W. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J Nanobiotechnology 2023; 21:189. [PMID: 37308908 DOI: 10.1186/s12951-023-01954-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
26
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Yang C, Shu C. A nonobstructive condition: Medial arterial calcification. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:608-613. [PMID: 37385624 PMCID: PMC10930249 DOI: 10.11817/j.issn.1672-7347.2023.220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 07/01/2023]
Abstract
Vascular calcification, including intimal and medial calcification, is closely associated with a significant increase in cardiovascular diseases. Although increased understandings were achieved, people still know much more about intimal calcification than medial calcification because the latter doesn't obstruct the arterial lumen, commonly considered as a non-significant finding. We clarified the pathologic characteristic of medial calcification, its difference from intimal calcification, principally focused on its clinical relevance, such as diagnosis, nosogenesis, and hemodynamics. We underline the importance of identifying and distinguishing medial calcification, understanding its effect to local/systematic arterial compliance, and relationship to diabetic neuropathy. Recent studies emphasize do not ignore its predictive role in cardiovascular mortality. It is of great clinical significance to summarize the mechanisms of occurrence, lesion characteristics, diagnostic methods, pathogenic mechanisms, hemodynamic changes, and the distinction as well as association of intimal calcification with intimal calcification.
Collapse
Affiliation(s)
- Chenzi Yang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Chang Shu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
28
|
Singh S, Verma SC, Kumar V, Sharma K, Singh D, Khan S, Gupta N, Singh R, Khan F, Chanda D, Mishra DP, Singh D, Roy P, Gupta A. Synthesis of amide derivatives of 3-aryl-3H-benzopyrans as osteogenic agent concomitant with anticancer activity. Bioorg Chem 2023; 133:106380. [PMID: 36731295 DOI: 10.1016/j.bioorg.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
The present study reports a series of 3-aryl-3H-benzopyran-based amide derivatives as osteogenic agents concomitant with anticancer activity. Six target compounds viz 22e, 22f, 23i, and 24b-d showed good osteogenic activity at 1 pM and 100 pM concentrations. One of the potential molecules, 24b, effectively induced ALP activity and mRNA expression of osteogenic marker genes at 1 pM and bone mineralization at 100 pM concentrations. These molecules also presented significant growth inhibition of osteosarcoma (MG63) and estrogen-dependent and -independent (MCF-7 and MDA-MB-231) breast cancer cells. The most active compound, 24b, inhibited the growth of all the cancer cells within the IC50 10.45-12.66 µM. The mechanistic studies about 24b showed that 24b induced apoptosis via activation of the Caspase-3 enzyme and inhibited cancer cell migration. In silico molecular docking performed for 24b revealed its interaction with estrogen receptor-β (ER-β) preferentially.
Collapse
Affiliation(s)
- Sarita Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Surendra Chandra Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Vinay Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kriti Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Diksha Singh
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Sana Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Neelam Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Romila Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Feroz Khan
- Technology Dissemination and Computational Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Durga Prasad Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Atul Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR),Ghaziabad, Uttar Pradesh- 201002, India.
| |
Collapse
|
29
|
Association between CHFR and PARP-1, and Their Roles in Regulation of Proliferation and Apoptosis of B Cell Lymphoma. Anal Cell Pathol (Amst) 2023. [DOI: 10.1155/2023/7940316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background. Aberrant methylation of checkpoint with forkhead and ring finger domains (CHFR) was found in B-cell non-Hodgkin lymphoma (NHL), whereas its role in carcinogenesis is not clear. CHFR can control poly (ADP-ribose) polymerase levels by causing its degradation. The study was aimed to explore the roles and mechanisms of CHFR in the pathogenesis of B-cell NHL. Methods. Short hairpin ribonucleic acid (ShRNAs) targeting CHFR and poly (ADP-ribose) polymerase 1 (PARP-1) were transduced into Raji cells, and real-time polymerase chain reaction (PCR) and western blotting were carried out to determine their expression. Afterwards, the CCK-8 assay and flow cytometry were used to evaluate the cell growth and apoptosis. Tumor size and weight were determined using a xenograft model, and decitabine (5-Aza-dC) was used to further determine the methylation status of CHFR through a methylation specificity-PCR assay. Results. 5-Aza-dC-treatment promoted the expression of CHFR and decreased the expression of PARP-1 at both messenger ribonucleic acid (mRNA) and protein levels. 5-Aza-dC also accelerated Raji-cell apoptosis and restrained its growth in vitro and in vivo (
). These results were contrary to those observed in the shRNA-CHFR group but consistent with those observed in the shRNA-PARP-1 group. The expression profiles of CHFR and PARP-1 in the xenograft model were consistent with those in the cellular model. Treatment with 5-Aza-dC led to demethylation of CHFR in nude mice. Besides, there may be a negative correlation between CHFR and PARP-1 in B-cell NHL cells. Conclusion. Our findings indicated that 5-Aza-dC could lead to the demethylation of the CHFR promoter and suppress Raji cell growth.
Collapse
|
30
|
Wang Y, Pan J, Sun Z. LncRNA NCK1-AS1-mediated regulatory functions in human diseases. Clin Transl Oncol 2023; 25:323-332. [PMID: 36131072 DOI: 10.1007/s12094-022-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Disease development requires the activation of complex multi-factor processes involving numerous long noncoding RNAs (lncRNAs), which describe non-protein-coding RNAs longer than 200 nucleotides. Emerging evidence indicates that lncRNAs act as essential regulators that perform pivotal roles in the pathogenesis and progression of human diseases. The mechanisms underlying lncRNA involvement in diverse diseases have been extensively explored, and lncRNAs are considered powerful biomarkers for clinical practice. The lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) antisense 1 (NCK1-AS1), also known as NCK1 divergent transcript (NCK1-DT), is encoded on human chromosome 3q22.3 and produces a 27,274-base-long transcript. NCK1-AS1 has increasingly been characterized as a causative agent for multiple diseases. The abnormal expression and involvement of NCK1-AS1 in various biological processes have been associated with several diseases. Further exploration of the mechanisms through which NCK1-AS1 contributes to disease development and progression will provide a foundation for potential clinical applications of NCK1-AS1 in the diagnosis and treatment of various diseases. This review summarizes the current understanding of the various functions and mechanisms through which NCK1-AS1 contributes to various diseases and the clinical application prospects for NCK1-AS1.
Collapse
Affiliation(s)
- Yingfan Wang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
31
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
32
|
A Single-Cell Atlas of the Atherosclerotic Plaque in the Femoral Artery and the Heterogeneity in Macrophage Subtypes between Carotid and Femoral Atherosclerosis. J Cardiovasc Dev Dis 2022; 9:jcdd9120465. [PMID: 36547462 PMCID: PMC9788114 DOI: 10.3390/jcdd9120465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis of femoral arteries can cause the insufficient blood supply to the lower limbs and lead to gangrenous ulcers and other symptoms. Atherosclerosis and inflammatory factors are significantly different from other plaques. Therefore, it is crucial to observe the cellular composition of the femoral atherosclerotic plaque and identify plaque heterogeneity in other arteries. To this end, we performed single-cell sequencing of a human femoral artery plaque. We identified 14 cell types, including endothelial cells, smooth muscle cells, monocytes, three macrophages with four different subtypes of foam cells, three T cells, natural killer cells, and B cells. We then downloaded single-cell sequencing data of carotid atherosclerosis from GEO, which were compared with the one femoral sample. We identified similar cell types, but the femoral artery had significantly more nonspecific immune cells and fewer specific immune cells than the carotid artery. We further compared the differences in the proportion of inflammatory macrophages, and resident macrophages, and the proportion of inflammatory macrophages was greater within the carotid artery. Through comparing one femoral sequencing sample with carotid samples from public datasets, our study reveals the single-cell map of the femoral artery and the heterogeneity of carotid and femoral arteries at the cellular level, laying the foundation for mechanistic and pharmacological studies of the femoral artery.
Collapse
|
33
|
Vaspin alleviates the lncRNA LEF1-AS1-induced osteogenic differentiation of vascular smooth muscle cells via the Hippo/YAP signaling pathway. Exp Cell Res 2022; 421:113407. [PMID: 36334793 DOI: 10.1016/j.yexcr.2022.113407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Vascular calcification (VC) is closely related to higher cardiovascular mortality and morbidity, and vascular smooth muscle cell (VSMC) switching to osteogenic-like cells is crucial for VC. LncRNA LEF1-AS1 promotes atherosclerosis and dental pulp stem cells calcification, while its role in VC remains unknown. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is an adipokine regulating bone metabolism. However, the relationship between vaspin and VC is still unclear. We aimed to explore the role of LEF1-AS1 on VSMC osteogenic transition, whether vaspin inhibited LEF1-AS1-mediated osteogenic differentiation of VSMCs, and the responsible mechanism. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis indicated that LEF1-AS1 overexpression significantly upregulated osteogenic marker Runt-related transcription factor-2 (RUNX2) level and downregulated VSMC contractile marker α-smooth muscle actin (α-SMA) level. Alizarin red staining, alkaline phosphatase (ALP) staining, ALP activity assay, and calcium content assay also suggested that LEF1-AS1 overexpression promoted calcium deposition in VSMCs. However, vaspin treatment abolished this phenomenon. Mechanistically, LEF1-AS1 markedly decreased phosphorylated YAP level, while vaspin reversed LEF1-AS1-induced phosphorylated YAP decline. Our results revealed that LEF1-AS1 accelerated the osteogenic differentiation of VSMCs by regulating the Hippo/YAP pathway, while vaspin eliminated the LEF1-AS1-meditated VSMCs osteogenic phenotype switch.
Collapse
|
34
|
Bishop AC, Spradling‐Reeves KD, Shade RE, Lange KJ, Birnbaum S, Favela K, Dick EJ, Nijland MJ, Li C, Nathanielsz PW, Cox LA. Postnatal persistence of nonhuman primate sex-dependent renal structural and molecular changes programmed by intrauterine growth restriction. J Med Primatol 2022; 51:329-344. [PMID: 35855511 PMCID: PMC9796938 DOI: 10.1111/jmp.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Poor nutrition during fetal development programs postnatal kidney function. Understanding postnatal consequences in nonhuman primates (NHP) is important for translation to our understanding the impact on human kidney function and disease risk. We hypothesized that intrauterine growth restriction (IUGR) in NHP persists postnatally, with potential molecular mechanisms revealed by Western-type diet challenge. METHODS IUGR juvenile baboons were fed a 7-week Western diet, with kidney biopsies, blood, and urine collected before and after challenge. Transcriptomics and metabolomics were used to analyze biosamples. RESULTS Pre-challenge IUGR kidney transcriptome and urine metabolome differed from controls. Post-challenge, sex and diet-specific responses in urine metabolite and renal signaling pathways were observed. Dysregulated mTOR signaling persisted postnatally in female pre-challenge. Post-challenge IUGR male response showed uncoordinated signaling suggesting proximal tubule injury. CONCLUSION Fetal undernutrition impacts juvenile offspring kidneys at the molecular level suggesting early-onset blood pressure dysregulation.
Collapse
Affiliation(s)
- Andrew C. Bishop
- Center for Precision MedicineDepartment of Internal Medicine, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kimberly D. Spradling‐Reeves
- Center for Precision MedicineDepartment of Internal Medicine, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Robert E. Shade
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Kenneth J. Lange
- Department of Pharmaceuticals and BioengineeringSouthwest Research InstituteSan AntonioTexasUSA
| | - Shifra Birnbaum
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Kristin Favela
- Department of Pharmaceuticals and BioengineeringSouthwest Research InstituteSan AntonioTexasUSA
| | - Edward J. Dick
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Mark J. Nijland
- Department of Obstetrics and GynecologyUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Cun Li
- Department of Animal SciencesUniversity of WyomingLaramieWyomingUSA
| | - Peter W. Nathanielsz
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
- Department of Animal SciencesUniversity of WyomingLaramieWyomingUSA
| | - Laura A. Cox
- Center for Precision MedicineDepartment of Internal Medicine, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| |
Collapse
|
35
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
36
|
Xie S, Chen M, Fang W, Liu S, Wu Q, Liu C, Xing Y, Shi W, Xu M, Zhang M, Chen S, Zeng X, Wang S, Deng W, Tang Q. Diminished arachidonate 5-lipoxygenase perturbs phase separation and transcriptional response of Runx2 to reverse pathological ventricular remodeling. EBioMedicine 2022; 86:104359. [PMID: 36395739 PMCID: PMC9672960 DOI: 10.1016/j.ebiom.2022.104359] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Arachidonate 5-lipoxygenase (Alox5) belongs to a class of nonheme iron-containing dioxygenases involved in the catalysis of leukotriene biosynthesis. However, the effects of Alox5 itself on pathological cardiac remodeling and heart failure remain elusive. METHODS The role of Alox5 in pathological cardiac remodeling was investigated by Alox5 genetic depletion, AAV9-mediated overexpression in cardiomyocytes, and a bone marrow (BM) transplantation approach. Neonatal rat cardiomyocytes were used to explore the effects of Alox5 in vitro. Molecular and signaling pathways were revealed by CUT &Tag, IP-MS, RNA sequencing and bioinformatic analyses. FINDINGS Untargeted metabolomics showed that serum 5-HETE (a primary product of Alox5) levels were little changed in patients with cardiac hypertrophy, while Alox5 expression was significantly upregulated in murine hypertensive cardiac samples and human cardiac samples of hypertrophy, which prompted us to test whether high Alox5 levels under hypertensive stimuli were directly associated with pathologic myocardium in an enzymatic activity-independent manner. Herein, we revealed that Alox5 deficiency significantly ameliorated transverse aortic constriction (TAC)-induced hypertrophy. Cardiomyocyte-specific Alox5 depletion attenuated hypertensive ventricular remodeling. Conversely, cardiac-specifical Alox5 overexpression showed a pro-hypertrophic cardiac phenotype. Ablation of Alox5 in bone marrow-derived cells did not affect pathological cardiac remodeling and heart failure. Mechanically, Runx2 was identified as a target of Alox5. In this regard, Alox5 PEST domain could directly bind to Runx2 PTS domain, promoting nuclear localization of Runx2 in an enzymatic activity-independent manner, simultaneously contributed to liquid-liquid phase separation (LLPS) of Runx2 at specific domain in the nucleus and increased transcription of EGFR in cardiomyocytes. Runx2 depletion alleviated hypertrophy in Ang II-pretreated Alox5-overexpressing cardiomyocytes. INTERPRETATION Overall, our study demonstrated that targeting Alox5 exerted a protective effect against cardiac remodeling and heart failure under hypertensive stimuli by disturbing LLPS of Runx2 and substantial reduction of EGFR transcription activation in cardiomyocytes. Our findings suggest that negative modulation of Alox5-Runx2 may provide a therapeutic approach against pathological cardiac remodeling and heart failure. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China,Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Corresponding author. Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China,Corresponding author. Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
| |
Collapse
|
37
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
38
|
Klotho Ameliorates Vascular Calcification via Promoting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7192507. [PMID: 36338347 PMCID: PMC9629936 DOI: 10.1155/2022/7192507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023]
Abstract
Vascular calcification (VC) is regarded as a common feature of vascular aging. Klotho deficiency reportedly contributes to VC, which can be ameliorated by restoration of Klotho expression. However, the specific mechanisms involved remain unclear. Here, we investigated the role of autophagy in the process of Klotho-inhibiting VC. The clinical study results indicated that, based on Agatston score, serum Klotho level was negatively associated with aortic calcification. Then, Klotho-deficient mice exhibited aortic VC, which could be alleviated with the supplementation of Klotho protein. Moreover, autophagy increased in the aorta of Klotho-deficient mice and protected against VC. Finally, we found that Klotho ameliorated calcification by promoting autophagy both in the aorta of Klotho-deficient mice and in mouse vascular smooth muscle cells (MOVAS) under calcifying conditions. These findings indicate that Klotho deficiency induces increased autophagy to protect against VC and that Klotho expression further enhances autophagy to ameliorate calcification. This study is beneficial to exploring the underlying mechanisms of Klotho regulating VC, which has important guiding significance for future clinical studies in the treatment of VC.
Collapse
|
39
|
Ai D, Wu J, Cai H, Zhao D, Chen Y, Wei J, Xu J, Zhang J, Wang L. A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors. Front Pharmacol 2022; 13:971369. [PMID: 36304149 PMCID: PMC9592829 DOI: 10.3389/fphar.2022.971369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 08/16/2024] Open
Abstract
PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.
Collapse
Affiliation(s)
- Daiqiao Ai
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jingxing Wu
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Hanxuan Cai
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Duancheng Zhao
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Yihao Chen
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jiajia Wei
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ling Wang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| |
Collapse
|
40
|
SN-38 Sensitizes BRCA-Proficient Ovarian Cancers to PARP Inhibitors through Inhibiting Homologous Recombination Repair. DISEASE MARKERS 2022; 2022:7243146. [PMID: 36267463 PMCID: PMC9578876 DOI: 10.1155/2022/7243146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022]
Abstract
As a multifunctional protein posttranslational modification enzyme in eukaryotic cells, Poly-ADP-ribose polymerase (PARP) acts as a DNA damage sensor, which helps to repair DNA damage through recruiting repair proteins to the DNA break sites. PARP inhibitors offer a significant clinical benefit for ovarian cancer with BRCA1/2 mutations. However, the majority of ovarian cancer patients harbor wild-type (WT) BRCA1/2 status, which narrows its clinical application. Here, we identified a small compound, SN-38, a CPT analog, which sensitizes BRCA-proficient ovarian cancer cells to PARP inhibitor treatment by inhibiting homologous recombination (HR) repair. SN-38 treatment greatly enhanced PARP inhibitor olaparib induced DNA double-strand breaks (DSBs) and DNA replication stress. Meanwhile, the combination of SN-38 and olaparib synergistically induced apoptosis in ovarian cancer. Furthermore, combination administration of SN-38 and olaparib induced synergistic antitumor efficacy in an ovarian cancer xenograft model in vivo. Therefore, our study provides a novel therapeutic strategy to optimize PARP inhibitor therapy for patients with BRCA-proficient ovarian cancer.
Collapse
|
41
|
Jiang W, Ruan W, Wang Z. Dendrobium officinale polysaccharide inhibits vascular calcification via anti-inflammatory and anti-apoptotic effects in chronic kidney disease. FASEB J 2022; 36:e22504. [PMID: 35980507 DOI: 10.1096/fj.202200353rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
Vascular calcification is very common in patients with chronic kidney disease (CKD), but so far, there is no effective treatment. Dendrobium officinale polysaccharide (DOP), a natural component of Chinese herbal medicine, has been shown to exert anti-inflammatory and anti-apoptotic activity. Inflammation and apoptosis play an essential role in the progression of vascular calcification. However, the exact role and molecular mechanisms of DOP in vascular calcification remain unclear. In this study, we investigated the effects of DOP on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings, and CKD rats. Alizarin red staining and gene expression analysis revealed that DOP inhibited calcification and osteogenic differentiation of rat VSMCs in a dose-dependent manner. Similarly, ex vivo studies revealed that DOP inhibited the calcification of rat arterial rings. Furthermore, the administration of DOP alleviated vascular calcification in CKD rats. Moreover, DOP treatment suppressed VSMC inflammation and apoptosis. Finally, DOP treatment upregulated mRNA and protein levels of heme oxygenase-1 (HMOX-1); both pharmacological inhibition of HMOX-1 by the HMOX-1 inhibitor zinc protoporphyrin-9ZnPP9 and knockdown of HMOX-1 by siRNA markedly abrogated the suppression of inflammation and osteogenic differentiation of VSMCs by DOP. Collectively, these results suggest that DOP alleviates vascular calcification in CKD by suppressing apoptosis and inflammation via HMOX-1 activation. These results may provide a promising treatment for vascular calcification in CKD.
Collapse
Affiliation(s)
| | - Wenfeng Ruan
- Department of Orthopedics, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Zhengqiang Wang
- Department of Orthopedics, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| |
Collapse
|
42
|
Lan Z, Chen A, Li L, Ye Y, Liang Q, Dong Q, Wang S, Fu M, Li Y, Liu X, Zhu Z, Ou JS, Qiu X, Lu L, Yan J. Downregulation of HDAC9 by the ketone metabolite β-hydroxybutyrate suppresses vascular calcification. J Pathol 2022; 258:213-226. [PMID: 35894849 DOI: 10.1002/path.5992] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, effective therapy for vascular calcification is still lacking. The ketone body β-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-Seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions, thus nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, PR China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Zhenyu Zhu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| |
Collapse
|
43
|
Yu JT, Hu XW, Yang Q, Shan RR, Zhang Y, Dong ZH, Li HD, Wang JN, Li C, Xie SS, Dong YH, Ni WJ, Jiang L, Liu XQ, Wei B, Wen JG, Liu MM, Chen Q, Yang YR, Zhang GY, Zang HM, Jin J, Wu YG, Zhong X, Li J, Wang W, Meng XM. Insulin-like growth factor binding protein 7 promotes acute kidney injury by alleviating poly ADP ribose polymerase 1 degradation. Kidney Int 2022; 102:828-844. [PMID: 35752325 DOI: 10.1016/j.kint.2022.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/30/2022]
Abstract
The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of clinical pharmacy, Anhui provincial children's hospital, Hefei 230051, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Biao Wei
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Gui-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hong-Mei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei City 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
44
|
Inhibition of Poly (ADP-Ribose) Glycohydrolase Accelerates Osteoblast Differentiation in Preosteoblastic MC3T3-E1 Cells. Int J Mol Sci 2022; 23:ijms23095041. [PMID: 35563432 PMCID: PMC9103302 DOI: 10.3390/ijms23095041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Poly ADP-ribosylation (PARylation) is a post-translational modification catalyzed by poly (ADP-ribose) polymerase (PARP) family proteins such as PARP1. Although PARylation regulates important biological phenomena such as DNA repair, chromatin regulation, and cell death, little is known about the relationship between osteoblast differentiation and the PARylation cycle involving PARP1 and the poly (ADP-ribose)-degrading enzyme poly (ADP-ribose) glycohydrolase (PARG). Here, we examined the effects of PARP inhibitor olaparib, an approved anti-cancer agent, and PARG inhibitor PDD00017273 on osteoblast differentiation. Olaparib decreased alkaline phosphatase (ALP) activity and suppressed mineralized nodule formation evaluated by Alizarin Red S staining in preosteoblastic MC3T3-E1 cells, while PDD00017273 promoted ALP activity and mineralization. Furthermore, PDD00017273 up-regulated the mRNA expression levels of osteocalcin and bone sialoprotein, as osteoblast differentiation markers, and osterix as transcription inducers for osteoblast differentiation, whereas olaparib down-regulated the expression of these genes. These findings suggest that PARG inhibition by PDD00017273 accelerates osteoblast differentiation in MC3T3-E1 cells. Thus, PARG inhibitor administration could provide therapeutic benefits for metabolic bone diseases such as osteoporosis.
Collapse
|
45
|
Wang C, Zhang W, Xu W, Liu Z, Huang K. AMP-activated protein kinase α1 phosphorylates PHD2 to maintain systemic iron homeostasis. Clin Transl Med 2022; 12:e854. [PMID: 35538889 PMCID: PMC9091988 DOI: 10.1002/ctm2.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Iron is essential for all mammalian life, and either a deficiency or excess of iron can cause diseases. AMP-activated protein kinase (AMPK) is a critical regulator of metabolic homeostasis; however, it has not been established whether AMPK regulates iron metabolism. METHODS Iron, hepcidin and ferroportin levels were examined in mice with global and hepatocyte-specific knockout of AMPKα1 and AMPKα2. Primary AMPKα1 or AMPKα2 deleted hepatocytes were isolated and cultured in hypoxia condition to explore PHD2, HIF and hydroxylated HIF1α levels. We performed immunoprecipitation, in vitro AMPK kinase assay and site-direct mutant assay to detect phosphorylation sites of PHD2. We also obtained liver tissues from patients with anaemia of chronic disease undergoing surgery, AMPKα1 and hydroxylated HIF1α levels were measured by immunohistochemical analysis. RESULTS We found that mice with global deficiency of AMPKα1, but not AMPKα2, exhibited hypoferraemia as well as iron sequestration in the spleen and liver. Hepatocyte-specific, but not myeloid-specific, ablation of AMPKα1 also reduced serum iron levels in association with increased hepcidin and decreased ferroportin protein levels. Mechanistically, AMPKα1 directly phosphorylated prolyl hydroxylase domain-containing (PHD)2 at serines 61 and 136, which suppressed PHD2-dependent hydroxylation of hypoxia-inducible factor (HIF)1α and subsequent regulation of hepatic hepcidin-related iron signalling. Inhibition of PHD2 hydroxylation ameliorated abnormal iron metabolism in hepatic AMPKα1-deficient mice. Furthermore, we found hepatic AMPKα/PHD2/HIFα/ hepcidin axes were highly clinically relevant to anaemia of chronic disease. CONCLUSION In conclusion, these observations suggest that hepatic AMPKα1 has an essential role in maintaining iron homeostasis by PHD2-dependent regulation of hepcidin, thus providing a potentially promising approach for the treatment of iron disturbances in chronic diseases.
Collapse
Affiliation(s)
- Cheng Wang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular AgingTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of RheumatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wencheng Zhang
- Department of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenjing Xu
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaoyu Liu
- Department of CardiologySun Yat‐sen Memorial HospitalSun Yat‐sen University, GuangzhouChina
| | - Kai Huang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular AgingTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
46
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
47
|
He C, Liu M, Ding Q, Yang F, Xu T. Upregulated miR-9-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose treatment. J Bone Miner Metab 2022; 40:208-219. [PMID: 34750680 DOI: 10.1007/s00774-021-01280-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic osteoporosis (DOP) is a chronic diabetic complication, which is attributed to high glucose (HG)-induced dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have revealed that microRNAs (miRNAs) play critical roles in osteogenic differentiation of BMSCs in DOP. Here, the role of miR-9-5p in DOP progression was explored. MATERIALS AND METHODS The rat model of DOP was established by intraperitoneal injection of streptozotocin (STZ). BMSCs were treated with high glucose (HG) to establish in vitro models. Gene expression in BMSCs and bone tissues of rats was tested by RT-qPCR. The degree of osteogenic differentiation of BMSCs was examined by Alizarin Red staining and ALP activity analysis. The protein levels of collagen-I (COL1), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor-2 (RUNX2), and DEAD-Box Helicase 17 (DDX17) in BMSCs were evaluated by western blotting. The interaction between miR-9-5p and DDX17 was identified by luciferase reporter assay. H&E staining was used to test morphological structure of femurs of rats with STZ treatment. RESULTS MiR-9-5p was overexpressed in HG-treated BMSCs, while DDX17 was downregulated. Functionally, miR-9-5p knockdown promoted BMSCs osteogenic differentiation under HG condition. Mechanically, miR-9-5p targeted DDX17. DDX17 knockdown reversed the effect of miR-9-5p silencing on osteogenic differentiation of HG-treated BMSCs. In in vivo studies, miR-9-5p downregulation ameliorated the DOP condition of rats and miR-9-5p expression was negatively correlated with DDX17 expression in bone tissues of rats with STZ treatment. CONCLUSION MiR-9-5p knockdown promotes HG-induced osteogenic differentiation BMSCs in vitro and mitigates the DOP condition of rats in vivo by targeting DDX17.
Collapse
Affiliation(s)
- Chuanmei He
- Department of Nephrology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedics, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Qun Ding
- Department of Endocrinology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, 41 Hailian East Road, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Fumeng Yang
- Department of Laboratory, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Tongdao Xu
- Department of Endocrinology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, 41 Hailian East Road, Haizhou District, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
48
|
St. Hilaire C. Medial Arterial Calcification: A Significant and Independent Contributor of Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2022; 42:253-260. [PMID: 35081727 PMCID: PMC8866228 DOI: 10.1161/atvbaha.121.316252] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over 200 million individuals worldwide are estimated to have peripheral artery disease (PAD). Although the term peripheral can refer to any outer branch of the vasculature, the focus of this review is on lower-extremity arteries. The initial sequelae of PAD often include movement-induced cramping pain in the hips and legs or loss of hair and thinning of the skin on the lower limbs. PAD progresses, sometimes rapidly, to cause nonhealing ulcers and critical limb ischemia which adversely affects mobility and muscle tone; acute limb ischemia is a medical emergency. PAD causes great pain and a high risk of amputation and ultimately puts patients at significant risk for major adverse cardiovascular events. The negative impact on patients' quality of life, as well as the medical costs incurred, are huge. Atherosclerotic plaques are one cause of PAD; however, emerging clinical data now shows that nonatherosclerotic medial arterial calcification (MAC) is an equal and distinct contributor. This ATVB In Focus article will present the recent clinical findings on the prevalence and impact of MAC in PAD, discuss the known pathways that contribute specifically to MAC in the lower extremity, and highlight gaps in knowledge and tools that limit our understanding of MAC pathogenesis.
Collapse
Affiliation(s)
- Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
49
|
Zhou W, Feng Q, Cheng M, Zhang D, Jin J, Zhang S, Bai Y, Xu J. LncRNA H19 sponges miR-103-3p to promote the high phosphorus-induced osteoblast phenotypic transition of vascular smooth muscle cells by upregulating Runx2. Cell Signal 2022; 91:110220. [DOI: 10.1016/j.cellsig.2021.110220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
50
|
Huang J, Ralph D, Boraldi F, Quaglino D, Uitto J, Li Q. Inhibition of the DNA Damage Response Attenuates Ectopic Calcification in Pseudoxanthoma Elasticum. J Invest Dermatol 2022; 142:2140-2148.e1. [PMID: 35143822 PMCID: PMC9329183 DOI: 10.1016/j.jid.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable ectopic calcification disorder with multi-organ clinical manifestations. The gene at default, ABCC6, encodes an efflux transporter, ABCC6, which is a new player regulating the homeostasis of inorganic pyrophosphate (PPi), a potent endogenous anti-calcification factor. Previous studies suggested that systemic PPi deficiency is the major, but not the exclusive, cause of ectopic calcification in PXE. In this study, we demonstrate that the DNA damage response (DDR) and poly(ADP-ribose) (PAR) pathways are involved locally in PXE at sites of ectopic calcification. Genetic inhibition of PARP1, the predominant PAR-producing enzyme, showed a 54% reduction of calcification in the muzzle skin in Abcc6-/-Parp1-/- mice, as compared to age-matched Abcc6-/-Parp1+/+ littermates. Subsequently, oral administration of minocycline, an inhibitor of DDR/PAR signaling, resulted in an 86% reduction of calcification in the muzzle skin of Abcc6-/- mice. Minocycline treatment also attenuated the DDR/PAR signaling and reduced calcification of dermal fibroblasts derived from PXE patients. The anti-calcification effect of DDR/PAR inhibition was not accompanied by alterations in plasma PPi concentrations. These results suggest that local DDR/PAR signaling in calcification-prone tissues contributes to PXE pathogenesis, and its inhibition might provide a promising treatment strategy for ectopic calcification in PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Jianhe Huang
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Douglas Ralph
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Jouni Uitto
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiaoli Li
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|