1
|
Pelech P, Navarro PP, Vettiger A, Chao LH, Allolio C. Stress-mediated growth determines E. coli division site morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612282. [PMID: 39314472 PMCID: PMC11419054 DOI: 10.1101/2024.09.11.612282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan (PG) synthases and hydrolases around the constricting Z-ring. PG remodelling is reg-ulated by de-and re-crosslinking enzymes, and the directing constrictive force of the Z-ring. We introduce a model that is able to reproduce correctly the shape of the division site during the constriction and septation phase of E. coli . The model represents mechanochemical coupling within the mathematical framework of morphoelasticity. It contains only two parameters, associated with volumet-ric growth and PG remodelling, that are coupled to the mechanical stress in the bacterial wall. Different morphologies, corresponding either to mutant or wild type cells were recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell lysis data.
Collapse
|
2
|
Puls JS, Brajtenbach D, Schneider T, Kubitscheck U, Grein F. Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. SCIENCE ADVANCES 2023; 9:eade9023. [PMID: 36947615 PMCID: PMC10032595 DOI: 10.1126/sciadv.ade9023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bacterial cell wall biosynthesis is the target of many important antibiotics. Its spatiotemporal organization is closely coordinated with cell division. However, the role of peptidoglycan synthesis within cell division is not fully understood. Even less is known about the impact of antibiotics on the coordination of these two essential processes. Visualizing the essential cell division protein FtsZ and other key proteins in Staphylococcus aureus, we show that antibiotics targeting peptidoglycan synthesis arrest cell division within minutes of treatment. The glycopeptides vancomycin and telavancin completely inhibit septum constriction in all phases of cell division. The beta-lactam oxacillin stops division progress by preventing recruitment of the major peptidoglycan synthase PBP2 to the septum, revealing PBP2 as crucial for septum closure. Our work identifies cell division as key cellular target of these antibiotics and provides evidence that peptidoglycan synthesis is the essential driving force of septum constriction throughout cell division of S. aureus.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
3
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
4
|
Single-molecule imaging reveals that Z-ring condensation is essential for cell division in Bacillus subtilis. Nat Microbiol 2021; 6:553-562. [PMID: 33737746 PMCID: PMC8085161 DOI: 10.1038/s41564-021-00878-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Although many components of the cell division machinery in bacteria have been identified1,2, the mechanisms by which they work together to divide the cell remain poorly understood. Key among these components is the tubulin FtsZ, which forms a Z ring at the midcell. FtsZ recruits the other cell division proteins, collectively called the divisome, and the Z ring constricts as the cell divides. We applied live-cell single-molecule imaging to describe the dynamics of the divisome in detail, and to evaluate the individual roles of FtsZ-binding proteins (ZBPs), specifically FtsA and the ZBPs EzrA, SepF and ZapA, in cytokinesis. We show that the divisome comprises two subcomplexes that move differently: stationary ZBPs that transiently bind to treadmilling FtsZ filaments, and a moving complex that includes cell wall synthases. Our imaging analyses reveal that ZBPs bundle FtsZ filaments together and condense them into Z rings, and that this condensation is necessary for cytokinesis.
Collapse
|
5
|
Gilmore MC, Ritzl-Rinkenberger B, Cava F. An updated toolkit for exploring bacterial cell wall structure and dynamics. Fac Rev 2021; 10:14. [PMID: 33659932 PMCID: PMC7894271 DOI: 10.12703/r/10-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The bacterial cell wall is made primarily from peptidoglycan, a complex biomolecule which forms a bag-like exoskeleton that envelops the cell. As it is unique to bacteria and typically essential for their growth and survival, it represents one of the most successful targets for antibiotics. Although peptidoglycan has been studied intensively for over 50 years, the past decade has seen major steps in our understanding of this molecule because of the advent of new analytical and imaging methods. Here, we outline the most recent developments in tools that have helped to elucidate peptidoglycan structure and dynamics.
Collapse
Affiliation(s)
- Michael C Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Barbara Ritzl-Rinkenberger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Simulations of Proposed Mechanisms of FtsZ-Driven Cell Constriction. J Bacteriol 2021; 203:JB.00576-20. [PMID: 33199285 PMCID: PMC7811198 DOI: 10.1128/jb.00576-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 01/24/2023] Open
Abstract
FtsZ is thought to generate constrictive force to divide the cell, possibly via one of two predominant models in the field. In one, FtsZ filaments overlap to form complete rings which constrict as filaments slide past each other to maximize lateral contact. To divide, bacteria must constrict their membranes against significant force from turgor pressure. A tubulin homolog, FtsZ, is thought to drive constriction, but how FtsZ filaments might generate constrictive force in the absence of motor proteins is not well understood. There are two predominant models in the field. In one, FtsZ filaments overlap to form complete rings around the circumference of the cell, and attractive forces cause filaments to slide past each other to maximize lateral contact. In the other, filaments exert force on the membrane by a GTP-hydrolysis-induced switch in conformation from straight to bent. Here, we developed software, ZCONSTRICT, for quantitative three-dimensional (3D) simulations of Gram-negative bacterial cell division to test these two models and identify critical conditions required for them to work. We find that the avidity of any kind of lateral interactions quickly halts the sliding of filaments, so a mechanism such as depolymerization or treadmilling is required to sustain constriction by filament sliding. For filament bending, we find that a mechanism such as the presence of a rigid linker is required to constrain bending to within the division plane and maintain the distance observed in vivo between the filaments and the membrane. Of these two models, only the filament bending model is consistent with our lab’s recent observation of constriction associated with a single, short FtsZ filament. IMPORTANCE FtsZ is thought to generate constrictive force to divide the cell, possibly via one of two predominant models in the field. In one, FtsZ filaments overlap to form complete rings which constrict as filaments slide past each other to maximize lateral contact. In the other, filaments exert force on the membrane by switching conformation from straight to bent. Here, we developed software, ZCONSTRICT, for three-dimensional (3D) simulations to test these two models. We find that a mechanism such as depolymerization or treadmilling are required to sustain constriction by filament sliding. For filament bending, we find that a mechanism that constrains bending to within the division plane is required to maintain the distance observed in vivo between the filaments and the membrane.
Collapse
|
7
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
8
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
9
|
Zahir T, Pesek J, Franke S, Van Pee J, Rathore A, Smeets B, Ramon H, Xu X, Fauvart M, Michiels J. Model-Driven Controlled Alteration of Nanopillar Cap Architecture Reveals its Effects on Bactericidal Activity. Microorganisms 2020; 8:microorganisms8020186. [PMID: 32013036 PMCID: PMC7074768 DOI: 10.3390/microorganisms8020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Nanostructured surfaces can be engineered to kill bacteria in a contact-dependent manner. The study of bacterial interactions with a nanoscale topology is thus crucial to developing antibacterial surfaces. Here, a systematic study of the effects of nanoscale topology on bactericidal activity is presented. We describe the antibacterial properties of highly ordered and uniformly arrayed cotton swab-shaped (or mushroom-shaped) nanopillars. These nanostructured surfaces show bactericidal activity against Staphylococcus aureus and Pseudomonas aeruginosa. A biophysical model of the cell envelope in contact with the surface, developed ab initio from the infinitesimal strain theory, suggests that bacterial adhesion and subsequent lysis are highly influenced by the bending rigidity of the cell envelope and the surface topography formed by the nanopillars. We used the biophysical model to analyse the influence of the nanopillar cap geometry on the bactericidal activity and made several geometrical alterations of the nanostructured surface. Measurement of the bactericidal activities of these surfaces confirms model predictions, highlights the non-trivial role of cell envelope bending rigidity, and sheds light on the effects of nanopillar cap architecture on the interactions with the bacterial envelope. More importantly, our results show that the surface nanotopology can be rationally designed to enhance the bactericidal efficiency.
Collapse
Affiliation(s)
- Taiyeb Zahir
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
- Flanders Institute for Biotechnology (VIB)-KU Leuven Center of Microbiology, 3001 Leuven, Belgium
| | - Jiri Pesek
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), 3001 KU Leuven, Belgium
| | - Sabine Franke
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
| | - Jasper Van Pee
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
| | - Ashish Rathore
- Interuniversity Microelectronics Centre (imec), 3001 Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), 3001 KU Leuven, Belgium
| | - Herman Ramon
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), 3001 KU Leuven, Belgium
| | - Xiumei Xu
- Interuniversity Microelectronics Centre (imec), 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
- Flanders Institute for Biotechnology (VIB)-KU Leuven Center of Microbiology, 3001 Leuven, Belgium
- Interuniversity Microelectronics Centre (imec), 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
- Flanders Institute for Biotechnology (VIB)-KU Leuven Center of Microbiology, 3001 Leuven, Belgium
- Correspondence:
| |
Collapse
|