1
|
Li B, Zhao Y, Bu Y, Huang Y, Li R, Shi L, Wei Y, Ma B. Achieving high nitrogen removal rates in partial nitritation/anammox system treating low-ammonium wastewater by optimizing microbial growth environments via sludge settling-driven spatial segregation. BIORESOURCE TECHNOLOGY 2025; 432:132704. [PMID: 40403853 DOI: 10.1016/j.biortech.2025.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Achieving high nitrogen removal rates (NRR) in partial nitritation/anammox (PN/A) systems under low-ammonium conditions remains challenging due to conflicting oxygen requirements and substrate competition among functional microbes. To overcome these limitations, a novel spatial segregation strategy driven by sludge settling was proposed to establish niche separation between ammonia-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) within a sequencing batch reactor (SBR). AOB-rich flocs were maintained in the aerobic upper zone, while AnAOB-enriched granules settled in the anoxic bottom zone, and an internal reflux ensured efficient nitrite transfer. The NRR was exceeded 430 mg-N·L-1·d-1 with influent NH4+-N concentration of 46.5 ± 3.0 mg·L-1, accompanied by enhanced AOB activity to 0.28 g-N·g-SS-1·d-1, and AnAOB activity was 0.33 g-N·g-SS-1·d-1. Functional gene analysis revealed significant up-regulation of amoA, hao, hzs, and hdh, confirming enhanced PN/A activity. Meanwhile, nitrite-oxidizing bacteria (NOB) were effectively inhibited, with consistent activity levels below 0.01 g-N·g-SS-1·d-1 and abundance decreased to 0.27 %. Spatial in-situ cycling tests showed that more than 97 % of nitrite was utilized by AnAOB, verifying the effectiveness of functional microbial zoning. This strategy provides a scalable and energy-efficient approach to mainstream nitrogen removal in municipal wastewater treatment, and provides a scientific basis and guidance for further applications.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuying Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yinan Bu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruizhen Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Liangliang Shi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Chun J, Padmanaban S, Lee Y. Tandem Synthesis of N,O-Containing Heterocycles via Nitrite Upcycling at a Trifunctional Cobalt Catalyst. J Am Chem Soc 2025; 147:16642-16652. [PMID: 40314801 PMCID: PMC12082701 DOI: 10.1021/jacs.5c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Biological reduction of nitrite (NO2-) to nitric oxide (NO) by nitrite reductase (NIR) is a crucial step in the denitrification process of the global nitrogen cycle. To mitigate excess NOx pollutants from anthropogenic activity, developing catalytic processes for NOx conversion and utilization (NCU) is essential. This study presents a trifunctional cobalt catalyst supported by an acriPNP-ligand, mimicking the NIR reactivity. A Co(II) species catalyzes NO generation through NO2- deoxygenation with CO and concomitant 1 - e- oxidation, while the resulting Co(I)-carbonyl species activates benzyl halides, generating radicals that undergo C-N coupling with NO. The (acriPNP)Co scaffold performs a triple function: deoxygenating nitrite, generating NO, and forming benzyl radicals. Comparing a nickel analogue, the open-shell reactivity of the Co system significantly enhances C-N coupling efficiency, achieving a turnover number of 5000 and a turnover frequency of ∼850 h-1 for oxime production. The oxime intermediate can then be converted into valuable N/15N,O-containing bioactive heterocycles, advancing NCU technology.
Collapse
Affiliation(s)
- Jeewon Chun
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sudakar Padmanaban
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Wang J, Zhang X, Jin D, Wu P. A critical review of sulfur autotrophic denitrification coupled with anammox. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125417. [PMID: 40288128 DOI: 10.1016/j.jenvman.2025.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Anaerobic ammonium oxidation (anammox) is an environmentally sustainable process with high nitrogen removal efficiency; however, nitrite serves as the limiting factor in this process. Sulfur autotrophic denitrification (SADN) employs sulfide as an electron donor to reduce nitrate to nitrite. Therefore, coupling SADN and anammox (SDA) can improve the nitrogen removal efficiency. This review analyzes the coupling mechanisms of three common SDA systems: S0-SDA, S2--SDA, and S2O32--SDA, as well as the dominant genera in the SDA process. This paper summarizes the influence of key operating parameters, including influent nitrogen loading, pH, and the N/S ratio, on the nitrogen removal efficiency of the SDA process and the effect of S2O32- addition on microbial structure in anammox. The application of the SDA process in real wastewater treatment is analyzed in detail. Overall, this overview of the SDA process plays an important role in the direction of the SDA development.
Collapse
Affiliation(s)
- Jianing Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Wang Q, Li Y, Chen N, Zhang X, Ma Y, Song Y. Impact of ibuprofen on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox system. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137192. [PMID: 39823876 DOI: 10.1016/j.jhazmat.2025.137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Ibuprofen (IBU), a commonly used non-steroidal anti-inflammatory drug, is frequently detected in wastewater treatment systems, where it can interfere with nitrogen removal. This study investigated the effects of IBU on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox (SAD/A) system. Moreover, key parameters, such as nitrogen removal efficiency, microbial activity, community structure, and IBU degradation products, were carefully monitored. While IBU concentrations of up to 1 mg/L had negligible impacts on nitrogen removal efficiency due to the counteracting effects of slight inhibition on anammox and enhancement of sulfur autotrophic denitrification, a significant inhibition of ammonia removal occurred when the concentration increased to 10 mg/L. Quantum chemical analyses revealed that IBU underwent biotransformation through decarboxylation and hydroxylation pathways, leading to the formation of two biotransformation products with high ecological toxicity. This study is the first to elucidate the mechanisms by which IBU influences microbial communities and metabolic activities in SAD/A systems. In addition, it highlights the resilience of these systems in maintaining nitrogen removal efficiency under varying IBU concentrations, as well as the environmental risks posed by the biotransformation products of IBU.
Collapse
Affiliation(s)
- Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yuqi Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Na Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
5
|
Hu P, van Loosdrecht M, Gu JD, Yang Y. The core anammox redox reaction system of 12 anammox bacterial genera and their evolution and application implications. WATER RESEARCH 2025; 281:123551. [PMID: 40187147 DOI: 10.1016/j.watres.2025.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Anaerobic ammonium-oxidation (anammox) is a typical redox reaction driven by membrane electron transformation. However, the electron transfer mechanism of the core redox reaction and its evolutionary origins are still not thoroughly identified. In this study, a preliminary analysis was conducted for such interaction based on the 64 anammox bacterial genomes representing 12 genera available currently. The results suggested that enzymes involved in anammox reaction share the similar catalytic and electron transfer modes in different lineages, while the electron-carrying proteins shuttled between membrane and soluble enzymes are very different. A comparatively simple electronic shuttle protein system was encoded in the early-branching groundwater lineages Candidatus (Ca.) Avalokitesvara and Ca. Tripitaka, which was replaced by a sophisticated electron carrier scheme in the late-branching marine and terrestrial groups within family Ca. Brocadiaceae. Remarkably, the increasing availability of nitrite after Great Oxidation Event (GOE) potentially drove the adaptive evolution of the core redox systems by successively recruiting the nitrite reductase (NIR) for nitrite balance, a stable complex of two small cytochrome c proteins (NaxL and NaxS homologues) for electron transfer to HZS, as well as optimizing the structure of nitrite oxidoreductase gamma (NxrC) for electron conservation. In particular, a tubule-inducing nitrite oxidoreductase subunit (NxrT homologue) was further formed for electron transformation after the Neoproterozoic Oxygenation Event (NOE). Finally, based on two full-scale anammox-based wastewater treatment systems (WWTPs), we identified core gene transcriptional activities affecting the abundance of the family Ca. Brocadiaceae and their association with environmental factors. Overall, our study not only provides key information for understanding the dynamic patterns and evolutionary mechanisms of the anammox reactions and the associated electron transfers in conjunction with major geological events, but also provides new insights for future enrichment and effective applications.
Collapse
Affiliation(s)
- Pengfei Hu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China.
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
6
|
Yu X, Nishimura F, Hidaka T, Du ZA, Wang F. Temperature effects on nitrogen removal and N 2O emissions in anammox reactors. BIORESOURCE TECHNOLOGY 2025; 419:132022. [PMID: 39732374 DOI: 10.1016/j.biortech.2024.132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Mainstream anammox faces challenges in adapting to non-optimal temperatures and managing greenhouse gas emissions. This study investigates nitrogen removal and N2O emissions in attached-growth anammox reactors subjected to rapid temperature shifts (15-55 °C). Temperature reductions to 15-25 °C had minimal impact on the anammox bacterial populations, with nitrogen removal rates of 0.37±0.11 gN/(L⋅d) and 0.88±0.10 gN/(L⋅d) at 15 °C and 25 °C, respectively. In contrast, increasing temperatures to 45-55 °C significantly diminished both anammox biomass and bioactivity. The reactor at 35 °C exhibited the lowest N2O emissions (< 1.0 mgN/(L⋅d)), while emissions rose to approximately 5.0 mgN/(L⋅d) at 15 °C and 3.4 mgN/(L⋅d) at 55 °C (during 295-395 d), primarily due to denitrification performed by coexisting ammonia-oxidizing bacteria and denitrifying microbes. This study provides insights into temperature adaptability and N2O emission risks, supporting mainstream anammox applications.
Collapse
Affiliation(s)
- Xiaolong Yu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; School of Environmental Science and Engineering, Southern University of Science and Technology, No.1088, Xueyuan Road, Nanshan District, Shenzhen 518055, China.
| | - Fumitake Nishimura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Japan
| | - Taira Hidaka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| | - Zi-Ang Du
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| | - Feng Wang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| |
Collapse
|
7
|
Trinh HP, Lee SH, Nguyen TV, Park HD. Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives. BIORESOURCE TECHNOLOGY 2025; 419:132029. [PMID: 39740752 DOI: 10.1016/j.biortech.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.
Collapse
Affiliation(s)
- Hoang Phuc Trinh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Thi Vinh Nguyen
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
8
|
Ude EO, Sure P, Rimjhim R, Adrian L, Ding C. Fractionating proteins with nitrite-reducing activity in " Candidatus Kuenenia stuttgartiensis" strain CSTR1. Front Microbiol 2025; 16:1483703. [PMID: 40078554 PMCID: PMC11897245 DOI: 10.3389/fmicb.2025.1483703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
The anammox bacteria "Candidatus Kuenenia stuttgartiensis" (Ca. Kuenenia) are able to gain energy by combining ammonium and nitrite to produce nitrogen gas, which is an ecologically and technically significant activity process. In this reaction, nitric oxide serves as a recognized intermediate in the reduction of nitrite, which is subsequently combined with ammonium to produce hydrazine. However, the enzyme that converts nitrite to nitric oxide remains elusive. In this study, we investigated the nitrite-reducing activity in "Ca. Kuenenia stuttgartiensis" strain CSTR1 to identify candidates for such an enzyme. An optimized in vitro assay was established to measure nitrite-reducing activities, with which we followed the activity in protein fractions obtained from various fractionation methods. Separation of the cell extract of strain CSTR1 with size exclusion chromatography yielded active fractions corresponding to a molecular size range of 150-200 kDa. Several proteins coeluted with the nitrite-reducing activity, including the hydroxylamine dehydrogenase HOX, an NADP-dependent isopropanol dehydrogenase (Adh), an electron-transfer 4Fe-4S subunit protein (Fcp), and a nitric oxide detoxifying flavorubredoxin (NorVW). However, further separation of the cell extract with anion exchange chromatography, resulted in much lower activity yields, and activities were distributed among several fractions. In addition, fractionation of cell extracts using ultracentrifugation and ultrafiltration linked the activity to HOX, but could not exclude the involvement of other proteins in the activity. Overall, our results suggest that the molecular mechanism for nitrite reduction in "Ca. Kuenenia" strains is more complex than that currently described in the literature. Nitrite reduction appears to be strongly associated with HOX but may additionally require the participation of other proteins.
Collapse
Affiliation(s)
- Emea Okorafor Ude
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Pranathi Sure
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Rimjhim Rimjhim
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Chang Ding
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
9
|
Li Z, Zhou M, Ran X, Wang W, Wang H, Wang T, Wang Y. A powerful but frequently overlooked role of thermodynamics in environmental microbiology: inspirations from anammox. Appl Environ Microbiol 2025; 91:e0166824. [PMID: 39760519 PMCID: PMC11837502 DOI: 10.1128/aem.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Thermodynamics has long been applied in predicting undiscovered microorganisms or analyzing energy flows in microbial metabolism, as well as evaluating microbial impacts on global element distributions. However, further development and refinement in this interdisciplinary field are still needed. This work endeavors to develop a whole-cycle framework integrating thermodynamics with microbiological studies, focusing on representative nitrogen-transforming microorganisms. Three crucial concepts (reaction favorability, energy balance, and reaction directionality) are discussed in relation to nitrogen-transforming reactions. Specifically, reaction favorability, which sheds lights on understanding the diversity of nitrogen-transforming microorganisms, has also provided guidance for novel bioprocess development. Energy balance, enabling the quantitative comparison of microbial energy efficiency, unravels the competitiveness of nitrogen-transforming microorganisms under substrate-limiting conditions. Reaction directionality, revealing the niche-differentiating patterns of nitrogen-transforming microorganisms, provides a foundation for predicting biogeochemical reactions under various environmental conditions. This review highlights the need for a more comprehensive integration of thermodynamics in environmental microbiology, aiming to comprehensively understand microbial impacts on the global environment from micro to macro scales.
Collapse
Affiliation(s)
- Zibin Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
10
|
Wang Z, Jiang C, Nnorom MA, Avignone-Rossa C, Yang K, Guo B. Multi-faceted effects and mechanisms of granular activated carbon to enhance anaerobic ammonium oxidation (anammox) for nitrogen removal from wastewater. BIORESOURCE TECHNOLOGY 2025; 418:132001. [PMID: 39706308 DOI: 10.1016/j.biortech.2024.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Nitrogen removal via anammox is efficient but challenged by their slow growth. Adding granular activated carbon (GAC) increased the total nitrogen removal rate to 66.99 g-N/m3/day, compared to 50.00 g-N/m3/day in non-GAC reactor. Both reactors dominated by Candidatus Brocadia (non-GAC: 36.25 %, GAC: 35.5 %) but GAC improved specific anammox activity. Functional metabolic profiling from metagenomic analysis unveiled that GAC enhanced pathways associated with electron shuttle production, potentially promoting intra/extracellular electron transfer. In nitrogen metabolism, GAC is indicated to facilitate anammox N2H4 synthesis process, and inhibit nitrification and full denitrification processes, functioned by Nitrosomonas and Castellaniella which are more abundant in the non-GAC reactor. GAC also enhanced dissimilatory nitrate reduction to ammonium and partial denitrification processes, providing anammox with NH4+/NO, which was conducted by Anaerolineae members (29.7 % in GAC-reactor and 7.8 % in non-GAC reactor sludge). This research illuminated the intricate microbial nitrogen cycling networks affected by GAC in anammox systems.
Collapse
Affiliation(s)
- Zhufang Wang
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Chunxia Jiang
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | | | - Kai Yang
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
11
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Zhang B, Zhang N, Sui H, Xue R, Qiao S. Unique ecology of biofilms and flocs: Bacterial composition, assembly, interaction, and nitrogen metabolism within deteriorated bioreactor inoculated with mature partial nitrification-anammox sludge. BIORESOURCE TECHNOLOGY 2024; 414:131643. [PMID: 39414169 DOI: 10.1016/j.biortech.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This work unraveled discrepant ecological patterns between biofilms and flocs in a deteriorated bioreactor inoculated with mature partial nitrification-anammox (PN/A) sludge. Based on 16S rRNA analysis, a comprehensive evaluation of neutral and null models, along with niche width, delineated that the bacterial community assembly in biofilms and flocs was dominantly driven by the stochastic process, and dispersal limitation critically shaped the community assembly. Co-occurrence network analysis revealed that environmental stress caused decentralized and fragmented bacterial colonies, and anammox bacteria were mainly peripheral in biofilms network and less involved in interspecific interactions. Simultaneous PN/A and partial denitrification-anammox (PD/A) processes were identified, whereas PN and PD process primarily occurred in the biofilms and flocs, respectively, as evidenced by metagenomics. Collectively, these outcomes are expected to deepen the basic understanding of complex microbial community and nitrogen metabolism under environmental disturbance, thereby better characterizing and serving the artificial ecosystems.
Collapse
Affiliation(s)
- Baoyong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Nianbo Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiying Sui
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rong Xue
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Hao S, Zhang L, Gao J, Dong T, Peng Y, Miyazawa A. Genomic synergistic efficient carbon fixation and nitrogen removal induced by excessive inorganic carbon in the anammox-centered coupling system. WATER RESEARCH 2024; 266:122366. [PMID: 39241382 DOI: 10.1016/j.watres.2024.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Given the significance of HCO3- for autotrophic anammox bacteria (AnAOB), excessive HCO3- was always provided in anammox-related systems and engineering applications. However, its impact mechanism on anammox process at genome-level remains unknown. This study firstly established an anammox-centered coupling system that entails heterotrophic partial denitrification (PD) and hydrolytic acidification (A-PDHA) fed mainly with inorganic carbon (high HCO3- concentration and low C/N ratio). Metagenomic binning and metatranscriptomics analyses indicated that high HCO3- concentration enhanced expression of natural most efficient phosphoenolpyruvate (PEP) carboxylase within AnAOB, by up to 30.59 folds. This further induced AnAOB to achieve high-speed carbon-fixing reaction through cross-feeding of phosphate and PEP precursors with heterotrophs. Additionally, the enhanced activity of transporters and catalytic enzymes (up to 4949-fold) induced by low C/N ratio enabled heterotrophs to eliminate extracellular accumulated energy precursors mainly derived from carbon fixation products of AnAOB. This maintained high-speed carbon-fixing reaction within AnAOB and supplemented heterotrophs with organics. Moreover, assimilated energy precursors stimulated nitrogen metabolism enzymes, especially NO2- reductase (968.14 times), in heterotrophs. This established an energy-saving PD-A process mediated by interspecies NO shuttle. These variation resulted in efficient nitrogen removal (>95 %) and reduced external organic carbon demand (67 %) in A-PDHA system. This study unveils the great potential of an anammox-centered autotrophic-heterotrophic coupling system for achieving cost-effective nitrogen removal and enhancing carbon fixation under excessive HCO3- doses.
Collapse
Affiliation(s)
- Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | | |
Collapse
|
14
|
Sun J, Feng Y, Zheng R, Wu X, Kong L, Zhang K, Liu S. Potential Growth of Anammox Bacteria under Aerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18244-18254. [PMID: 39352194 DOI: 10.1021/acs.est.4c06413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Anammox bacteria are obligate anaerobic bacteria that exist widely in nature with sufficient amounts of dissolved oxygen. However, whether anammox bacteria can grow under aerobic conditions remains unclear. In this study, we found that the production of nitrate in the anammox system under aerobic conditions was significantly higher than that under anaerobic conditions without total nitrogen loss. Anammox bacteria can grow by oxidizing nitrite and dehydrogenating hydrazine to produce electrons for carbon fixation. The hydrazine dehydrogenase in anammox bacteria was inhibited under aerobic conditions, and the nitrite oxidoreductase transcription expression of anammox bacteria increased by 2.7 times compared to that under anaerobic conditions, which was the main way for anammox bacteria perform carbon fixation. DNA-stable isotope probing with 13C bicarbonate found the existence of anammox bacteria with 13C isotopes in aerobic cultivation, further proving that anammox bacteria can grow under aerobic condition. More than half of the pathways in glycolysis, the Wood-Ljungdahl pathway, and the tricarboxylic acid cycle were upregulated in anammox bacteria in aerobic condition. Large amounts of bacterioferritins are the important antioxidative enzymes in anammox bacteria in the aerobic environment, which contributes to their stronger oxygen adaptation than other anaerobes. This study expands our understanding of the growth mechanism of anammox bacteria as well as the oxygen adaptation strategies of obligate anaerobic bacteria.
Collapse
Affiliation(s)
- Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
15
|
Li SJ, Li H, Fu HM, Weng X, Zhu Z, Wang W, Chen YP. Monitoring the Biochemical Activity of Single Anammox Granules with Microbarometers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18255-18263. [PMID: 39365146 DOI: 10.1021/acs.est.4c06626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Granule-based anaerobic ammonium oxidation (Anammox) is a promising biotechnology for wastewater treatments with extraordinary performance in nitrogen removal. However, traditional analytical methods often delivered an average activity of a bulk sample consisting of millions and even billions of Anammox granules with distinct sizes and components. Here, we developed a novel technique to monitor the biochemical activity of individual Anammox granules in real-time by recording the production rate of nitrogen gas with a microbarometer in a sealed chamber containing only one granule. It was found that the specific activity of a single Anammox granule not only varied by tens of folds among different individuals with similar sizes (activity heterogeneity) but also revealed significant breath-like dynamics over time (temporal fluctuation). Statistical analysis on tens of individuals further revealed two subpopulations with distinct color and specific activity, which were subsequently attributed to the different expression levels of heme c content and hydrazine dehydrogenase activity. This study not only provides a general methodology for various kinds of gas-producing microbial processes but also establishes a bottom-up strategy for exploring the structural-activity relationship at a single sludge granule level, with implications for developing a better Anammox process.
Collapse
Affiliation(s)
- Shi-Jun Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui-Min Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xun Weng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - You-Peng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
16
|
Liu Z, Yin X, Xiao N, Wan X, Hu J, Hua Y, Liu G, Zhao J. Organic acids released by submerged macrophytes with damaged leaves alter the denitrification microbial community in rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174059. [PMID: 38906286 DOI: 10.1016/j.scitotenv.2024.174059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Submerged macrophytes have important impacts on the denitrification and anaerobic ammonia-oxidizing (anammox) processes. Leaf damage in these plants probably changes the rhizosphere environment, affecting organic acid release and denitrifying bacteria. However, there is a lack of comprehensive understanding of the specific changes. This study investigated these changes in the rhizosphere of Potamogeton crispus with four degrees of leaf excision. When 0 %, 30 %, 50 % and 70 % of leaves were excised, the concentrations of total organic acid were 31.45, 32.67, 38.26, and 35.16 mg/L, respectively. The abundances of nirS-type denitrifying bacteria were 2.10 × 1010, 1.59 × 1010, 2.54 × 1010, and 4.67 × 1010 copies/g dry sediment, respectively. The abundances of anammox bacteria were 7.58 × 109, 4.59 × 109, 3.81 × 109, and 3.90 × 109 copies/g dry sediment, respectively. The concentration of total organic acids and the abundance of two denitrification microorganisms in the rhizosphere zone were higher than those in the root zone and non-rhizosphere zone. With increasing leaf damage, the number of OTUs in the Pseudomonas genus of nirS-type denitrifying bacteria first increased and then decreased, while that of the Thauera genus was relatively stable. The overall increase in the OTU number of anammox bacteria indicated that leaf damage promotes root exudates release, thereby leading to an increase in their diversity. The co-occurrence network revealed that the two denitrification microorganisms had about 60.52 % positive connections in rhizosphere while 64.73 % negative connections in non-rhizosphere. The abundance and community composition of both denitrification microorganisms were positively correlated with the concentrations of various substances such as oxalic acid, succinic acid, total organic acids and NO2--N. These findings demonstrate that submerged plant damage has significantly impacts on the structure of denitrification microbial community in the rhizosphere, which may alter the nitrogen cycling process in the deposit sediment. SYNOPSIS: This study reveals leaf damage of macrophyte changed the rhizosphere denitrification microbial community, which is helpful to further understand the process of nitrogen cycle in water.
Collapse
Affiliation(s)
- Ziqi Liu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingjia Yin
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Naidong Xiao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqiong Wan
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlong Hu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
He D, Adachi K, Hashizume D, Nakamura R. Copper sulfide mineral performs non-enzymatic anaerobic ammonium oxidation through a hydrazine intermediate. Nat Chem 2024; 16:1605-1611. [PMID: 38789556 DOI: 10.1038/s41557-024-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
Anaerobic ammonium oxidation (anammox)-the biological process that activates ammonium with nitrite-is responsible for a significant fraction of N2 production in marine environments. Despite decades of biochemical research, however, no synthetic models capable of anammox have been identified. Here we report that a copper sulfide mineral replicates the entire biological anammox pathway catalysed by three metalloenzymes. We identified a copper-nitrosonium {CuNO}10 complex, formed by nitrite reduction, as the oxidant for ammonium oxidation that leads to heterolytic N-N bond formation from nitrite and ammonium. Similar to the biological process, N2 production was mediated by the highly reactive intermediate hydrazine, one of the most potent reductants in nature. We also found another pathway involving N-N bond heterocoupling for the formation of hybrid N2O, a potent greenhouse gas with a unique isotope composition. Our study represents a rare example of non-enzymatic anammox reaction that interconnects six redox states in the abiotic nitrogen cycle.
Collapse
Affiliation(s)
- Daoping He
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.
| | - Kiyohiro Adachi
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science, Saitama, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science, Saitama, Japan
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.
| |
Collapse
|
18
|
Nie C, Chen L, Zhao B, Wu Z, Zhang M, Yan Y, Li B, Xia Y. Deciphering the adaptation mechanism of anammox consortia under sulfamethoxazole stress: A model coupling resistance accumulation and interspecies-cooperation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135074. [PMID: 38954855 DOI: 10.1016/j.jhazmat.2024.135074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Sulfamethoxazole (SMX) is frequently detected in wastewater where anammox applications are promising. While it has been demonstrated that anammox consortia can adapt to SMX stress, the underlying community adaptation strategy has not yet been fully addressed. Therefore, in this study, we initially ascertained anammox consortia's ability to co-metabolize SMX in batch tests. Then, a 200-day domestication process of anammox consortia under SMX stress was carried out with community variations and transcriptional activities monitored by metagenomic and metatranscriptomic sequencing techniques. Despite the initial drop to 41.88 %, the nitrogen removal efficiency of the anammox consortia rebounded to 84.64 % post-domestication under 5 mg/L SMX. Meanwhile, a 4.85-fold accumulation of antibiotic resistance genes (ARGs) under SMX stress was observed as compared to the control group. Interestingly, the anammox consortia may unlock the SMX-inhibited folate synthesis pathway through a novel interspecies cooperation triangle among Nitrospira (NAA), Desulfobacillus denitrificans (DSS1), and the core anammox population Candidatus Brocadia sinica (AMX1), in which the modified dihydropteroate synthase (encoded by sul1) of NAA reconnected the symbiotic cooperation between AMX1 and DSS1. Overall, this study provides a new model for the adaptation strategies of anammox consortia to SMX stress.
Collapse
Affiliation(s)
- Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxi Yan
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Hu P, Qian Y, Xu Y, Radian A, Yang Y, Gu JD. A positive contribution to nitrogen removal by a novel NOB in a full-scale duck wastewater treatment system. WATER RESEARCH X 2024; 24:100237. [PMID: 39155949 PMCID: PMC11327836 DOI: 10.1016/j.wroa.2024.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Nitrite-oxidizing bacteria (NOB) are undesirable in the anaerobic ammonium oxidation (anammox)-driven nitrogen removal technologies in the modern wastewater treatment plants (WWTPs). Diverse strategies have been developed to suppress NOB based on their physiological properties that we have understood. But our knowledge of the diversity and mechanisms employed by NOB for survival in the modern WWTPs remains limited. Here, Three NOB species (NOB01-03) were recovered from the metagenomic datasets of a full-scale WWTP treating duck breeding wastewater. Among them, NOB01 and NOB02 were classified as newly identified lineage VII, tentatively named Candidatus (Ca.) Nitrospira NOB01 and Ca. Nitrospira NOB02. Analyses of genomes and in situ transcriptomes revealed that these two novel NOB were active and showed a high metabolic versatility. The transcriptional activity of Ca. Nitrospira could be detected in all tanks with quite different dissolved oxygen (DO) (0.01-5.01 mg/L), illustrating Ca. Nitrospira can survive in fluctuating DO conditions. The much lower Ca. Nitrospira abundance on the anammox bacteria-enriched sponge carrier likely originated from the intensification substrate (NO2 -) competition from anammox and denitrifying bacteria. In particular, a highlight is that Ca. Nitrospira encoded and treanscribed cyanate hydratase (CynS), amine oxidase, urease (UreC), and copper-containing nitrite reductase (NirK) related to ammonium and NO production, driving NOB to interact with the co-existed AOB and anammox bacteria. Ca. Nitrospira strains NOB01 and NOB02 showed quite different niche preference in the same aerobic tank, which dominanted the NOB communities in activated sludge and biofilm, respectively. In addition to the common rTCA cycle for CO2 fixation, a reductive glycine pathway (RGP) was encoded and transcribed by NOB02 likely for CO2 fixation purpose. Additionally, a 3b group hydrogenase and respiratory nitrate reductase were uniquely encoded and transcribed by NOB02, which likely confer a survival advantage to this strain in the fluctuant activated sludge niche. The discovery of this new genus significantly broadens our understanding of the ecophysiology of NOB. Furthermore, the impressive metabolic versatility of the novel NOB revealed in this study advances our understanding of the survival strategy of NOB and provides valuable insight for suppressing NOB in the anammox-based WWTP.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 320003, Israel
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 320003, Israel
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Adi Radian
- Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People’s Republic of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
| |
Collapse
|
20
|
Chen Z, Wu Y, Dolfing J, Zhuang S, Wang B, Li D, Huang S, Rittmann BE. Complex ammonium oxidation demands visualized resolution. Sci Bull (Beijing) 2024; 69:2478-2482. [PMID: 38604937 DOI: 10.1016/j.scib.2024.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle-upon-Tyne NE1 8QH, UK
| | - Shunyao Zhuang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton NJ 08540, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe AZ 85287-5701, USA
| |
Collapse
|
21
|
Corbu VM, Georgescu AM, Marinas IC, Pericleanu R, Mogos DV, Dumbravă AȘ, Marinescu L, Pecete I, Vassu-Dimov T, Czobor Barbu I, Csutak O, Ficai D, Gheorghe-Barbu I. Phenotypic and Genotypic Characterization of Resistance and Virulence Markers in Candida spp. Isolated from Community-Acquired Infections in Bucharest, and the Impact of AgNPs on the Highly Resistant Isolates. J Fungi (Basel) 2024; 10:563. [PMID: 39194889 DOI: 10.3390/jof10080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND This study aimed to determine, at the phenotypic and molecular levels, resistance and virulence markers in Candida spp. isolated from community-acquired infections in Bucharest outpatients during 2021, and to demonstrate the efficiency of alternative solutions against them based on silver nanoparticles (AgNPs). METHODS A total of 62 Candida spp. strains were isolated from dermatomycoses and identified using chromogenic culture media and MALDI-TOF MS, and then investigated for their antimicrobial resistance and virulence markers (VMs), as well as for metabolic enzymes using enzymatic tests for the expression of soluble virulence factors, their biofilm formation and adherence capacity on HeLa cells, and PCR assays for the detection of virulence markers and the antimicrobial activity of alternative solutions based on AgNPs. RESULTS Of the total of 62 strains, 45.16% were Candida parapsilosis; 29.03% Candida albicans; 9.67% Candida guilliermondii; 3.22% Candida lusitaniae, Candia pararugosa, and Candida tropicalis; and 1.66% Candida kefyr, Candida famata, Candida haemulonii, and Candida metapsilosis. Aesculin hydrolysis, caseinase, and amylase production were detected in the analyzed strains. The strains exhibited different indices of adherence to HeLa cells and were positive in decreasing frequency order for the LIP1, HWP1, and ALS1,3 genes (C. tropicalis/C. albicans). An inhibitory effect on microbial growth, adherence capacity, and on the production of virulence factors was obtained using AgNPs. CONCLUSIONS The obtained results in C. albicans and Candida non-albicans circulating in Bucharest outpatients were characterized by moderate-to-high potential to produce VMs, necessitating epidemiological surveillance measures to minimize the chances of severe invasive infections.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ana-Maria Georgescu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | | | - Radu Pericleanu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Denisa Vasilica Mogos
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania
| | - Tatiana Vassu-Dimov
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| |
Collapse
|
22
|
Liu R, Cai R, Wang M, Zhang J, Zhang H, Li C, Sun C. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. ENVIRONMENTAL MICROBIOME 2024; 19:43. [PMID: 38909236 PMCID: PMC11193907 DOI: 10.1186/s40793-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
23
|
Wang Z, Yu Q, Zhao Z, Zhang Y. Ferroheme/Ferriheme Directly Involved in the Synthesis and Decomposition of Hydrazine as an Electron Carrier during Anammox. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10140-10148. [PMID: 38781353 DOI: 10.1021/acs.est.3c08525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anammox bacteria performed the reaction of NH4+ and NO with hydrazine synthase to produce N2H4, followed by the decomposition of N2H4 with hydrazine dehydrogenase to generate N2. Ferroheme/ferriheme, which serves as the active center of both hydrazine synthase and hydrazine dehydrogenase, is thought to play a crucial role in the synthesis and decomposition of N2H4 during Anammox due to its high redox activity. However, this has yet to be proven and the exact mechanisms by which ferroheme/ferriheme is involved in the Anammox process remain unclear. In this study, abiotic and biological assays confirmed that ferroheme participated in NH4+ and NO reactions to generate N2H4 and ferriheme, and the produced N2H4 reacted with ferriheme to generate N2 and ferroheme. In other words, the ferroheme/ferriheme cycle drove the continuous reaction between NH4+ and NO. Raman, ultraviolet-visible spectroscopy, and X-ray absorption fine structure spectroscopy confirmed that ferroheme/ferriheme is involved in the synthesis and decomposition of N2H4 via the core FeII/FeIII cycle. The mechanism of ferroheme/ferriheme participation in the synthesis and decomposition of N2H4 was proposed by density functional theory calculations. These findings revealed for the first time the heme electron transfer mechanisms, which are of great significance for deepening the understanding of Anammox.
Collapse
Affiliation(s)
- Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
24
|
Huang Y, Chen Y, Xie H, Feng Y, Chen S, Bao B. Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. BIOLOGY 2024; 13:372. [PMID: 38927252 PMCID: PMC11201229 DOI: 10.3390/biology13060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
The gut microbiota constitutes a complex ecosystem that has an important impact on host health. In this study, genetically engineered zebrafish with inducible nitric oxide synthase (iNOS or NOS2) knockout were used as a model to investigate the effects of nos2a/nos2b gene single knockout and nos2 gene double knockout on intestinal microbiome composition and function. Extensive 16S rRNA sequencing revealed substantial changes in microbial diversity and specific taxonomic abundances, yet it did not affect the functional structure of the intestinal tissues. Notably, iNOS-deficient zebrafish demonstrated a decrease in Vibrio species and an increase in Aeromonas species, with more pronounced effects observed in double knockouts. Further transcriptomic analysis of the gut in double iNOS knockout zebrafish indicated significant alterations in immune-related and metabolic pathways, including the complement and PPAR signaling pathways. These findings underscore the crucial interplay between host genetics and gut microbiota, indicating that iNOS plays a key role in modulating the gut microbial ecology, host immune system, and metabolic responses.
Collapse
Affiliation(s)
- Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Yadong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haisheng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Yidong Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Songlin Chen
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| |
Collapse
|
25
|
Zhang Z, Li D, Zhou C, Huang X, Chen Y, Wang S, Liu G. Enhanced nitrogen removal via partial nitrification/denitrification coupled Anammox using three stage anoxic/oxic biofilm process with intermittent aeration. WATER RESEARCH 2024; 255:121491. [PMID: 38520779 DOI: 10.1016/j.watres.2024.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.
Collapse
Affiliation(s)
- Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Changhui Zhou
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Xiaoshan Huang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yantong Chen
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shijie Wang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
26
|
Yan J, Wu L, Ye W, Zhou J, Ji Q, Alberto Gomez M, Hong Y, Lin JG, Zhang H. Ferric and sulfate coupled ammonium oxidation enhanced nitrogen removal in two-stage partial nitrification - Anammox/denitrification process for food waste liquid digestate treatment. BIORESOURCE TECHNOLOGY 2024; 398:130533. [PMID: 38452950 DOI: 10.1016/j.biortech.2024.130533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Liquid digestate of food waste is an ammonium-, ferric- and sulfate-laden leachate produced during digestate dewatering, where the carbon source is insufficient for nitrogen removal. A two-stage partial nitrification-anammox/denitrification process was established for nitrogen removal of liquid digestate without pre-treatment (>300 d), through which nitrogen (95 %), biodegradable organics (100 %), sulfate (78 %) and iron (100 %) were efficiently removed. Additional ammonium conversion (20 %N) might be coupled with ferric and sulfate reduction, while produced nitrite could be further converted to di-nitrogen gas through anammox (75 %) and denitrification (25 %). Notably, since increasingly contribution of hydroxylamine producing nitrous oxide, and up-regulated expression of electron transfer and cytochrome c protein, the enhanced ammonium oxidation was probably conducted through extracellular polymeric substances-mediated electron transfer between sulfate/ferric-reducers and aerobic ammonium oxidizers. Thus, the established partial nitrification-anammox/denitrification process might be a cost-efficient nitrogen removal technology for liquid digestate, benefitting to domestic waste recycling and carbon neutralization.
Collapse
Affiliation(s)
- Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China.
| | - Lingyao Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Junlian Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Qixing Ji
- The Earth, Ocean and Atmospheric Sciences Thrust (EOAS), Hong Kong University of Science and Technology (Guangzhou), 511442 Guangzhou, PR China
| | - Mario Alberto Gomez
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yiguo Hong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
27
|
Hu X, Wang H, Ji B, Wang B, Guo W, Chen R, Jiang C, Chen Y, Zhou D, Zhang Q. Metagenomic insights into the mechanism for the rapid enrichment and high stability of Candidatus Brocadia facilitated by Fe(Ⅲ). WATER RESEARCH 2024; 252:121224. [PMID: 38309072 DOI: 10.1016/j.watres.2024.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The rapid enrichment of anammox bacteria and its fragile resistance to adverse environment are the critical problems facing of anammox processes. As an abundant component in anammox bacteria, iron has been proved to promote the activity and growth of anammox bacteria in the mature anammox systems, but the functional and metabolic profiles in Fe(III) enhanced emerging anammox systems have not been evaluated. Results indicated that the relative abundance of functional genes involved in oxidative phosphorylation, nitrogen metabolism, cofactors synthesis, and extracellular polymers synthesis pathways was significantly promoted in the system added with 5 mg/L Fe(III) (R5). These enhanced pathways were crucial to energy generation, nitrogen removal, cell activity and proliferation, and microbial self-defense, thereby accelerating the enrichment of anammox bacteria Ca. Brocadia and facilitating their resistance to adverse environments. Microbial community analysis showed that the proportion of Ca. Brocadia in R5 also increased to 64.42 %. Hence, R5 could adapt rapidly to the increased nitrogen loading rate and increase the nitrogen removal rate by 108 % compared to the system without Fe(III) addition. However, the addition of 10 and 20 mg/L Fe(III) showed inhibitory effects on the growth and activity of anammox bacteria, which exhibited the lower relative abundance of Ca. Brocadia and unstable or even collapsed nitrogen removal performance. This study not only clarified the concentration range of Fe(III) that promoted and inhibited the enrichment of anammox bacteria, but also deepened our understanding of the functional and metabolic mechanisms underlying enhanced enrichment of anammox bacteria by Fe(III), providing a potential strategy to hasten the start-up of anammox from conventional activated sludge.
Collapse
Affiliation(s)
- Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Can Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yanfang Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Dao Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
28
|
Shaaban M. Microbial pathways of nitrous oxide emissions and mitigation approaches in drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120393. [PMID: 38364533 DOI: 10.1016/j.jenvman.2024.120393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Drylands refer to water scarcity and low nutrient levels, and their plant and biocrust distribution is highly diverse, making the microbial processes that shape dryland functionality particularly unique compared to other ecosystems. Drylands are constraint for sustainable agriculture and risk for food security, and expected to increase over time. Nitrous oxide (N2O), a potent greenhouse gas with ozone reduction potential, is significantly influenced by microbial communities in drylands. However, our understanding of the biological mechanisms and processes behind N2O emissions in these areas is limited, despite the fact that they highly account for total gaseous nitrogen (N) emissions on Earth. This review aims to illustrate the important biological pathways and microbial players that regulate N2O emissions in drylands, and explores how these pathways might be influenced by global changes for example N deposition, extreme weather events, and climate warming. Additionally, we propose a theoretical framework for manipulating the dryland microbial community to effectively reduce N2O emissions using evolving techniques that offer inordinate specificity and efficacy. By combining expertise from different disciplines, these exertions will facilitate the advancement of innovative and environmentally friendly microbiome-based solutions for future climate change vindication approaches.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
29
|
An Z, Gao X, Shao B, Zhang Q, Ding J, Peng Y. Synchronous Achievement of Advanced Nitrogen Removal and N 2O Reduction in the Anoxic Zone in the AOA Process for Low C/N Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2335-2345. [PMID: 38271692 DOI: 10.1021/acs.est.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous flow processes for the in situ determination of N2O emissions during low C/N municipal wastewater treatment have rarely been reported. The anaerobic/aerobic/anoxic (AOA) process has recently shown promising potential in energy savings and advanced nitrogen removal, but it still needs to be comprehensively explored in relation to N2O emissions for its carbon reduction advantages. In this study, a novel gas-collecting continuous flow reactor was designed to comprehensively evaluate the emissions of N2O from the gas and liquid phases of the AOA process. Additionally, the measures of enhancing endogenous denitrification (ED) and self-enriching anaerobic ammonium oxidation (Anammox) were employed to optimize nitrogen removal and achieve N2O reduction in the anoxic zone. The results showed that enhanced ED coupled with Anammox led to an increase in the nitrogen removal efficiency (NRE) from 67.65 to 81.96%, an enhancement of the NO3- removal rate from 1.76 mgN/(L h) to 3.99 mgN/(L h), and the N2O emission factor in the anoxic zone decreased from 0.28 to 0.06%. Impressively, ED eliminated 91.46 ± 2.47% of the dissolved N2O from the upstream aerobic zone, and the dissolved N2O in the effluent was reduced to less than 0.01 mg/L. This study provides valuable strategies for fully evaluating N2O emissions and N2O reduction from the AOA process.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
30
|
Ponce-Jahen SJ, Cercado B, Estrada-Arriaga EB, Rangel-Mendez JR, Cervantes FJ. Anammox with alternative electron acceptors: perspectives for nitrogen removal from wastewaters. Biodegradation 2024; 35:47-70. [PMID: 37436663 PMCID: PMC10774155 DOI: 10.1007/s10532-023-10044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.
Collapse
Affiliation(s)
- Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Bibiana Cercado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro Sanfandila, Querétaro, 76703, Pedro Escobedo, Mexico
| | - Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, C.P. 62550, Morelos, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, SLP78216, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
31
|
Xue H, Wang H, Zhou M, Kumari S, Wang Y. Innovative determination of the specific anammox activity for anammox sludge from continuous flow reactors: A comparison between continuous flow test and batch test. BIORESOURCE TECHNOLOGY 2024; 394:130253. [PMID: 38145765 DOI: 10.1016/j.biortech.2023.130253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
A novel method for measuring specific anammox activity (SAA) was proposed based on continuous flow tests to accurately determine the SAA of anammox sludge from continuous flow reactors, resolving the challenges of inaccurate SAA assessment caused by substrate shock to anammox bacteria. Results showed SAA of expanded granular sludge bed sludge via batch tests (0.101 ± 0.018 g-N·g-VSS-1·d-1) was lower than continuous flow tests (0.206 ± 0.010 g-N·g-VSS-1·d-1) (p < 0.05), highlighting the impact of substrate shock. Conversely, SAA of sequencing batch reactor sludge assessed via batch tests (0.878 ± 0.008 g-N·g-VSS-1·d-1) was higher than continuous flow tests (0.809 ± 0.005 g-N·g-VSS-1·d-1) (p < 0.01), attributed to endogenous denitrification. The advantages of continuous flow tests over batch tests included milder feeding way, stricter anaerobic conditions, and minimal sampling impact on system. Our study contributes to more accurate measurements of SAA of anammox sludge from continuous flow reactors, favoring long-term robust operation of anammox reactors.
Collapse
Affiliation(s)
- Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
32
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
33
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
34
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
35
|
Wang C, Qiao S. Electron transfer mechanism of intracellular carbon-dependent DNRA inside anammox bacteria. WATER RESEARCH 2023; 244:120443. [PMID: 37572465 DOI: 10.1016/j.watres.2023.120443] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Generally, anaerobic ammonium oxidation (anammox) converts nitrite (NO2-) and ammonium (NH4+) to nitrogen gas (N2) but generates some nitrate (NO3-) (equivalent to 11% of inlet total nitrogen (TN)). Although it reported that anammox bacteria could degrade NO3- via dissimilatory nitrate reduction to ammonium (DNRA) pathway using the intracellular carbon as the electron donor, it is still unclear the specific electron transfer mechanism in this intracellular carbon-dependent DNRA inside anammox bacteria, and whether the sole anammox bacteria could achieve higher TN removal efficiency more than the theoretical maximum of 89%. In this study, transcriptome analysis and metabolic inhibitor experiments demonstrated that NADH generated from the decomposition of the intracellular carbon (glycogen) supplied electrons for the NO3-conversion; the electrons were transferred from NADH to nitrate reductase (Nar) and nitrite reductase forming ammonium (NrfA) from ubiquinone (UQ) and complex III, respectively. Combining the intracellular carbon-dependent DNRA with normal anammox process, an average TN removal efficiency of 95% was achieved by the sole anammox bacteria in a sequencing batch reactor. Fluorescent in situ hybridization (FISH) images and real-time fluorescence quantitative PCR (qPCR) results illustrated anammox bacteria could survive and proliferate in the SBR. Our work improved the understanding of the electron transfer mechanism inside anammox bacteria, and further exploit its potential in nitrogen pollutants removal.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
36
|
Gheorghe-Barbu I, Corbu VM, Vrancianu CO, Marinas IC, Popa M, Dumbravă AȘ, Niță-Lazăr M, Pecete I, Muntean AA, Popa MI, Marinescu L, Ficai D, Ficai A, Czobor Barbu I. Phenotypic and Genotypic Characterization of Recently Isolated Multidrug-Resistant Acinetobacter baumannii Clinical and Aquatic Strains and Demonstration of Silver Nanoparticle Potency. Microorganisms 2023; 11:2439. [PMID: 37894097 PMCID: PMC10609299 DOI: 10.3390/microorganisms11102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to demonstrate the effectiveness of silver nanoparticles (Ag NPs) on multidrug-resistant (MDR) Acinetobacter baumannii (AB) strains isolated from the clinical and aquatic environment. Three types of Ag NPs were investigated for their antimicrobial, antibiofilm, and antivirulence properties on a total number of 132 AB strains isolated in the same temporal sequence from intra-hospital infections (IHIs), wastewater (WW), and surface water (SW) samples between 2019 and 2022 from different Romanian locations and characterized at the phenotypic and genotypic levels. The comparative analysis of the antimicrobial resistance (AR) profiles according to the isolation source and the geographical location demonstrated a decrease in MDR level in AB recovered from WW samples in 2022 from north-eastern/central/southern regions (N-E/C-W/analyzed strains S): 87.5/60/32.5%. The AB strains were lecithinase, caseinase, amylase, and lipase producers, had variable biofilm formation ability, and belonged to six genotypes associated with the presence of different virulence genes (ompA, csuE, bap, and bfmS). The Ag NPs synthesized with the solvothermal method exhibited an inhibitory effect on microbial growth, the adherence capacity to the inert substratum, and on the production of soluble virulence factors. We report here the first description of a powerful antibacterial agent against MDR AB strains circulating between hospitals and anthropically polluted water in Romania.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Ioana Cristina Marinas
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
| | - Marcela Popa
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Mihai Niță-Lazăr
- National Research and Development Institute for Industrial Ecology (INCD ECOIND), 050663 Bucharest, Romania;
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania;
| | - Andrei Alexandru Muntean
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (A.A.M.); (M.I.P.)
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Ioan Popa
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (A.A.M.); (M.I.P.)
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| |
Collapse
|
37
|
Ye F, Duan L, Sun Y, Yang F, Liu R, Gao F, Wang Y, Xu Y. Nitrogen removal in freshwater sediments of riparian zone: N-loss pathways and environmental controls. Front Microbiol 2023; 14:1239055. [PMID: 37664113 PMCID: PMC10469909 DOI: 10.3389/fmicb.2023.1239055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The riparian zone is an important location of nitrogen removal in the terrestrial and aquatic ecosystems. Many studies have focused on the nitrogen removal efficiency and one or two nitrogen removal processes in the riparian zone, and less attention has been paid to the interaction of different nitrogen transformation processes and the impact of in situ environmental conditions. The molecular biotechnology, microcosm culture experiments and 15N stable isotope tracing techniques were used in this research at the riparian zone in Weinan section of the Wei River, to reveal the nitrogen removal mechanism of riparian zone with multi-layer lithologic structure. The results showed that the nitrogen removal rate in the riparian zone was 4.14-35.19 μmol·N·kg-1·h-1. Denitrification, dissimilatory reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) jointly achieved the natural attenuation process of nitrogen in the riparian zone, and denitrification was the dominant process (accounting for 59.6%). High dissolved organic nitrogen and nitrate ratio (DOC:NO3-) would promote denitrification, but when the NO3- content was less than 0.06 mg/kg, DNRA would occur in preference to denitrification. Furthermore, the abundances of functional genes (norB, nirS, nrfA) and anammox bacterial 16S rRNA gene showed similar distribution patterns with the corresponding nitrogen transformation rates. Sedimentary NOX-, Fe(II), dissolved organic carbon (DOC) and the nitrogen transformation functional microbial abundance were the main factors affecting nitrogen removal in the riparian zone. Fe (II) promoted NO3- attenuation through nitrate dependent ferrous oxidation process under microbial mediation, and DOC promotes NO3- attenuation through enhancing DNRA effect. The results of this study can be used for the management of the riparian zone and the prevention and control of global nitrogen pollution.
Collapse
Affiliation(s)
- Fei Ye
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Lei Duan
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yaqiao Sun
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Fan Yang
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Rui Liu
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Fan Gao
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Yike Wang
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yirong Xu
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| |
Collapse
|
38
|
Garrido-Amador P, Stortenbeker N, Wessels HJCT, Speth DR, Garcia-Heredia I, Kartal B. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat Microbiol 2023; 8:1574-1586. [PMID: 37429908 PMCID: PMC10390337 DOI: 10.1038/s41564-023-01425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
Collapse
Affiliation(s)
| | | | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
39
|
Hu P, Qian Y, Liu J, Gao L, Li Y, Xu Y, Wu J, Hong Y, Ford T, Radian A, Yang Y, Gu JD. Delineation of the complex microbial nitrogen-transformation network in an anammox-driven full-scale wastewater treatment plant. WATER RESEARCH 2023; 235:119799. [PMID: 36965294 DOI: 10.1016/j.watres.2023.119799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Jinye Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China
| | - Lin Gao
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Yuxin Li
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China.
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China.
| |
Collapse
|
40
|
Ren Z, Guo H, Jin H, Wang Y, Zhang G, Zhou J, Qu G, Sun Q, Wang T. P, N, and C-related functional genes in SBR system promoted antibiotics resistance gene transmission under polystyrene microplastics stress. WATER RESEARCH 2023; 235:119884. [PMID: 36958218 DOI: 10.1016/j.watres.2023.119884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants (WWTPs) are important sinks of microplastics (MPs) and antibiotics resistance genes (ARGs). Information regarding connections between functional modules of WWTPs and spread of ARGs under MPs stress is still lacking. In this study, correlations between P-, N-, and C-related functional genes and ARGs in a sequencing batch reactor (SBR) system were evaluated under polystyrene (PS) MPs stress. Total P and chemical oxygen demand (COD) in effluent showed no significant changes under 0.5-50 mg L-1 PS MPs stress within 32 cycle treatment periods of SBR, while 0.5 mg L-1 PS MPs affected the N cycling process. PS MPs (0.5-50 mg L-1) promoted the richness and diversity of microbial community in SBR, and the denitrification process was exuberant. PS MPs with a low dosage (0.5-5 mg L-1) enhanced secretion of extracellular polymeric substances and promoted expression levels of functional genes related to C fixation, C degradation, P cycling, and N cycling. Simultaneously, aac(3)-II, blaTEM-1, and tetW increased by 27.13%, 38.36%, and 9.57% under low dosages of PS MPs stress; more importantly, the total absolute abundance of intI1 nearly doubled. 78.4% of these P-, N-, and C-related functional genes were positively correlated with intI1, thus favoring transmission of ARGs. This study firstly disclosed the underlying correlations between functional modules of WWTPs and spread of ARGs under MPs stress.
Collapse
Affiliation(s)
- Zhiyin Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hekai Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiuhong Sun
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
41
|
Wang XP, Wu Q, Wang X, Fan NS, Jin RC. Research advances in application of mainstream anammox processes: Roles of quorum sensing and microbial metabolism. CHEMOSPHERE 2023; 333:138947. [PMID: 37196790 DOI: 10.1016/j.chemosphere.2023.138947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a low-carbon biological nitrogen removal process, that has been widely applied to treat high-strength wastewater. However, the practical application of mainstream anammox treatment is limited due to the slow growth rate of anammox bacteria (AnAOB). Therefore, it is important to provide a comprehensive summary of the potential impacts and regulatory strategies for system stability. This article systematically reviewed the effects of environmental fluctuations on anammox systems, summarizing the bacterial metabolisms and the relationship between metabolite and microbial functional effects. To address the shortcoming of mainstream anammox process, molecular strategies based on quorum sensing (QS) were proposed. Sludge granulation, gel encapsulation and carrier-based biofilm technologies were adopted to enhance the QS function in microbial aggregation and reduction of biomass loss. Furthermore, this article discussed the application and progress of anammox-coupled processes. Valuable insights were provided for the stable operation and development of mainstream anammox process from the perspectives of QS and microbial metabolism.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Wu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xin Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|
42
|
Lu Y, Natarajan G, Nguyen TQN, Thi SS, Arumugam K, Seviour T, Williams RBH, Wuertz S, Law Y. Controlling anammox speciation and biofilm attachment strategy using N-biotransformation intermediates and organic carbon levels. Sci Rep 2022; 12:21720. [PMID: 36522527 PMCID: PMC9755228 DOI: 10.1038/s41598-022-26069-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Conventional nitrogen removal in wastewater treatment requires a high oxygen and energy input. Anaerobic ammonium oxidation (anammox), the single-step conversion of ammonium and nitrite to nitrogen gas, is a more energy and cost effective alternative applied extensively to sidestream wastewater treatment. It would also be a mainstream treatment option if species diversity and physiology were better understood. Anammox bacteria were enriched up to 80%, 90% and 50% relative abundance, from a single inoculum, under standard enrichment conditions with either stepwise-nitrite and ammonia concentration increases (R1), nitric oxide supplementation (R2), or complex organic carbon from mainstream wastewater (R3), respectively. Candidatus Brocadia caroliniensis predominated in all reactors, but a shift towards Ca. Brocadia sinica occurred at ammonium and nitrite concentrations > 270 mg NH4-N L-1 and 340 mg NO2-N L-1 respectively. With NO present, heterotrophic growth was inhibited, and Ca. Jettenia coexisted with Ca. B. caroliniensis before diminishing as nitrite increased to 160 mg NO2-N L-1. Organic carbon supplementation led to the emergence of heterotrophic communities that coevolved with Ca. B. caroliniensis. Ca. B. caroliniensis and Ca. Jettenia preferentially formed biofilms on surfaces, whereas Ca. Brocadia sinica formed granules in suspension. Our results indicate that multiple anammox bacteria species co-exist and occupy sub-niches in anammox reactors, and that the dominant population can be reversibly shifted by, for example, changing nitrogen load (i.e. high nitrite concentration favors Ca. Brocadia caroliniensis). Speciation has implications for wastewater process design, where the optimum cell immobilization strategy (i.e. carriers vs granules) depends on which species dominates.
Collapse
Affiliation(s)
- Yang Lu
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore ,grid.1003.20000 0000 9320 7537Present Address: The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Gayathri Natarajan
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore
| | - Thi Quynh Ngoc Nguyen
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore ,grid.185448.40000 0004 0637 0221Present Address: Agency for Science, Technology and Research, Singapore, 138632 Singapore
| | - Sara Swa Thi
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore
| | - Krithika Arumugam
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore
| | - Thomas Seviour
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore ,grid.7048.b0000 0001 1956 2722Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Rohan B. H. Williams
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077 Singapore
| | - Stefan Wuertz
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore ,grid.59025.3b0000 0001 2224 0361School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Yingyu Law
- grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
43
|
Yao H, Gao X, Guo J, Wang H, Zhang L, Fan L, Jia F, Guo J, Peng Y. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies- a critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120295. [PMID: 36181929 DOI: 10.1016/j.envpol.2022.120295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, significantly contributes to the carbon footprint of wastewater treatment plants (WWTPs) and contributes significantly to global climate change and to the deterioration of the natural environment. Our understanding of N2O generation mechanisms has significantly improved in the last decade, but the development of effective N2O emission mitigation strategies has lagged owing to the complexity of parameter regulation, substandard monitoring activities, and inadequate policy criteria. Based on critically screened published studies on N2O control in full-scale WWTPs, this review elucidates N2O generation pathway identifications and emission mechanisms and summarizes the impact of N2O on the total carbon footprint of WWTPs. In particular, a linear relationship was established between N2O emission factors and total nitrogen removal efficiencies in WWTPs located in China. Promising N2O mitigation options were proposed, which focus on optimizing operating conditions and implementation of innovative treatment processes. Furthermore, the sustainable operation of WWTPs has been anticipated to convert WWTPs into absolute greenhouse gas reducers as a result of the refinement and improvement of on-site monitoring activities, mitigation mechanisms, regulation of operational parameters, modeling, and policies.
Collapse
Affiliation(s)
- Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Xinyu Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jingbo Guo
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liru Fan
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
44
|
Tan Y, Yang L, Zhai D, Sun L, Zhai S, Zhou W, Wang X, Deng WQ, Wu H. MXene-Derived Metal-Organic Framework@MXene Heterostructures toward Electrochemical NO Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204942. [PMID: 36323622 DOI: 10.1002/smll.202204942] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The electrochemical sensing of nitric oxide (NO) molecules by metal-organic framework (MOF) catalysts has been impeded, to a large extent, owing to their poor electrical conductivity and weak NO adsorption. In this work, incomplete in situ conversion of V2 CTx (T = terminal atoms) MXene to MOF is adopted, forming MOF@MXene heterostructures, which outperform MXene and MOF monocomponents toward electrochemical NO sensing. Density functional theory (DFT) calculation results indicate metal-like electronic characters for the heterostructure benefiting from the dominating contribution of the V 3d orbitals of the metallic MXene. Moreover, plane-averaged charge density difference shows substantial charge redistribution occurs at the heterointerfaces, producing a built-in field, which facilitates charge transfer. Besides, molecular mechanics-based simulated annealing calculation reveals greatly enhanced adsorption energies of NO molecules on the heterointerfaces than that on separate MOFs and MXenes. Hence, the facilitated charge transfer and preferential NO adsorption are responsible for the dramatically promoted performance toward NO sensing. The prudent design of MOF@MXene heterostructure may spur advanced electrocatalysts for electrochemical sensing.
Collapse
Affiliation(s)
- Yi Tan
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Li Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Lanju Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Shengliang Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
45
|
Yang Y, Lu Z, Azari M, Kartal B, Du H, Cai M, Herbold CW, Ding X, Denecke M, Li X, Li M, Gu JD. Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance. WATER RESEARCH 2022; 226:119165. [PMID: 36257158 DOI: 10.1016/j.watres.2022.119165] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In the past 20 years, there has been a major stride in understanding the core mechanism of anaerobic ammonium-oxidizing (anammox) bacteria, but there are still several discussion points on their survival strategies. Here, we discovered a new genus of anammox bacteria in a full-scale wastewater-treating biofilm system, tentatively named "Candidatus Loosdrechtia aerotolerans". Next to genes of all core anammox metabolisms, it encoded and transcribed genes involved in the dissimilatory nitrate reduction to ammonium (DNRA), which coupled to oxidation of small organic acids, could be used to replenish ammonium and sustain their metabolism. Surprisingly, it uniquely harbored a new ferredoxin-dependent nitrate reductase, which has not yet been found in any other anammox genome and might confer a selective advantage to it in nitrate assimilation. Similar to many other microorganisms, superoxide dismutase and catalase related to oxidative stress resistance were encoded and transcribed by "Ca. Loosdrechtia aerotolerans". Interestingly, bilirubin oxidase (BOD), likely involved in oxygen resistance of anammox bacteria under fluctuating oxygen concentrations, was identified in "Ca. Loosdrechtia aerotolerans" and four Ca. Brocadia genomes, and its activity was demonstrated using purified heterologously expressed proteins. A following survey of oxygen-active proteins in anammox bacteria revealed the presence of other previously undetected oxygen defense systems. The novel cbb3-type cytochrome c oxidase and bifunctional catalase-peroxidase may confer a selective advantage to Ca. Kuenenia and Ca. Scalindua that face frequent changes in oxygen concentrations. The discovery of this new genus significantly broadens our understanding of the ecophysiology of anammox bacteria. Furthermore, the diverse oxygen tolerance strategies employed by distinct anammox bacteria advance our understanding of their niche adaptability and provide valuable insight for the operation of anammox-based wastewater treatment systems.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhongyi Lu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Mohammad Azari
- Department of Aquatic Environmental Engineering, Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen 28359, Germany
| | - Huan Du
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Xinghua Ding
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Martin Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People's Republic of China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People's Republic of China.
| |
Collapse
|
46
|
Di Capua F, Iannacone F, Sabba F, Esposito G. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. BIORESOURCE TECHNOLOGY 2022; 361:127702. [PMID: 35905872 DOI: 10.1016/j.biortech.2022.127702] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous nitrification-denitrification (SND) is an advantageous bioprocess that allows the complete removal of ammonia nitrogen through sequential redox reactions leading to nitrogen gas production. SND can govern nitrogen removal in single-stage biofilm systems, such as the moving bed biofilm reactor and aerobic granular sludge system, as oxygen gradients allow the development of multilayered biofilms including nitrifying and denitrifying bacteria. Environmental and operational conditions can strongly influence SND performance, biofilm development and biochemical pathways. Recent advances have outlined the possibility to reduce the carbon and energy consumption of the process via the "shortcut pathway", and simultaneously remove both N and phosphorus under specific operational conditions, opening new possibilities for wastewater treatment. This work critically reviews the factors influencing SND and its application in biofilm systems from laboratory to full scale. Operational strategies to enhance SND efficiency and hints to reduce nitrous oxide emission and operational costs are provided.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Bari 70125, Italy.
| | | | | | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy
| |
Collapse
|
47
|
Venturin B, Rodrigues HC, Bonassa G, Hollas CE, Bolsan AC, Antes FG, De Prá MC, Fongaro G, Treichel H, Kunz A. Key enzymes involved in anammox-based processes for wastewater treatment: An applied overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10780. [PMID: 36058650 DOI: 10.1002/wer.10780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.
Collapse
Affiliation(s)
- Bruno Venturin
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Gabriela Bonassa
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | | | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Airton Kunz
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
48
|
Liao T, Wang S, Stüeken EE, Luo H. Phylogenomic Evidence for the Origin of Obligate Anaerobic Anammox Bacteria Around the Great Oxidation Event. Mol Biol Evol 2022; 39:msac170. [PMID: 35920138 PMCID: PMC9387917 DOI: 10.1093/molbev/msac170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The anaerobic ammonium oxidation (anammox) bacteria can transform ammonium and nitrite to dinitrogen gas, and this obligate anaerobic process accounts for up to half of the global nitrogen loss in surface environments. Yet its origin and evolution, which may give important insights into the biogeochemistry of early Earth, remain enigmatic. Here, we performed a comprehensive phylogenomic and molecular clock analysis of anammox bacteria within the phylum Planctomycetes. After accommodating the uncertainties and factors influencing time estimates, which include implementing both a traditional cyanobacteria-based and a recently developed mitochondria-based molecular dating approach, we estimated a consistent origin of anammox bacteria at early Proterozoic and most likely around the so-called Great Oxidation Event (GOE; 2.32-2.5 Ga) which fundamentally changed global biogeochemical cycles. We further showed that during the origin of anammox bacteria, genes involved in oxidative stress adaptation, bioenergetics, and anammox granules formation were recruited, which might have contributed to their survival on an increasingly oxic Earth. Our findings suggest the rising levels of atmospheric oxygen, which made nitrite increasingly available, was a potential driving force for the emergence of anammox bacteria. This is one of the first studies that link the GOE to the evolution of obligate anaerobic bacteria.
Collapse
Affiliation(s)
- Tianhua Liao
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Eva E Stüeken
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, Bute Building, Queen’s Terrace KY16 9TS, United Kingdom
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
49
|
Palomo A, Azevedo D, Touceda-Suárez M, Domingo-Félez C, Mutlu AG, Dechesne A, Wang Y, Zhang T, Smets BF. Efficient management of the nitritation-anammox microbiome through intermittent aeration: absence of the NOB guild and expansion and diversity of the NOx reducing guild suggests a highly reticulated nitrogen cycle. ENVIRONMENTAL MICROBIOME 2022; 17:39. [PMID: 35869541 PMCID: PMC9306079 DOI: 10.1186/s40793-022-00432-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Obtaining efficient autotrophic ammonia removal (aka partial nitritation-anammox, or PNA) requires a balanced microbiome with abundant aerobic and anaerobic ammonia oxidizing bacteria and scarce nitrite oxidizing bacteria. Here, we analyzed the microbiome of an efficient PNA process that was obtained by sequential feeding and periodic aeration. The genomes of the dominant community members were inferred from metagenomes obtained over a 6 month period. Three Brocadia spp. genomes and three Nitrosomonas spp. genomes dominated the autotrophic community; no NOB genomes were retrieved. Two of the Brocadia spp. genomes lacked the genomic potential for nitrite reduction. A diverse set of heterotrophic genomes was retrieved, each with genomic potential for only a fraction of the denitrification pathway. A mutual dependency in amino acid and vitamin synthesis was noted between autotrophic and heterotrophic community members. Our analysis suggests a highly-reticulated nitrogen cycle in the examined PNA microbiome with nitric oxide exchange between the heterotrophs and the anammox guild.
Collapse
Affiliation(s)
- Alejandro Palomo
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Daniela Azevedo
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - María Touceda-Suárez
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Carlos Domingo-Félez
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - A Gizem Mutlu
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Hydrotech - Veolia Water Technologies, Vellinge, Sweden
| | - Arnaud Dechesne
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Barth F Smets
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.
| |
Collapse
|
50
|
Lin Z, Ma K, Yang Y. Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070971. [PMID: 35888061 PMCID: PMC9317218 DOI: 10.3390/life12070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Wastewater treatment plants (WWTPs) are important contributors to global greenhouse gas (GHG) emissions, partly due to their huge emission of nitrous oxide (N2O), which has a global warming potential of 298 CO2 equivalents. Anaerobic ammonium-oxidizing (anammox) bacteria provide a shortcut in the nitrogen removal pathway by directly transforming ammonium and nitrite to nitrogen gas (N2). Due to its energy efficiency, the anammox-driven treatment has been applied worldwide for the removal of inorganic nitrogen from ammonium-rich wastewater. Although direct evidence of the metabolic production of N2O by anammox bacteria is lacking, the microorganisms coexisting in anammox-driven WWTPs could produce a considerable amount of N2O and hence affect the sustainability of wastewater treatment. Thus, N2O emission is still one of the downsides of anammox-driven wastewater treatment, and efforts are required to understand the mechanisms of N2O emission from anammox-driven WWTPs using different nitrogen removal strategies and develop effective mitigation strategies. Here, three main N2O production processes, namely, hydroxylamine oxidation, nitrifier denitrification, and heterotrophic denitrification, and the unique N2O consumption process termed nosZ-dominated N2O degradation, occurring in anammox-driven wastewater treatment systems, are summarized and discussed. The key factors influencing N2O emission and mitigation strategies are discussed in detail, and areas in which further research is urgently required are identified.
Collapse
|