1
|
Foulger LH, Kuo C, Chua R, Blouin JS. Head kinematic variability is minimal near preferred cadence and independent of the vestibular control of locomotion. Sci Rep 2025; 15:18670. [PMID: 40437188 PMCID: PMC12119871 DOI: 10.1038/s41598-025-99878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The unstable nature of our bipedal posture requires continuous feedback to maintain internal estimates of self-motion and generate appropriate balance-correcting responses. This feedback control process involves the integration of multisensory information, including vestibular cues of head motion. Minimizing head motion variability may optimize the information transmitted by vestibular signals that are important for balance control and consequently drive vestibular contributions to locomotion which decrease as we move faster. In this study, participants walked outdoors at 40% to 140% of their preferred step cadence while we characterized head kinematic variability and vestibular-evoked balance responses to electrical vestibular stimulation, a common method to generate virtual signals of head movement. Head kinematic variability was lowest near participants' preferred step cadences (90-126 steps/min) and gait speeds (1.1-1.7 m/s) while vestibular-evoked responses decreased exponentially as step cadence and gait speed increased. Hence, the minima of head kinematic variability were close to preferred step cadences, near previously established minima for the metabolic cost of locomotion. The relationship between head kinematic variability and vestibular-evoked balance responses, however, was inconsistent across all step cadences, suggesting that head kinematic variability did not drive vestibular-evoked balance response magnitude. The observed reduction in the variability of head motion signals at the preferred locomotor cadence/speed may serve to improve our self-motion estimates and reduce information processing requirements to ensure effective navigation, thereby potentially contributing to the well-established minimum in metabolic cost near preferred cadence.
Collapse
Affiliation(s)
- Liam H Foulger
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Calvin Kuo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Simoneau M, Nooristani M, Blouin J. Balance control threshold to vestibular stimuli. J Physiol 2025; 603:2783-2799. [PMID: 40183736 PMCID: PMC12072247 DOI: 10.1113/jp288016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bipedalism renders our erect posture unstable, requiring the integration and processing of multisensory information to remain upright. To understand how each sense contributes to balance, perceptual thresholds to isolated sensory disturbances while standing are typically quantified. Perception, however, is distinct from balance control. Both processes rely on distinct internal body representations, and participants can misattribute the consequences of self-generated balance-correcting actions as an external perturbation. Here, we used signal detection theory to quantify non-perceptual balance control thresholds to isolated vestibular stimuli given the role of vestibular cues in generating balance-correcting responses. We exposed participants standing on force plates to electrical vestibular stimulation (EVS) at varying amplitudes (0.2, 0.4, 0.6 mA) and frequencies (0.1, 0.2, 0.5, 1 Hz). Stimuli delivered at 0.2 mA (0.1-0.5 Hz) and 0.4 mA (0.1, 0.2 Hz) remained unperceived but evoked whole-body responses above the sensorimotor noise underlying balance control. Balance control thresholds ranged from 0.09 to 0.57 mA; they increased with EVS amplitude and decreased with frequency. The physiological mechanisms underlying these EVS amplitude and frequency effects involved a decrease in response gain with increased stimulus amplitude and a reduction in response variability with increased stimulus frequency. Our findings demonstrate that balance responses to isolated vestibular stimuli can be quantified below perceptual thresholds and highlight the dynamic regulation of response gain and the influence of whole-body motion variability in the vestibular control of balance. Our results also open the door to assessing the isolated vestibular contributions to postural control in people with balance impairments. KEY POINTS: Upright balance control relies on sensory information from multiple sensory systems, but balance control thresholds to isolated sensory stimuli remain largely unknown because these stimuli, or their associated responses, can be perceived. We applied isolated electrical vestibular perturbations and used signal detection theory to quantify balance control thresholds to unperceived sensory stimuli. Vestibular stimuli delivered at 0.2 mA (0.1-0.5 Hz) and 0.4 mA (0.1 and 0.2 Hz) remained unperceived but evoked balance-correcting responses above the sensorimotor noise underlying the control of standing. Balance thresholds increased with current amplitude (0.2-0.6 mA) and decreased with stimulus frequency (0.1-1 Hz) and were linked to decreased gain of lateral force and reduced lateral force variability as current amplitude and frequency increased, respectively. These results pave the way for uncovering the sensory contributions to the non-perceptual mechanisms regulating balance-correcting motor commands essential for bipedalism and their potential role in balance impairments.
Collapse
Affiliation(s)
- Martin Simoneau
- Department of Kinesiology, Faculty of MedicineLaval UniversityQuebec CityQuebecCanada
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris)Quebec CityQuebecCanada
| | - Mujda Nooristani
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris)Quebec CityQuebecCanada
- School of Rehabilitation Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| | - Jean‐Sébastien Blouin
- School of KinesiologyThe University of British ColumbiaBritish ColumbiaVancouverCanada
| |
Collapse
|
3
|
Bartsch-Jiménez A, Valero-Cuevas FJ. Vestibular contribution to motor output is also suppressed by voluntary action of the arm. J Physiol 2025; 603:2699-2711. [PMID: 40178515 DOI: 10.1113/jp287077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
The vestibular sensory system is among the oldest and most fundamental contributors to motor behaviour as it is critical to maintaining posture and balance. However such low-level motor responses could interfere with cortically mediated voluntary behaviour that naturally involves posture and balance. Consequently, it has been proposed that - much like the inhibition of reflex responses - vestibular contributions to motor output are 'gated' (dubbed vestibular suppression) to avoid undesirable self-perturbations during voluntary head movements. Here we demonstrate that such suppression also occurs for unperturbed voluntary arm function. Our evidence comes from comparing coherence at baseline (No Stimulation) and after Sham and Galvanic Vestibular Stimulation (GVS). Specifically neck muscles showed shared neural drive (intermuscular coherence [IMC]), which increased with GVS - but not Sham - at Rest. This GVS-mediated increased coherence in neck muscles, however, was suppressed during voluntary isometric contractions and reaching movements of the arm on the same side as the GVS was applied. No changes were found in pairwise IMC during Sham (compared with No stimulation) or in arm muscles either at rest or during voluntary movement during GVS in neurotypical adults. In addition to extending vestibular suppression to unperturbed voluntary arm function, these results provide support for the common (yet unproven to our knowledge) notion that arm muscles do not receive vestibular neural drive during unperturbed voluntary movement. Moreover, these results shed light on the mechanisms that mediate competing descending outputs for voluntary function and serve as a baseline against which to compare potential task-dependent dysregulation of vestibular-mediated output to the neck and arms in stroke and neurological conditions. KEY POINTS: The vestibular system is critical for correcting perturbations during voluntary movement. During voluntary head movements, vestibular suppression occurs to avoid undesirable self-perturbations. However, the contribution of the vestibular system to unperturbed voluntary arm movement remains unclear. We used intermuscular coherence (IMC) to measure vestibulospinal drive to neck and arm muscles while applying Galvanic Vestibular Stimulation (GVS), Sham and No Stimulation. We compared IMC at Rest and unperturbed voluntary movement of the arm in neurotypical adults. Neck muscles showed increased shared neural drive at rest, only when GVS was applied. However, vestibular drive was suppressed during unperturbed voluntary isometric contractions and reaching movements of the arm. Vestibular drive to arm muscles did not increase when GVS was applied. We provide evidence that arm muscles do not receive vestibulospinal drive, excluding its contribution to unperturbed voluntary movement. These results could provide valuable insights into the vestibular contribution to motor impairments following neurological conditions such as stroke.
Collapse
Affiliation(s)
- Angelo Bartsch-Jiménez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Facultad de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Marchand S, Langlade A, Legois Q, Séverac Cauquil A. A wide-ranging review of galvanic vestibular stimulation: from its genesis to basic science and clinical applications. Exp Brain Res 2025; 243:131. [PMID: 40289049 PMCID: PMC12034599 DOI: 10.1007/s00221-025-07079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Galvanic vestibular stimulation (GVS) involves applying small electrical currents to the vestibular organs via electrodes placed on the mastoids, providing a powerful tool for investigating vestibular function. Despite its long history, GVS remains highly relevant for researchers due to its ability to probe the vestibular system's role in posture, gaze control, perception, and cortical processing. Recent technical advances have considerably expanded its application in both basic research and clinical practice. Despite the fact it is not realistic to cover all aspects of GVS within the constraints of a manuscript, this narrative review summarizes the history and neurophysiological mechanisms of GVS and provides new insights and perspectives for current and future studies, both in fundamental and clinical applications. We synthesize the main findings from neurophysiological, behavioral, and neuroimaging studies, focusing on the effects of GVS on postural control, ocular responses, cortical activity, and self-motion perception. Then diagnostic and therapeutic applications are explored in balance disorders, stroke rehabilitation, and neurodegenerative diseases. Clinical approaches could benefit from greater reliance on laboratory research to refine stimulation protocols, for maximum efficacy in its therapeutic use. A final discussion summarizes what is currently well-established with regard to GVS and opens up new and exciting perspectives in basic science and clinical applications.
Collapse
Affiliation(s)
- Sarah Marchand
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, Toulouse, France
| | - Alba Langlade
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, Toulouse, France
| | - Quentin Legois
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, Toulouse, France
- Service d'ORL, Otoneurologie et ORL Pédiatrique-CHU Toulouse Purpan, Toulouse, France
| | | |
Collapse
|
5
|
Allred AR, Gopinath AR, Clark TK. Validating sensory conflict theory and mitigating motion sickness in humans with galvanic vestibular stimulation. COMMUNICATIONS ENGINEERING 2025; 4:78. [PMID: 40289181 PMCID: PMC12034809 DOI: 10.1038/s44172-025-00417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Per sensory conflict theory, vestibular sensory information has been proposed to drive motion sickness given deviations from central expectations. However, the consistency of motion sickness with quantitative predictions of manipulated vestibular sensory conflict remains untested. Here, we evaluated motion sickness symptoms within 10 participants exposed to galvanic vestibular stimulation (GVS) designed to manipulate vestibular sensory conflict during passive physical translations. Using a computational methodology, equal and opposite GVS waveforms were designed to reduce (Beneficial) or increase (Detrimental) motion sickness while controlling all other sources of sensory information and central confounds. Beneficial GVS produced a 26% motion sickness reduction, and Detrimental GVS produced a 56% increase (p = 0.0055), demonstrating the causal role of vestibular information in human motion sickness. Validating our predictions, this finding supports the theory that vestibular sensory conflict mediates motion sickness and facilitates new methods and countermeasures for mitigating motion sickness during transportation and in virtual environments.
Collapse
Affiliation(s)
- Aaron R Allred
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado - Boulder, Boulder, CO, USA.
| | - Aadhit R Gopinath
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado - Boulder, Boulder, CO, USA
| | - Torin K Clark
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado - Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Temple DR, Klausing LN, Hogoboom BC, Datta A, Clark TK. Exploring GVS as a display modality: cutaneous sensations and cue association maintenance. Exp Brain Res 2025; 243:97. [PMID: 40116977 PMCID: PMC11928362 DOI: 10.1007/s00221-025-07058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Recent studies have investigated the potential use of Galvanic Vestibular Stimulation (GVS) as an alternative display modality. Such a GVS display could allow for parallel processing of information under increasing demands on other modalities (e.g., visual, auditory, or tactile), and perhaps be preferrable to other displays in certain circumstances (e.g., covert night operations). Prior studies quantified how precisely humans distinguish GVS cues modulated in the frequency, amplitude, or polarity of the sinusoidal burst of current, found cues to be robust to various environments, and have limited degradations in maintaining posture. Questions still arise though as to: (1) whether those receiving GVS cues respond primarily to vestibular or potentially cutaneous sensations, and (2) if multiple cues can be associated with different responses and if that capability can be maintained, which we addressed through two experiments. In the first, a topical anesthetic was not found to affect frequency and amplitude modulated GVS thresholds; however, polarity modulated GVS thresholds were elevated when cutaneous sensation was diminished. The second experiment revealed subjects distinguish among six different GVS cues composed of frequency (two conditions) and polarity (three conditions) modulations, and they maintained their association of these six cues three hours later. Collectively our results suggest that individuals are primarily responding to vestibular sensations when utilizing a GVS display and that quick association of at least six GVS cues to different responses can occur and be maintained at least three hours later. These findings continue to support the use of GVS as a viable display modality.
Collapse
Affiliation(s)
- David R Temple
- University of Colorado Boulder (Smead Aerospace Engineering Sciences Department), Boulder, CO, USA.
| | - Lanna N Klausing
- University of Colorado Boulder (Smead Aerospace Engineering Sciences Department), Boulder, CO, USA
- University of Colorado Anschutz Medical Campus (Department of Orthopedics), Aurora, CO, USA
| | - Brady C Hogoboom
- University of Colorado Boulder (Smead Aerospace Engineering Sciences Department), Boulder, CO, USA
| | | | - Torin K Clark
- University of Colorado Boulder (Smead Aerospace Engineering Sciences Department), Boulder, CO, USA
| |
Collapse
|
7
|
Cedras AM, Orsini C, Paromov D, Bacon BA, Champoux F, Maheu M. Direct current galvanic vestibular stimulation modulates sound localization abilities. Sci Rep 2025; 15:7351. [PMID: 40025131 PMCID: PMC11873163 DOI: 10.1038/s41598-025-92064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
The vestibular system has been shown to play a role in the integration of spatial sensory information. For instance, vestibular perturbations induce significant shifts in spatial tactile tasks, but results have been contradictory regarding auditory modality. This observation may be because some of the previous vestibular stimulation methods (i.e., stochastic GVS) did not reliably induce a self-motion effect. This study aims to evaluate the importance of directional illusory motion on auditory localization mechanism, using direct current GVS. Twenty young healthy participants performed a sound localization task under earphones with 9 positions in the azimuth plane divided into three quadrants 7Left (45°;- 30°;- 20°), Center (- 10°;0°;10°), and Right (20°;30°;45)]. Participants were asked to verbally identify the exact position of the sound source under 3 conditions: (1) Without GVS (2) GVS with anode on the right mastoid (3) GVS with anode on the left mastoid. Results were analyzed using the non-parametric Friedman test and Wilcoxon rank-sum post-hoc test with a Bonferroni correction applied to account for multiple comparisons. Compared to baseline, left anodal stimulation caused a greater error ratio for sounds in all quadrants. Moreover, for sounds in the right quadrant, a significantly greater error ratio was observed for anode left compared to the anode right condition. Right anodal condition caused a greater error ratio for sounds in the left and the center quadrants compared to the baseline condition. This study demonstrates for the first time, that sound source localization can be influenced by direct current GVS and is modulated according to the anode position.
Collapse
Affiliation(s)
- Assan Mary Cedras
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, C.P. 6128, Succursale Centre-Ville, 7077 Avenue du Parc, bureau 3001-42, Montreal, QC, H3C 3J7, Canada
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-l'île-de-Montréal, Montreal, Canada
| | - Clara Orsini
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, C.P. 6128, Succursale Centre-Ville, 7077 Avenue du Parc, bureau 3001-42, Montreal, QC, H3C 3J7, Canada
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-l'île-de-Montréal, Montreal, Canada
| | - Daniel Paromov
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, C.P. 6128, Succursale Centre-Ville, 7077 Avenue du Parc, bureau 3001-42, Montreal, QC, H3C 3J7, Canada
- Centre de recherche de l'institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Benoit Antoine Bacon
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - François Champoux
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, C.P. 6128, Succursale Centre-Ville, 7077 Avenue du Parc, bureau 3001-42, Montreal, QC, H3C 3J7, Canada
- Centre de recherche de l'institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Maxime Maheu
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, C.P. 6128, Succursale Centre-Ville, 7077 Avenue du Parc, bureau 3001-42, Montreal, QC, H3C 3J7, Canada.
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-l'île-de-Montréal, Montreal, Canada.
| |
Collapse
|
8
|
Valter Y, Vataksi L, Allred AR, Hebert JR, Brunyé TT, Clark TK, Serrador J, Datta A. A review of parameter settings for galvanic vestibular stimulation in clinical applications. Front Hum Neurosci 2025; 19:1518727. [PMID: 39981130 PMCID: PMC11841469 DOI: 10.3389/fnhum.2025.1518727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Galvanic Vestibular Stimulation (GVS) is a method of manipulating the vestibular system through non-invasive electrical current. Depending on how GVS is applied, it produces specific sensations related to vestibular mediated central pathways. The method has been tested for decades for both medical and non-medical applications and has demonstrated promise in treating a variety of disorders including peripheral vestibular conditions, central vestibular pathology due to neurodegenerative diseases, and post-stroke motor rehabilitation. As GVS continues to grow in popularity and applications, the field lacks clarity on appropriate stimulation parameters, despite their importance for safe and efficacious neuromodulation. This study aims to review the parameters used in various treatment applications while also providing a concise overview of the mechanisms underlying GVS thereby offering essential context and justification for the chosen parameters. We performed a literature search on the PubMed and Embase databases for clinical trials including the term "galvanic vestibular stimulation." After removing duplicates, secondary analyses, and studies that did not use GVS for therapeutic purposes, we were left with 53 independent studies. We extracted the stimulation parameters used in each study and report them here. The results of this review suggest that while some stimulation parameters are relatively standardized for specific treatment indications, others lack universally accepted guidelines as the field of GVS continues to evolve. Based on our findings, we recommend that future GVS research include at least one sham condition, the use of individualized current intensity, and the comparison of multiple GVS parameters within the same trial.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development Soterix Medical Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York City, NY, United States
| | - Linda Vataksi
- Research and Development Soterix Medical Inc., Woodbridge, NJ, United States
| | | | - Jeffrey R. Hebert
- Marcus Institute for the Brain Health, Department of Physical Medicine and Rehabilitation School of Medicine, University of Colorado, Aurora, CO, United States
| | - Tad T. Brunyé
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Torin K. Clark
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
| | - Jorge Serrador
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| | - Abhishek Datta
- Research and Development Soterix Medical Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York City, NY, United States
| |
Collapse
|
9
|
Gavriilidou A, Mylonas V, Tsalavoutas I, Konstantakos V, Psillas G, Wuehr M, Hatzitaki V. Effects of individually calibrated white and pink noise vestibular stimulation on standing balance of young healthy adults. Exp Brain Res 2024; 243:33. [PMID: 39710745 DOI: 10.1007/s00221-024-06979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Imperceptible noisy galvanic vestibular stimulation (nGVS) improves standing balance due to the presence of stochastic resonance (SR). There is, however, a lack of consensus regarding the optimal levels and type of noise used to elicit SR like dynamics. We aimed to confirm the presence of SR behavior in the vestibular system of young healthy adults by examining postural responses to increasing amplitudes of white and pink noise stimulation scaled to individual cutaneous perceptual threshold. Forty (40) healthy young participants (19 males, 25.1 ± 5.6 years) were randomly divided into a group that received nGVS with white (WHITE group) or pink noise (PINK group). Participants performed a cutaneous perceptual threshold detection task followed by 8 trials of quiet standing and eyes closure (60s) with nGVS applied during the last 30s. Balance stabilization was quantified in the ratio of the stimulus versus pre-stimulus Centre of Pressure (CoP) 90% ellipse area, Root Mean Square (RMS) and mean velocity. Cutaneous perceptual threshold was similar across groups. Group analysis confirmed that the mean CoP velocity increased across nGVS intensities, particularly for the PINK group while the other two variables remained unchanged. Single subject analysis indicated that 55% of WHITE and 30% of PINK group participants showed an SR-like response judged by three experts. Results are puzzling with respect to the presence of SR-like response dynamics in young healthy adults and highlight the need for further research using individual calibrated stimulus intensities. White noise seems more effective than pink noise in revealing an SR-like response to nGVS.
Collapse
Affiliation(s)
- Alkistis Gavriilidou
- Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece
- Present address: Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Mylonas
- Biomechanics Laboratory, Aristotle University, Thessaloniki, Greece
- Present address: Department of Biomechanics, University of Nebraska at Omaha, Omaha, USA
| | - Ioannis Tsalavoutas
- Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece
| | - Vasileios Konstantakos
- Laboratory of Electronics, School of Physics, Aristotle University, Thessaloniki, Greece
| | - George Psillas
- Otolaryngology Department, AHEPA Hospital, Aristotle University, Thessaloniki, Greece
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Vassilia Hatzitaki
- Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece.
| |
Collapse
|
10
|
Silva TR, Labanca L, Caporali JFDM, Tavares MC, Rausse NDCB, de Almeida MJAA, Martins MDS, Amorim LF, Sitibaldi LD, Gonçalves DU. Galvanic vestibular stimulation for the postural rehabilitation of HTLV-1-associated myelopathy. Front Hum Neurosci 2024; 18:1507559. [PMID: 39748916 PMCID: PMC11693613 DOI: 10.3389/fnhum.2024.1507559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Galvanic vestibular stimulation (GVS) is a simple, safe, and noninvasive method of neurostimulation that can be used to improve body balance. Several central nervous system diseases cause alterations in body balance, including HTLV-1-associated myelopathy (HAM). Objective To test GVS as a balance rehabilitation strategy for HAM. Methods This study is a quasi-experimental clinical trial in which postural balance was compared before and after a GVS rehabilitation protocol applied to 20 patients with HAM, 12 women and 8 men, average age of 78 and 79 years, respectively. They were followed for nine months after the end of the GVS protocol, which consisted of one GVS session per week for 12 consecutive weeks. The GVS current intensity was progressively increased from 1.0 milliamperes (mA) to 3.5 mA until the third session and maintained at 3.5 mA until the 12th session. The electrical stimulation time progressively increased from 9 min in the first session to 18 min in the second session and maintained at 30 min from the third session onwards. Postural balance was assessed by Time up and go test (TUG), Berg balance scale (BBS) and posturography that were performed before the beginning of the intervention, during the intervention (6th week), at the end of the intervention (12th week) and after 9 months of follow-up without electrical stimulation. Results In a blind comparison, in the 12th week of stimulation, improvement was observed in all the tests. In TUG, time in seconds changed from 28 before to 18 after GVS (p < 0,001). In BBS, the score changed from 29.00 before to 41.00 points after GVS. In posturography, the stability limit improved after the intervention (p < 0.05). However, after nine months without stimulation, the gain was lost for TUG, for BBS and for stability limit. Conclusion GVS was an effective method to improve postural instability of patients with HAM in the short term, but the gain in postural stability was not maintained in the long term. A device for home use may be an option for long-term use.
Collapse
Affiliation(s)
- Tatiana Rocha Silva
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ludimila Labanca
- Programa de Pós-Graduação em Ciências Fonoaudiológicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Júlia Fonseca de Morais Caporali
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauricio Campelo Tavares
- Bolsista do CNPq na modalidade Produtividade em Desenvolvimento Tecnológico e Extensão Inovadora, Brasília, Brazil
| | - Nathália de Castro Botini Rausse
- Programa de Pós-Graduação em Ciências Fonoaudiológicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maxmilliam de Souza Martins
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura Fernandes Amorim
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Léo Dantas Sitibaldi
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Utsch Gonçalves
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Wiboonsaksakul KP, Leavitt Brown OME, Cullen KE. Restoring vestibular function during natural self-motion: Progress and challenges. eLife 2024; 13:e99516. [PMID: 39688096 DOI: 10.7554/elife.99516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The vestibular system is integral to behavior; the loss of peripheral vestibular function leads to disabling consequences, such as blurred vision, dizziness, and unstable posture, severely limiting activities of daily living. Fortunately, the vestibular system's well-defined peripheral structure and well-understood encoding strategies offer unique opportunities for developing sensory prostheses to restore vestibular function. While these devices show promising results in both animal models and implanted patients, substantial room for improvement remains. Research from an engineering perspective has largely focused on optimizing stimulation protocol to improve outcomes. However, this approach has often been pursued in isolation from research in neuroscience that has enriched our understanding of neural responses at the synaptic, cellular, and circuit levels. Accordingly, this review bridges the domains of neuroscience and engineering to consider recent progress and challenges in vestibular prosthesis development. We advocate for interdisciplinary approaches that leverage studies of neural circuits at the population level, especially in light of recent advancement in large-scale recording technology, to identify impediments still to overcome and to develop more naturalistic stimulation strategies. Fully integrating neuroscience and engineering in the context of prosthesis development will help advance the field forward and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Kantapon Pum Wiboonsaksakul
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| | - Olivia M E Leavitt Brown
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
12
|
Allred AR, Austin CR, Klausing L, Boggess N, Clark TK. Human perception of self-motion and orientation during galvanic vestibular stimulation and physical motion. PLoS Comput Biol 2024; 20:e1012601. [PMID: 39556604 DOI: 10.1371/journal.pcbi.1012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Galvanic vestibular stimulation (GVS) is an emergent tool for stimulating the vestibular system, offering the potential to manipulate or enhance processes relying on vestibular-mediated central pathways. However, the extent of GVS's influence on the perception of self-orientation pathways is not understood, particularly in the presence of physical motions. Here, we quantify roll tilt perception impacted by GVS during passive whole-body roll tilts in humans (N = 11). We find that GVS systematically amplifies and attenuates perceptions of roll tilt during physical tilt, dependent on the GVS waveform. Subsequently, we develop a novel computational model that predicts 6DoF self-motion and self-orientation perceptions for any GVS waveform and motion by modeling the vestibular afferent neuron dynamics modulated by GVS in conjunction with an observer central processing model. This effort provides a means to systematically alter spatial orientation perceptions using GVS during concurrent physical motion, and we find that irregular afferent dynamics alone best describe resultant perceptions.
Collapse
Affiliation(s)
- Aaron R Allred
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Caroline R Austin
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Lanna Klausing
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Nicholas Boggess
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Torin K Clark
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
13
|
Bouisset N, Laakso I. Induced electric fields in MRI settings and electric vestibular stimulations: same vestibular effects? Exp Brain Res 2024; 242:2493-2507. [PMID: 39261353 DOI: 10.1007/s00221-024-06910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
In Magnetic Resonance Imaging scanner environments, the continuous Lorentz Force is a potent vestibular stimulation. It is nowadays so well known that it is now identified as Magnetic vestibular stimulation (MVS). Alongside MVS, some authors argue that through induced electric fields, electromagnetic induction could also trigger the vestibular system. Indeed, for decades, vestibular-specific electric stimulations (EVS) have been known to precisely impact all vestibular pathways. Here, we go through the literature, looking at potential time varying magnetic field induced vestibular outcomes in MRI settings and comparing them with EVS-known outcomes. To date, although theoretically induction could trigger vestibular responses the behavioral evidence remains poor. Finally, more vestibular-specific work is needed.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, ON, Canada.
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
14
|
Debenham MIB, Bruce CB, McNeil CJ, Dalton BH. The effects of four hours of normobaric hypoxia on the vestibular control of balance. Exp Brain Res 2024; 242:2419-2432. [PMID: 39147911 DOI: 10.1007/s00221-024-06905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Whole-body vestibular-evoked balance responses decrease following ~ 55 min of normobaric hypoxia. It is unclear how longer durations of hypoxia affect the vestibular control of balance at the muscle and whole-body levels. This study examined how four hours of normobaric hypoxia influenced the vestibular control of balance. Fifteen participants (4 females; 11 males) stood on a force plate with vision occluded and head rotated rightward while subjected to three blocks of binaural, bipolar stochastic electrical vestibular stimulation (EVS; 0-25 Hz, root mean square amplitude = 1.1 mA) consisting of two, 90-s trials. The relationship between EVS and anteroposterior (AP) forces or medial gastrocnemius (MG) electromyography (EMG) was estimated in the time and frequency domains at baseline (BL; 0.21 fraction of inspired oxygen-FIO2) and following two (H2) and four (H4) hours of normobaric hypoxia (0.11 FIO2). The EVS-MG EMG short-latency peak and peak-to-peak amplitudes were smaller than BL at H2 and H4, but the medium-latency peak amplitude was only lower at H4. The EVS-AP force medium-latency peak amplitude was lower than BL at H4, but the short-latency peak and peak-to-amplitudes were unchanged. The EVS-MG EMG coherence and gain were reduced compared to BL at H2 and H4 across multiple frequencies ≥ 7 Hz, whereas EVS-AP force coherence was blunted at H4 (≤ 4 Hz), but gain was unaffected. Overall, the central nervous system's response to vestibular-driven signals during quiet standing was decreased for up to four hours of normobaric hypoxia, and vestibular-evoked responses recorded within postural muscles may be more sensitive than the whole-body response.
Collapse
Affiliation(s)
- M I B Debenham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - C B Bruce
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - C J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - B H Dalton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
15
|
Ray Chaudhuri K, Poplawska-Domaszewicz K, Limbachiya N, Qamar M, Batzu L, Podlewska A, Ade K. Vestibular Neurostimulation for Parkinson's Disease: A Novel Device-Aided Non-Invasive Therapeutic Option. J Pers Med 2024; 14:933. [PMID: 39338187 PMCID: PMC11432959 DOI: 10.3390/jpm14090933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Dopaminergic replacement therapy remains the mainstay of symptomatic treatment for Parkinson's disease (PD), but many unmet needs and gaps remain. Device-based treatments or device-aided non-oral therapies are typically used in the advanced stages of PD, ranging from stereotactic deep brain stimulation to levodopa or apomorphine infusion therapies. But there are concerns associated with these late-stage therapies due to a number of procedural, hardware, or long-term treatment-related side effects of these treatments, and their limited nonmotor benefit in PD. Therefore, there is an urgent unmet need for low-risk adjuvants or standalone therapies which can address the range of burdensome motor and nonmotor symptoms that occur in PD. Recent studies suggest that non-invasive neurostimulation of the vestibular system may be able to address these gaps through the stimulation of the vestibular brainstem sensory network which extensively innervates brain regions, regulating both motor and a range of nonmotor functions. Therapeutic non-invasive vestibular stimulation is a relatively modern concept that may potentially improve a broad range of motor and nonmotor symptoms of PD, even at early stages of the disease. Here, we review previous studies supporting the therapeutic potential of vestibular stimulation for the treatment of PD and discuss ongoing clinical trials and potential areas for future investigations.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Naomi Limbachiya
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Mubasher Qamar
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Lucia Batzu
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Aleksandra Podlewska
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Kristen Ade
- Scion NeuroStim, Inc., Durham, NC 27707, USA
| |
Collapse
|
16
|
Truong DQ, Thomas C, Ira S, Valter Y, Clark TK, Datta A. Unpacking Galvanic Vestibular Stimulation using simulations and relating current flow to reported motions: Comparison across common and specialized electrode placements. PLoS One 2024; 19:e0309007. [PMID: 39186497 PMCID: PMC11346646 DOI: 10.1371/journal.pone.0309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/04/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Galvanic Vestibular Stimulation (GVS) is a non-invasive electrical stimulation technique that is typically used to probe the vestibular system. When using direct current or very low frequency sine, GVS causes postural sway or perception of illusory (virtual) motions. GVS is commonly delivered using two electrodes placed at the mastoids, however, placements involving additional electrodes / locations have been employed. Our objective was to systematically evaluate all known GVS electrode placements, compare induced current flow, and how it relates to the archetypal sway and virtual motions. The ultimate goal is to help users in having a better understanding of the effects of different placements. METHODS We simulated seven GVS electrode placements with same total injected current using an ultra-high resolution model. Induced electric field (EF) patterns at the cortical and the level of vestibular organs (left and right) were determined. A range of current flow metrics including potential factors such as inter-electrode separation, percentage of current entering the cranial cavity, and symmetricity were calculated. Finally, we relate current flow to reported GVS motions. RESULTS As expected, current flow patterns are electrode placement specific. Placements with two electrodes generally result in higher EF magnitude. Placements with four electrodes result in lower percentage of current entering the cranial cavity. Symmetric placements do not result in similar EF values in the left and the right organs respectively- highlighting inherent anatomical asymmetry of the human head. Asymmetric placements were found to induce as much as ~3-fold higher EF in one organ over the other. The percentage of current entering the cranial cavity varies between ~15% and ~40% depending on the placement. CONCLUSIONS We expect our study to advance understanding of GVS and provide insight on probable mechanism of action of a certain electrode placement choice. The dataset generated across several metrics will support hypothesis testing relating empirical outcomes to current flow patterns. Further, the differences in current flow will guide stimulation strategy (what placement and how much scalp current to use) and facilitate a quantitatively informed rational / optimal decision.
Collapse
Affiliation(s)
- Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Chris Thomas
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Sanjidah Ira
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Yishai Valter
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Torin K. Clark
- Smead Aerospace Engineering Sciences Department, College of Engineering and Applied Science, University of Colorado, Boulder, Colorado, United States of America
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
- Biomedical Engineering, City College of New York, New York, New York, United States of America
| |
Collapse
|
17
|
Wuehr M, Peto D, Fietzek UM, Katzdobler S, Nübling G, Zaganjori M, Brendel M, Levin J, Höglinger GU, Zwergal A. Low-intensity vestibular noise stimulation improves postural symptoms in progressive supranuclear palsy. J Neurol 2024; 271:4577-4586. [PMID: 38722328 PMCID: PMC11233287 DOI: 10.1007/s00415-024-12419-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Postural imbalance and falls are an early disabling symptom in patients with progressive supranuclear palsy (PSP) of multifactorial origin that may involve abnormal vestibulospinal reflexes. Low-intensity noisy galvanic vestibular stimulation (nGVS) is a non-invasive treatment to normalize deficient vestibular function and attenuate imbalance in Parkinson's disease. The presumed therapeutic mode of nGVS is stochastic resonance (SR), a mechanism by which weak sensory noise stimulation can enhance sensory information processing. OBJECTIVE To examine potential treatment effects of nGVS on postural instability in 16 patients with PSP with a clinically probable and [18F]PI-2620 tau-PET-positive PSP. METHODS Effects of nGVS of varying intensity (0-0.7 mA) on body sway were examined, while patients were standing with eyes closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal sway reductions at intermediate nGVS intensities to be indicative of SR. An established SR-curve model was fitted on individual patient outcomes and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS We found nGVS-induced reductions of body sway compatible with SR in 9 patients (56%) with optimal improvements of 31 ± 10%. In eight patients (50%), nGVS-induced sway reductions exceeded the minimal clinically important difference (improvement: 34 ± 5%), indicative of strong SR. CONCLUSION nGVS yielded clinically relevant reductions in body sway compatible with the exhibition of SR in vestibular sensorimotor pathways in at least half of the assessed patients. Non-invasive vestibular noise stimulation may be thus a well-tolerated treatment strategy to ameliorate postural symptoms in PSP.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Daniela Peto
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Schön Klinik München Schwabing, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Georg Nübling
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE) E.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Allred AR, Lippert AF, Wood SJ. Galvanic Vestibular Stimulation Advancements for Spatial Disorientation Training. Aerosp Med Hum Perform 2024; 95:390-398. [PMID: 38915170 DOI: 10.3357/amhp.6362.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Spatial disorientation (SD) remains the leading contributor to Class A mishaps in the U.S. Navy, consistent with historical trends. Despite this, SD training for military aircrew is largely confined to the classroom and experiential training replicating SD illusions is limited and infrequent. Static flight simulators are most commonly used for training but offer no vestibular stimulation to the flight crew, omitting the source of vestibular-mediated SD.BACKGROUND: We first cover vestibular-mediated SD illusions which may be replicated through galvanic vestibular stimulation (GVS) in a static environment. GVS is a safe, reliable, low-cost avenue for providing vestibular sensory stimulation. We review the underlying mechanisms of GVS such as the excitement and inhibition of the afferent neurons innervating the vestibular system, particularly in the binaural bipolar electrode montage.APPLICATIONS: Two approaches for how GVS may be used to enhance SD training are examined. The first is a means for providing unreliable vestibular sensory perceptions to pilots, and the second details how GVS can be leveraged for replicating vestibular-mediated SD illusions.DISCUSSION: We recommend GVS be pursued as an enhancement to existing SD training. The ability to disorient aircrew in the safe training environment of a static flight simulator would allow for aircrew familiarization to SD, serving as an opportunity to practice life-saving checklist items to recover from SD. A repeatable training profile that could be worn by military aircrew in a static flight simulator may afford a low-cost training solution to the number one cause of fatalities in military aviation.Allred AR, Lippert AF, Wood SJ. Galvanic vestibular stimulation advancements for spatial disorientation training. Aerosp Med Hum Perform. 2024; 95(7):390-398.
Collapse
|
19
|
Wuehr M, Eder J, Kellerer S, Amberger T, Jahn K. Mechanisms underlying treatment effects of vestibular noise stimulation on postural instability in patients with bilateral vestibulopathy. J Neurol 2024; 271:1408-1415. [PMID: 37973635 PMCID: PMC10896912 DOI: 10.1007/s00415-023-12085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Previous studies indicate that imbalance in patients with bilateral vestibulopathy (BVP) may be reduced by treatment with low-intensity noisy galvanic vestibular stimulation (nGVS). OBJECTIVE To elucidate the potential mechanisms underlying this therapeutic effect. In particular, we determined whether nGVS-induced balance improvements in patients are compatible with stochastic resonance (SR)-a mechanism by which weak noise stimulation can paradoxically enhance sensory signal processing. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 19 patients with BVP standing with eye closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal sway reductions at intermediate nGVS intensities to be indicative of SR. An established SR curve model was fitted on individual patient outcomes, and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS nGVS-induced reductions of body sway compatible with SR were found in 12 patients (63%) with optimal improvements of 31 ± 21%. In 10 patients (53%), nGVS-induced sway reductions exceeded the minimally important clinical difference (optimal improvement: 35 ± 21%), indicative of strong SR. This beneficial effect was more likely in patients with severe vestibular loss (i.e. lower video head impulse test gain; R = 0.663; p = 0.002) and considerable postural imbalance (baseline body sway; R = 0.616; p = 0.005). CONCLUSIONS More than half of the assessed patients showed robust improvements in postural balance compatible with SR when treated with nGVS. In particular, patients with a higher burden of disease may benefit from the non-invasive and well-tolerated treatment with nGVS.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Josefine Eder
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
| | - Silvy Kellerer
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
| | - Tamara Amberger
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| |
Collapse
|
20
|
Gallina A, Abboud J, Blouin JS. Vestibular control of deep and superficial lumbar muscles. J Neurophysiol 2024; 131:516-528. [PMID: 38230879 DOI: 10.1152/jn.00171.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
The active control of the lumbar musculature provides a stable platform critical for postures and goal-directed movements. Voluntary and perturbation-evoked motor commands can recruit individual lumbar muscles in a task-specific manner according to their presumed biomechanics. Here, we investigated the vestibular control of the deep and superficial lumbar musculature. Ten healthy participants were exposed to noisy electrical vestibular stimulation while balancing upright with their head facing forward, left, or right to characterize the differential modulation in the vestibular-evoked lumbar extensor responses in generating multidirectional whole body motion. We quantified the activation of the lumbar muscles on the right side using indwelling [deep multifidus, superficial multifidus, caudal longissimus (L4), and cranial longissimus (L1)] and high-density surface recordings. We characterized the vestibular-evoked responses using coherence and peak-to-peak cross-covariance amplitude between the vestibular and electromyographic signals. Participants exhibited responses in all lumbar muscles. The vestibular control of the lumbar musculature exhibited muscle-specific modulations: responses were larger in the longissimus (combined cranio-caudal) compared with the multifidus (combined deep-superficial) when participants faced forward (P < 0.001) and right (P = 0.011) but not when they faced left. The high-density surface recordings partly supported this observation: the location of the responses was more lateral when facing right compared with left (P < 0.001). The vestibular control of muscle subregions within the longissimus or the multifidus was similar. Our results demonstrate muscle-specific vestibular control of the lumbar muscles in response to perturbations of vestibular origin. The lack of differential activation of lumbar muscle subregions suggests the vestibular control of these subregions is co-regulated for standing balance.NEW & NOTEWORTHY We investigated the vestibular control of the deep and superficial lumbar extensor muscles using electrical vestibular stimuli. Vestibular stimuli elicited preferential activation of the longissimus muscle over the multifidus muscle. We did not observe clear regional activation of lumbar muscle subregions in response to the vestibular stimuli. Our findings show that the central nervous system can finely tune the vestibular control of individual lumbar muscles and suggest minimal regional variations in the activation of lumbar muscle subregions.
Collapse
Affiliation(s)
- Alessio Gallina
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jacques Abboud
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Houben MMJ, Stuldreher IV, Forbes PA, Groen EL. Using Galvanic Vestibular Stimulation to Induce Post-Roll Illusion in a Fixed-Base Flight Simulator. Aerosp Med Hum Perform 2024; 95:84-92. [PMID: 38263100 DOI: 10.3357/amhp.6325.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
INTRODUCTION: The illusions of head motion induced by galvanic vestibular stimulation (GVS) can be used to compromise flight performance of pilots in fixed-base simulators. However, the stimuli used in the majority of studies fail to mimic disorientation in realistic flight because they are independent from the simulated aircraft motion. This study investigated the potential of bilateral-bipolar GVS coupled to aircraft roll in a fixed-base simulator to mimic vestibular spatial disorientation illusions, specifically the "post-roll illusion" observed during flight.METHODS: There were 14 nonpilot subjects exposed to roll stimuli in a flight simulator operating in a fixed-base mode. GVS was delivered via carbon rubber electrodes on the mastoid processes. The electrical stimulus was driven by the high-pass filtered aircraft roll rate to mimic the semicircular canals' physiological response. The post-roll test scenarios excluded outside visual cues or instruments and required subjects to actively maintain a constant bank angle after an abrupt stop following a passive prolonged roll maneuver. The anticipated outcome was an overshot in roll elicited by the GVS signal.RESULTS: The responses across subjects showed large variability, with less than a third aligning with the post-roll illusion. Subjective ratings suggest that the high-pass filtered GVS stimuli were mild and did not induce a clear sense of roll direction. However, uncontrolled head movements during stimulation might have obscured the intended effects of GVS-evoked illusory head movements.CONCLUSION: The mild and transient GVS stimuli used in this study, together with the uncontrolled head movements, did not convincingly mimic the post-roll illusion.Houben MMJ, Stuldreher IV, Forbes PA, Groen EL. Using galvanic vestibular stimulation to induce post-roll illusion in a fixed-base flight simulator. Aerosp Med Hum Perform. 2024; 95(2):84-92.
Collapse
|
22
|
Allred AR, Weiss H, Clark TK, Stirling L. An Augmented Reality Hand-Eye Sensorimotor Impairment Assessment for Spaceflight Operations. Aerosp Med Hum Perform 2024; 95:69-78. [PMID: 38263106 DOI: 10.3357/amhp.6313.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
INTRODUCTION: Following a transition from microgravity to a gravity-rich environment (e.g., Earth, Moon, or Mars), astronauts experience sensorimotor impairment, primarily from a reinterpretation of vestibular cues, which can impact their ability to perform mission-critical tasks. To enable future exploration-class missions, the development of lightweight, space-conscious assessments for astronauts transitioning between gravity environments without expert assistance is needed.METHODS: We examined differences in performance during a two-dimensional (2D) hand-eye multidirectional tapping task, implemented in augmented reality in subjects (N = 20) with and without the presence of a vestibular-dominated sensorimotor impairment paradigm: the binaural bipolar application of a pseudorandom galvanic vestibular stimulation (GVS) signal. Metrics associated with both the impairment paradigm and task performance were assessed.RESULTS: Medial-lateral sway during balance on an anterior-posterior sway-referenced platform with eyes closed was most affected by GVS (effect size: 1.2), in addition to anterior-posterior sway (effect size: 0.63) and the vestibular index (effect size: 0.65). During the augmented reality task, an increase in time to completion (effect size: 0.63), number of misses (effect size: 0.52), and head linear accelerations (effect size: 0.30) were found in the presence of the selected GVS waveform.DISCUSSION: Findings indicate that this multidirectional tapping task may detect emergent vestibular-dominated impairment (near landing day performance) in astronauts. Decrements in speed and accuracy indicate this impairment may hinder crews' ability to acquire known target locations while in a static standing posture. The ability to track these decrements can support mission operations decisions.Allred AR, Weiss H, Clark TK, Stirling L. An augmented reality hand-eye sensorimotor impairment assessment for spaceflight operations. Aerosp Med Hum Perform. 2024; 95(2):69-78.
Collapse
|
23
|
Li YC, Bruijn SM, Lemaire KK, Brumagne S, van Dieën JH. Vertebral level specific modulation of paraspinal muscle activity based on vestibular signals during walking. J Physiol 2024; 602:507-525. [PMID: 38252405 DOI: 10.1113/jp285831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Evoking muscle responses by electrical vestibular stimulation (EVS) may help to understand the contribution of the vestibular system to postural control. Although paraspinal muscles play a role in postural stability, the vestibulo-muscular coupling of these muscles during walking has rarely been studied. This study aimed to investigate how vestibular signals affect paraspinal muscle activity at different vertebral levels during walking with preferred and narrow step width. Sixteen healthy participants were recruited. Participants walked on a treadmill for 8 min at 78 steps/min and 2.8 km/h, at two different step width, either with or without EVS. Bipolar electromyography was recorded bilaterally from the paraspinal muscles at eight vertebral levels from cervical to lumbar. Coherence, gain, and delay of EVS and EMG responses were determined. Significant EVS-EMG coupling (P < 0.01) was found at ipsilateral and/or contralateral heel strikes. This coupling was mirrored between left and right relative to the midline of the trunk and between the higher and lower vertebral levels, i.e. a peak occurred at ipsilateral heel strike at lower levels, whereas it occurred at contralateral heel strike at higher levels. EVS-EMG coupling only partially coincided with peak muscle activity. EVS-EMG coherence slightly, but not significantly, increased when walking with narrow steps. No significant differences were found in gain and phase between the vertebral levels or step width conditions. In summary, vertebral level specific modulation of paraspinal muscle activity based on vestibular signals might allow a fast, synchronized, and spatially co-ordinated response along the trunk during walking. KEY POINTS: Mediolateral stabilization of gait requires an estimate of the state of the body, which is affected by vestibular afference. During gait, the heavy trunk segment is controlled by phasic paraspinal muscle activity and in rodents the medial and lateral vestibulospinal tracts activate these muscles. To gain insight in vestibulospinal connections in humans and their role in gait, we recorded paraspinal surface EMG of cervical to lumbar paraspinal muscles, and characterized coherence, gain and delay between EMG and electrical vestibular stimulation, during slow walking. Vestibular stimulation caused phasic, vertebral level specific modulation of paraspinal muscle activity at delays of around 40 ms, which was mirrored between left, lower and right, upper vertebral levels. Our results indicate that vestibular afference causes fast, synchronized, and spatially co-ordinated responses of the paraspinal muscles along the trunk, that simultaneously contribute to stabilizing the centre of mass trajectory and to keeping the head upright.
Collapse
Affiliation(s)
- Yiyuan C Li
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Sciences, Leuven, KU, Belgium
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Koen K Lemaire
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Simon Brumagne
- Department of Rehabilitation Sciences, Leuven, KU, Belgium
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.
Collapse
Affiliation(s)
- Christophe Lopez
- Aix Marseille Univ, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University
- Department of Neuroscience, Johns Hopkins University
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| |
Collapse
|
25
|
Foulger LH, Charlton JM, Blouin JS. Real-world characterization of vestibular contributions during locomotion. Front Hum Neurosci 2024; 17:1329097. [PMID: 38259335 PMCID: PMC10800732 DOI: 10.3389/fnhum.2023.1329097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The vestibular system, which encodes our head movement in space, plays an important role in maintaining our balance as we navigate the environment. While in-laboratory research demonstrates that the vestibular system exerts a context-dependent influence on the control of balance during locomotion, differences in whole-body and head kinematics between indoor treadmill and real-world locomotion challenge the generalizability of these findings. Thus, the goal of this study was to characterize vestibular-evoked balance responses in the real world using a fully portable system. Methods While experiencing stochastic electrical vestibular stimulation (0-20 Hz, amplitude peak ± 4.5 mA, root mean square 1.25 mA) and wearing inertial measurement units (IMUs) on the head, low back, and ankles, 10 participants walked outside at 52 steps/minute (∼0.4 m/s) and 78 steps/minute (∼0.8 m/s). We calculated time-dependent coherence (a measure of correlation in the frequency domain) between the applied stimulus and the mediolateral back, right ankle, and left ankle linear accelerations to infer the vestibular control of balance during locomotion. Results In all participants, we observed vestibular-evoked balance responses. These responses exhibited phasic modulation across the stride cycle, peaking during the middle of the single-leg stance in the back and during the stance phase for the ankles. Coherence decreased with increasing locomotor cadence and speed, as observed in both bootstrapped coherence differences (p < 0.01) and peak coherence (low back: 0.23 ± 0.07 vs. 0.16 ± 0.14, p = 0.021; right ankle: 0.38 ± 0.12 vs. 0.25 ± 0.10, p < 0.001; left ankle: 0.33 ± 0.09 vs. 0.21 ± 0.09, p < 0.001). Discussion These results replicate previous in-laboratory studies, thus providing further insight into the vestibular control of balance during naturalistic movements and validating the use of this portable system as a method to characterize real-world vestibular responses. This study will help support future work that seeks to better understand how the vestibular system contributes to balance in variable real-world environments.
Collapse
Affiliation(s)
- Liam H. Foulger
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jesse M. Charlton
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Toth AJ, Harvey C, Gullane H, Kelly N, Bruton A, Campbell MJ. The effect of bipolar bihemispheric tDCS on executive function and working memory abilities. Front Psychol 2024; 14:1275878. [PMID: 38235279 PMCID: PMC10791995 DOI: 10.3389/fpsyg.2023.1275878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Cognitive functioning is central to the ability to learn, problem solve, remember, and use information in a rapid and accurate manner and cognitive abilities are fundamental for communication, autonomy, and quality of life. Transcranial electric stimulation (tES) is a very promising tool shown to improve various motor and cognitive functions. When applied as a direct current stimulus (transcranial direct current stimulation; tDCS) over the dorsolateral pre-frontal cortex (DLPFC), this form of neurostimulation has mixed results regarding its ability to slow cognitive deterioration and potentially enhance cognitive functioning, requiring further investigation. This study set out to comprehensively investigate the effect that anodal and cathodal bipolar bihemispheric tDCS have on executive function and working memory abilities. Methods 72 healthy young adults were recruited, and each participant was randomly allocated to either a control group (CON), a placebo group (SHAM) or one of two neurostimulation groups (Anodal; A-STIM and Cathodal; C-STIM). All participants undertook cognitive tests (Stroop & N Back) before and after a 30-minute stimulation/ sham/ control protocol. Results Overall, our results add further evidence that tDCS may not be as efficacious for enhancing cognitive functioning as it has been shown to be for enhancing motor learning when applied over M1. We also provide evidence that the effect of neurostimulation on cognitive functioning may be moderated by sex, with males demonstrating a benefit from both anodal and cathodal stimulation when considering performance on simple attention trial types within the Stroop task. Discussion Considering this finding, we propose a new avenue for tDCS research, that the potential that sex may moderate the efficacy of neurostimulation on cognitive functioning.
Collapse
Affiliation(s)
- Adam J. Toth
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Lero Institute, University of Limerick, Limerick, Ireland
| | - Cliodhna Harvey
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Hannah Gullane
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Niall Kelly
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Adam Bruton
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Mark J. Campbell
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- The Science Foundation Ireland Center for Software Research, Lero Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
27
|
Nguyen TT, Lee SB, Kang JJ, Oh SY. Optimal Design of Galvanic Vestibular Stimulation for Patients with Vestibulopathy and Cerebellar Disorders. Brain Sci 2023; 13:1333. [PMID: 37759934 PMCID: PMC10526825 DOI: 10.3390/brainsci13091333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES Galvanic vestibular stimulation (GVS) has shown positive outcomes in various neurological and psychiatric disorders, such as enhancing postural balance and cognitive functions. In order to expedite the practical application of GVS in clinical settings, our objective was to determine the best GVS parameters for patients with vestibulopathy and cerebellar disorders using optimal design calculation. METHODS A total of 31 patients (26 males, mean age 57.03 ± 14.75 years, age range 22-82 years) with either unilateral or bilateral vestibulopathy (n = 18) or cerebellar ataxia (n = 13) were enrolled in the study. The GVS intervention included three parameters, waveform (sinusoidal, direct current [DC], and noisy), amplitude (0.4, 0.8, and 1.2 mA), and duration of stimulation (5 and 30 min), resulting in a total of 18 GVS intervention modes as input variables. To evaluate the effectiveness of GVS, clinical vertigo and gait assessments were conducted using the Dizziness Visual Analogue Scale (D-VAS), Activities-specific Balance Confidence Scale (ABC), and Scale for Assessment and Rating of Ataxia (SARA) as output variables. Optimal design and local sensitivity analysis were employed to determine the most optimal GVS modes. RESULTS Patients with unilateral vestibulopathy experienced the most favorable results with either noisy or sinusoidal GVS at 0.4 mA amplitude for 30 min, followed by DC GVS at 0.8 mA amplitude for 5 min. Noisy GVS at 0.8 or 0.4 mA amplitude for 30 min demonstrated the most beneficial effects in patients with bilateral vestibulopathy. For patients with cerebellar ataxia, the optimal choices were noisy GVS with 0.8 or 0.4 mA amplitude for 5 or 30 min. CONCLUSIONS This study is the first to utilize design optimization methods to identify the GVS stimulation parameters that are tailored to individual-specific characteristics of dizziness and imbalance. A sensitivity analysis was carried out along with the optimal design to offset the constraints of a limited sample size, resulting in the identification of the most efficient GVS modes for patients suffering from vestibular and cerebellar disorders.
Collapse
Affiliation(s)
- Thanh Tin Nguyen
- Department of Neurology, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine, Jeonju 54907, Republic of Korea; (T.T.N.); (J.-J.K.)
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue 49120, Vietnam
| | - Seung-Beop Lee
- School of International Engineering and Science, Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine, Jeonju 54907, Republic of Korea; (T.T.N.); (J.-J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Sun-Young Oh
- Department of Neurology, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine, Jeonju 54907, Republic of Korea; (T.T.N.); (J.-J.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
28
|
Xavier F, Chouin E, Serin-Brackman V, Séverac Cauquil A. How a Subclinical Unilateral Vestibular Signal Improves Binocular Vision. J Clin Med 2023; 12:5847. [PMID: 37762788 PMCID: PMC10532309 DOI: 10.3390/jcm12185847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The present study aimed to determine if an infra-liminal asymmetric vestibular signal could account for some of the visual complaints commonly encountered in chronic vestibular patients. We used infra-liminal galvanic vestibular stimulation (GVS) to investigate its potential effects on visuo-oculomotor behavior. A total of 78 healthy volunteers, 34 aged from 20 to 25 years old and 44 aged from 40 to 60 years old, were included in a crossover study to assess the impact of infra-liminal stimulation on convergence, divergence, proximal convergence point, and stereopsis. Under GVS stimulation, a repeated measures ANOVA showed a significant variation in near convergence (p < 0.001), far convergence (p < 0.001), and far divergence (p = 0.052). We also observed an unexpected effect of instantaneous blocking of the retest effect on the far divergence measurement. Further investigations are necessary to establish causal relationships, but GVS could be considered a behavioral modulator in non-pharmacological vestibular therapies.
Collapse
Affiliation(s)
- Frédéric Xavier
- Sensory and Cognitive Neuroscience Unit LNC UMR 7231 CNRS, Aix-Marseille University, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
| | - Emmanuelle Chouin
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
| | - Véronique Serin-Brackman
- Medical, Maieutics and Paramedical Department, Faculty of Health, University Toulouse III, Paul Sabatier, 31062 Toulouse, France
| | - Alexandra Séverac Cauquil
- ActiVest—Vestibular Functional Exploration in Humans and Non-Human Primates Unit GDR 2074, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
- Brain and Cognition Research Center CerCo UMR 5549 CNRS, University Toulouse III, Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
29
|
Lacquaniti F, La Scaleia B, Zago M. Noise and vestibular perception of passive self-motion. Front Neurol 2023; 14:1159242. [PMID: 37181550 PMCID: PMC10169592 DOI: 10.3389/fneur.2023.1159242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Noise defined as random disturbances is ubiquitous in both the external environment and the nervous system. Depending on the context, noise can degrade or improve information processing and performance. In all cases, it contributes to neural systems dynamics. We review some effects of various sources of noise on the neural processing of self-motion signals at different stages of the vestibular pathways and the resulting perceptual responses. Hair cells in the inner ear reduce the impact of noise by means of mechanical and neural filtering. Hair cells synapse on regular and irregular afferents. Variability of discharge (noise) is low in regular afferents and high in irregular units. The high variability of irregular units provides information about the envelope of naturalistic head motion stimuli. A subset of neurons in the vestibular nuclei and thalamus are optimally tuned to noisy motion stimuli that reproduce the statistics of naturalistic head movements. In the thalamus, variability of neural discharge increases with increasing motion amplitude but saturates at high amplitudes, accounting for behavioral violation of Weber's law. In general, the precision of individual vestibular neurons in encoding head motion is worse than the perceptual precision measured behaviorally. However, the global precision predicted by neural population codes matches the high behavioral precision. The latter is estimated by means of psychometric functions for detection or discrimination of whole-body displacements. Vestibular motion thresholds (inverse of precision) reflect the contribution of intrinsic and extrinsic noise to perception. Vestibular motion thresholds tend to deteriorate progressively after the age of 40 years, possibly due to oxidative stress resulting from high discharge rates and metabolic loads of vestibular afferents. In the elderly, vestibular thresholds correlate with postural stability: the higher the threshold, the greater is the postural imbalance and risk of falling. Experimental application of optimal levels of either galvanic noise or whole-body oscillations can ameliorate vestibular function with a mechanism reminiscent of stochastic resonance. Assessment of vestibular thresholds is diagnostic in several types of vestibulopathies, and vestibular stimulation might be useful in vestibular rehabilitation.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Civil Engineering and Computer Science Engineering, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
30
|
Rühl M, Kimmel R, Ertl M, Conrad J, Zu Eulenburg P. In Vivo Localization of the Human Velocity Storage Mechanism and Its Core Cerebellar Networks by Means of Galvanic-Vestibular Afternystagmus and fMRI. CEREBELLUM (LONDON, ENGLAND) 2023; 22:194-205. [PMID: 35212978 PMCID: PMC9985569 DOI: 10.1007/s12311-022-01374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Humans are able to estimate head movements accurately despite the short half-life of information coming from our inner ear motion sensors. The observation that the central angular velocity estimate outlives the decaying signal of the semicircular canal afferents led to the concept of a velocity storage mechanism (VSM). The VSM can be activated via visual and vestibular modalities and becomes manifest in ocular motor responses after sustained stimulation like whole-body rotations, optokinetic or galvanic vestibular stimulation (GVS). The VSM has been the focus of many computational modelling approaches; little attention though has been paid to discover its actual structural correlates. Animal studies localized the VSM in the medial and superior vestibular nuclei. A significant modulation by cerebellar circuitries including the uvula and nodulus has been proposed. Nevertheless, the corresponding neuroanatomical structures in humans have not been identified so far. The aim of the present study was to delineate the neural substrates of the VSM using high-resolution infratentorial fMRI with a fast T2* sequence optimized for infratentorial neuroimaging and via video-oculography (VOG). The neuroimaging experiment (n=20) gave first in vivo evidence for an involvement of the vestibular nuclei in the VSM and substantiate a crucial role for cerebellar circuitries. Our results emphasize the importance of cerebellar feedback loops in VSM most likely represented by signal increases in vestibulo-cerebellar hubs like the uvula and nodulus and lobule VIIIA. The delineated activation maps give new insights regarding the function and embedment of Crus I, Crus II, and lobule VII and VIII in the human vestibular system.
Collapse
Affiliation(s)
- Maxine Rühl
- Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
| | - Rebecca Kimmel
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Matthias Ertl
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Julian Conrad
- Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
31
|
Mildren RL, Cullen KE. Vestibular Contributions to Primate Neck Postural Muscle Activity during Natural Motion. J Neurosci 2023; 43:2326-2337. [PMID: 36801822 PMCID: PMC10072293 DOI: 10.1523/jneurosci.1831-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
To maintain stable posture of the head and body during our everyday activities, the brain integrates information across multiple sensory systems. Here, we examined how the primate vestibular system, independently and in combination with visual sensory input, contributes to the sensorimotor control of head posture across the range of dynamic motion experienced during daily life. We recorded activity of single motor units in the splenius capitis and sternocleidomastoid muscles in rhesus monkeys during yaw rotations spanning the physiological range of self-motion (up to 20 Hz) in darkness. Splenius capitis motor unit responses continued to increase with frequency up to 16 Hz in normal animals, and were strikingly absent following bilateral peripheral vestibular loss. To determine whether visual information modulated these vestibular-driven neck muscle responses, we experimentally controlled the correspondence between visual and vestibular cues of self-motion. Surprisingly, visual information did not influence motor unit responses in normal animals, nor did it substitute for absent vestibular feedback following bilateral peripheral vestibular loss. A comparison of muscle activity evoked by broadband versus sinusoidal head motion further revealed that low-frequency responses were attenuated when low- and high-frequency self-motion were experienced concurrently. Finally, we found that vestibular-evoked responses were enhanced by increased autonomic arousal, quantified via pupil size. Together, our findings directly establish the vestibular system's contribution to the sensorimotor control of head posture across the dynamic motion range experienced during everyday activities, as well as how vestibular, visual, and autonomic inputs are integrated for postural control.SIGNIFICANCE STATEMENT Our sensory systems enable us to maintain control of our posture and balance as we move through the world. Notably, the vestibular system senses motion of the head and sends motor commands, via vestibulospinal pathways, to axial and limb muscles to stabilize posture. By recording the activity of single motor units, here we show, for the first time, that the vestibular system contributes to the sensorimotor control of head posture across the dynamic motion range experienced during everyday activities. Our results further establish how vestibular, autonomic, and visual inputs are integrated for postural control. This information is essential for understanding both the mechanisms underlying the control of posture and balance, and the impact of the loss of sensory function.
Collapse
Affiliation(s)
- Robyn L Mildren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
32
|
Forbes PA, Kwan A, Mitchell DE, Blouin JS, Cullen KE. The Neural Basis for Biased Behavioral Responses Evoked by Galvanic Vestibular Stimulation in Primates. J Neurosci 2023; 43:1905-1919. [PMID: 36732070 PMCID: PMC10027042 DOI: 10.1523/jneurosci.0987-22.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Noninvasive electrical stimulation of the vestibular system in humans has become an increasingly popular tool with a broad range of research and clinical applications. However, common assumptions regarding the neural mechanisms that underlie the activation of central vestibular pathways through such stimulation, known as galvanic vestibular stimulation (GVS), have not been directly tested. Here, we show that GVS is encoded by VIIIth nerve vestibular afferents with nonlinear dynamics that differ markedly from those predicted by current models. GVS produced asymmetric activation of both semicircular canal and otolith afferents to the onset versus offset and cathode versus anode of applied current, that in turn produced asymmetric eye movement responses in three awake-behaving male monkeys. Additionally, using computational methods, we demonstrate that the experimentally observed nonlinear neural response dynamics lead to an unexpected directional bias in the net population response when the information from both vestibular nerves is centrally integrated. Together our findings reveal the neural basis by which GVS activates the vestibular system, establish that neural response dynamics differ markedly from current predictions, and advance our mechanistic understanding of how asymmetric activation of the peripheral vestibular system alters vestibular function. We suggest that such nonlinear encoding is a general feature of neural processing that will be common across different noninvasive electrical stimulation approaches.SIGNIFICANCE STATEMENT Here, we show that the application of noninvasive electrical currents to the vestibular system (GVS) induces more complex responses than commonly assumed. We recorded vestibular afferent activity in macaque monkeys exposed to GVS using a setup analogous to human studies. GVS evoked notable asymmetries in irregular afferent responses to cathodal versus anodal currents. We developed a nonlinear model explaining these GVS-evoked afferent responses. Our model predicts that GVS induces directional biases in centrally integrated head motion signals and establishes electrical stimuli that recreate physiologically plausible sensations of motion. Altogether, our findings provide new insights into how GVS activates the vestibular system, which will be vital to advancing new clinical and biomedical applications.
Collapse
Affiliation(s)
- Patrick A Forbes
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | | | | | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Colombia V6T 1Z1, Canada
| | - Kathleen E Cullen
- Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
- Departments of Biomedical Engineering
- Otolaryngology-Head and Neck Surgery
- Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
33
|
La Scaleia B, Lacquaniti F, Zago M. Enhancement of Vestibular Motion Discrimination by Small Stochastic Whole-body Perturbations in Young Healthy Humans. Neuroscience 2023; 510:32-48. [PMID: 36535577 DOI: 10.1016/j.neuroscience.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Noisy galvanic vestibular stimulation has been shown to improve vestibular perception in healthy subjects. Here, we sought to obtain similar results using more natural stimuli consisting of small-amplitude motion perturbations of the whole body. Thirty participants were asked to report the perceived direction of antero-posterior sinusoidal motion on a MOOG platform. We compared the baseline perceptual thresholds with those obtained by applying small, stochastic perturbations at different power levels along the antero-posterior axis, symmetrically distributed around a zero-mean. At the population level, we found that the thresholds for all but the highest level of noise were significantly lower than the baseline threshold. At the individual level, the threshold was lower with at least one noise level than the threshold without noise in 87% of participants. Thus, small, stochastic oscillations of the whole body can increase the probability of recognizing the direction of motion from low, normally subthreshold vestibular signals, possibly due to stochastic resonance mechanisms. We suggest that, just as the external noise of the present experiments, also the spontaneous random oscillations of the head and body associated with standing posture are beneficial by enhancing vestibular thresholds with a mechanism similar to stochastic resonance.
Collapse
Affiliation(s)
- Barbara La Scaleia
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Myrka Zago
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; Department of Civil Engineering and Computer Science Engineering and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
34
|
Debenham MIB, Kang HJ, Cheung SS, Dalton BH. The influence of reduced foot dorsum cutaneous sensitivity on the vestibular control of balance. Eur J Appl Physiol 2023; 123:65-79. [PMID: 36169737 DOI: 10.1007/s00421-022-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Foot sole cooling increases vestibular-evoked balance responses, but less is known about foot dorsum temperature alterations. The purpose was to determine whether decreasing cutaneous receptor sensitivity via foot dorsum cooling modulates the vestibular control of balance. METHODS Eighteen participants (9 males; 9 females) stood quietly on a force plate with feet together, eyes closed, and head rotated leftward during 4, 90-s trials (2 control; 2 cooled) of continuous electrical vestibular stimulation (EVS). Icepacks placed on the dorsum of both feet for 15 min induced cooling and remained throughout the EVS trials. Monofilament testing was performed at multiple locations before and after cooling to determine tactile detection thresholds. T-type thermocouples monitored skin temperature over the tibialis anterior, soleus, foot dorsum and arch of the right leg. Vestibular-evoked balance responses were characterized using time (cumulant density) and frequency (coherence and gain) domain analyses to determine the relationship between the EVS input and motor output (anteroposterior force-AP force; right medial gastrocnemius electromyography-MG EMG). RESULTS Skin temperature of the foot dorsum and arch decreased ~ 70 and 15%, respectively during cooling (p < 0.05), but was unaltered at other locations (p ≥ 0.10). Detection thresholds for the foot dorsum increased following cooling (p < 0.05). Surprisingly, cooling reduced EVS-AP force and EVS-MG EMG coherence and gain at multiple frequencies, and peak-to-peak amplitude compared to control (p < 0.05). CONCLUSION Our results indicate that vestibular-driven balance responses are reduced following foot dorsum cooling, likely owing to alterations in cutaneous mechanoreceptor sensitivity and subsequent alterations in the transformation of vestibular cues for balance control.
Collapse
Affiliation(s)
- Mathew I B Debenham
- Sensorimotor Physiology and Integrative Neuromechanics Lab, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Hogun J Kang
- Sensorimotor Physiology and Integrative Neuromechanics Lab, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Brian H Dalton
- Sensorimotor Physiology and Integrative Neuromechanics Lab, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
35
|
McLaren R, Smith PF, Taylor RL, Niazi IK, Taylor D. Scoping out noisy galvanic vestibular stimulation: a review of the parameters used to improve postural control. Front Neurosci 2023; 17:1156796. [PMID: 37205050 PMCID: PMC10187481 DOI: 10.3389/fnins.2023.1156796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) has been used to facilitate vestibular function and improve gait and balance in people with poor postural control. The aim of this scoping review is to collate, summarize and report on the nGVS parameters that have been used to augment postural control. Method A systematic scoping review was conducted up to December 2022. Data were extracted and synthesized from 31 eligible studies. Key nGVS parameters were identified, and the importance of these parameters and their influence on postural control evaluated. Results A range of nGVS parameters have been used to augment postural control, including; noise waveform, amplitude, frequency band, duration of stimulation, method of amplitude optimization, size and composition of electrodes and the electrode skin interface. Conclusion Systematic evaluation of the individual parameters that can be manipulated in the nGVS waveform identified that a broad array of settings have been utilized in each parameter across the studies. Choices made around the electrode and electrode-skin interface, as well as the amplitude, frequency band, duration and timing of the waveform are likely to influence the efficacy of nGVS. The ability to draw robust conclusions about the selection of optimal nGVS parameters to improve postural control, is hindered by a lack of studies that directly compare parameter settings or consider the variability in individuals' response to nGVS. We propose a guideline for the accurate reporting of nGVS parameters, as a first step toward establishing standardized stimulation protocols.
Collapse
Affiliation(s)
- Ruth McLaren
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- *Correspondence: Ruth McLaren,
| | - Paul F. Smith
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Rachael L. Taylor
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Imran Khan Niazi
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Centre of Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Centre for Sensory-Motor Interactions, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Denise Taylor
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Debenham MIB, Grantham TDA, Smirl JD, Foster GE, Dalton BH. The effects of acute normobaric hypoxia on vestibular-evoked balance responses in humans. J Vestib Res 2023; 33:31-49. [PMID: 36530112 DOI: 10.3233/ves-220075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hypoxia influences standing balance and vestibular function. OBJECTIVE The purpose here was to investigate the effect of hypoxia on the vestibular control of balance. METHODS Twenty participants (10 males; 10 females) were tested over two days (normobaric hypoxia and normoxia). Participants stood on a force plate (head rotated leftward) and experienced random, continuous electrical vestibular stimulation (EVS) during trials of eyes open (EO) and closed (EC) at baseline (BL), after 5 (H1), 30 (H2) and 55-min (H3) of hypoxia, and 10-min into normoxic recovery (NR). Vestibular-evoked balance responses were quantified using cumulant density, coherence, and gain functions between EVS and anteroposterior forces. RESULTS Oxyhemoglobin saturation, end-tidal oxygen and carbon dioxide decreased for H1-3 compared to BL; however, end-tidal carbon dioxide remained reduced at NR with EC (p≤0.003). EVS-AP force peak-to-peak amplitude was lower at H3 and NR than at BL (p≤0.01). At multiple frequencies, EVS-AP force coherence and gain estimates were lower at H3 and NR than BL for females; however, this was only observed for coherence for males. CONCLUSIONS Overall, vestibular-evoked balance responses are blunted following normobaric hypoxia >30 min, which persists into NR and may contribute to the reported increases in postural sway.
Collapse
Affiliation(s)
- M I B Debenham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - T D A Grantham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - J D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - G E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - B H Dalton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
37
|
Cullen KE. Vestibular motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:31-54. [PMID: 37562876 DOI: 10.1016/b978-0-323-98818-6.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The vestibular system is an essential sensory system that generates motor reflexes that are crucial for our daily activities, including stabilizing the visual axis of gaze and maintaining head and body posture. In addition, the vestibular system provides us with our sense of movement and orientation relative to space and serves a vital role in ensuring accurate voluntary behaviors. Neurophysiological studies have provided fundamental insights into the functional circuitry of vestibular motor pathways. A unique feature of the vestibular system compared to other sensory systems is that the same central neurons that receive direct input from the afferents of the vestibular component of the 8th nerve can also directly project to motor centers that control vital vestibular motor reflexes. In turn, these reflexes ensure stabilize gaze and the maintenance of posture during everyday activities. For instance, a direct three-neuron pathway mediates the vestibulo-ocular reflex (VOR) pathway to provide stable gaze. Furthermore, recent studies have advanced our understanding of the computations performed by the cerebellum and cortex required for motor learning, compensation, and voluntary movement and navigation. Together, these findings have provided new insights into how the brain ensures accurate self-movement during our everyday activities and have also advanced our knowledge of the neurobiological mechanisms underlying disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Departments of Biomedical Engineering, of Otolaryngology-Head and Neck Surgery, and of Neuroscience; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
38
|
Gallagher M, Romano F, Bockisch CJ, Ferrè ER, Bertolini G. Quantifying virtual self-motion sensations induced by galvanic vestibular stimulation. J Vestib Res 2023; 33:21-30. [PMID: 36591665 DOI: 10.3233/ves-220031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The vestibular system provides a comprehensive estimate of self-motion in 3D space. Widely used to artificially stimulate the vestibular system, binaural-bipolar square-wave Galvanic Vestibular Stimulation (GVS) elicits a virtual sensation of roll rotation. Postural responses to GVS have been clearly delineated, however quantifying the perceived virtual rotation vector has not been fully realised. OBJECTIVE We aimed to quantify the perceived virtual roll rotation vector elicited by GVS using a psychophysical approach on a 3D turntable. METHODS Participants were placed supine on the 3D turntable and rotated around the naso-occipital axis while supine and received square-wave binaural-bipolar GVS or sham stimulation. GVS amplitudes and intensities were systematically manipulated. The turntable motion profile consisted of a velocity step of 20°/s2 until the trial velocity between 0-20°/s was reached, followed by a 1°/s ramp until the end of the trial. In a psychophysical adaptive staircase procedure, we systematically varied the roll velocity to identify the exact velocity that cancelled the perceived roll sensation induced by GVS. RESULTS Participants perceived a virtual roll rotation towards the cathode of approximately 2°/s velocity for 1 mA GVS and 6°/s velocity for 2.5 mA GVS. The observed values were stable across repetitions. CONCLUSIONS Our results quantify for the first time the perceived virtual roll rotations induced by binaural-bipolar square-wave GVS. Importantly, estimates were based on perceptual judgements, in the absence of motor or postural responses and in a head orientation where the GVS-induced roll sensation did not interact with the perceived direction of gravity. This is an important step towards applications of GVS in different settings, including sensory substitution or Virtual Reality.
Collapse
Affiliation(s)
- M Gallagher
- School of Psychology, University of Kent, Canterbury, UK.,School of Psychology, Royal Holloway, University of London, Egham, UK
| | - F Romano
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - C J Bockisch
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Clinical Neuroscience Center, Zurich, Switzerland.,Department of Otorhinolaryngology, University Hospital Zurich, Zurich, Switzerland.,Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - E R Ferrè
- School of Psychology, Royal Holloway, University of London, Egham, UK.,Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - G Bertolini
- Institute of Optometry, University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| |
Collapse
|
39
|
Nakazono H, Taniguchi T, Mitsutake T, Takeda A, Yamada E, Ogata K. Phase-dependent modulation of the vestibular-cerebellar network via combined alternating current stimulation influences human locomotion and posture. Front Neurosci 2022; 16:1057021. [PMID: 36590300 PMCID: PMC9795064 DOI: 10.3389/fnins.2022.1057021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Human locomotion induces rhythmic movements of the trunk and head. Vestibular signaling is relayed to multiple regions in the brainstem and cerebellum, and plays an essential role in maintaining head stability. However, how the vestibular-cerebellar network contributes to the rhythmic locomotor pattern in humans is unclear. Transcranial alternating current stimulation (tACS) has been used to investigate the effects of the task-related network between stimulation regions in a phase-dependent manner. Here, we investigated the relationship between the vestibular system and the cerebellum during walking imagery using combined tACS over the left cerebellum and alternating current galvanic vestibular stimulation (AC-GVS). Methods In Experiment 1, we tested the effects of AC-GVS alone at around individual gait stride frequencies. In Experiment 2, we then determined the phase-specificity of combined stimulation at the gait frequency. Combined stimulation was applied at in-phase (0° phase lag) or anti-phase (180° phase lag) between the left vestibular and left cerebellar stimulation, and the sham stimulation. We evaluated the AC-GVS-induced periodic postural response during walking imagery or no-imagery using the peak oscillatory power on the angular velocity signals of the head in both experiments. In Experiment 2, we also examined the phase-locking value (PLV) between the periodic postural responses and the left AC-GVS signals to estimate entrainment of the postural response by AC-GVS. Results AC-GVS alone induced the periodic postural response in the yaw and roll axes, but no interactions with imagery walking were observed in Experiment 1 (p > 0.05). By contrast, combined in-phase stimulation increased yaw motion (0.345 ± 0.23) compared with sham (-0.044 ± 0.19) and anti-phase stimulation (-0.066 ± 0.18) during imaginary walking (in-phase vs. other conditions, imagery: p < 0.05; no-imagery: p ≥ 0.125). Furthermore, there was a positive correlation between the yaw peak power of actual locomotion and in-phase stimulation in the imagery session (imagery: p = 0.041; no-imagery: p = 0.177). Meanwhile, we found no imagery-dependent effects in roll peak power or PLV, although in-phase stimulation enhanced roll motion and PLV in Experiment 2. Conclusion These findings suggest that combined stimulation can influence vestibular-cerebellar network activity, and modulate postural control and locomotion systems in a temporally sensitive manner. This novel combined tACS/AC-GVS stimulation approach may advance development of therapeutic applications.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,*Correspondence: Hisato Nakazono,
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Akinori Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
40
|
Babaee S, Shaabani M, Vahedi M. Comparison of verticality perception and postural sway induced by double temple-mastoidal and bipolar binaural 20 Hz sinusoidal galvanic vestibular stimulation. J Vestib Res 2022; 32:407-421. [PMID: 34957979 DOI: 10.3233/ves-210112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Galvanic vestibular stimulation (GVS) is believed to be one of the most valuable tools for studying the vestibular system. In our opinion, its combined effect on posture and perception needs to be examined more. OBJECTIVE The present study was conducted to investigate the effect of a 20 Hz sinusoidal Galvanic Vestibular Stimulation (sGVS) on the body sway and subjective visual vertical (SVV) deviation through two sets of electrode montages (bipolar binaural and double temple-mastoidal stimulation) during a three-stage experiment (baseline, threshold, and supra-threshold levels). METHODS While the individuals (32 normal individuals, 10 males, the mean age of 25.37±3.00 years) were standing on a posturography device and SVV goggles were put on, the parameters of the body sway and SVV deviation were measured simultaneously. Following the baseline stage (measuring without stimulation), the parameters were investigated during the threshold and supra-threshold stages (1 mA above the threshold) for 20 seconds. This was done separately for each electrode montage. Then, the results were compared between the three experimental stages and the two electrode montages. RESULTS In both electrode montages, "the maximum amplitude" of the mediolateral (ML) and anteroposterior (AP) body sway decreased and increased in the threshold and supra-threshold stages, respectively, compared to the baseline stage. Comparison of the amount of "amplitude change" caused by each electrode montages showed that the double temple-mastoidal stimulation induced a significantly greater amplitude change in body sway during both threshold and supra-threshold stages (relative to the baseline stage).The absolute mean values of the SVV deviation were significantly different between the baseline and supra-threshold levels in both electrode montages. The SVV deviation in double temple-mastoidal stimulation was a bit greater than that in the bipolar binaural stimulation. CONCLUSION Double temple-mastoidal stimulation has induced greater amount of change in the body sway and SVV deviation. This may be due to the more effective stimulation of the otoliths than semicircular canals.
Collapse
Affiliation(s)
- Samar Babaee
- Department of Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Moslem Shaabani
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohsen Vahedi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
41
|
Abolpour Moshizi S, Pastras CJ, Sharma R, Parvez Mahmud MA, Ryan R, Razmjou A, Asadnia M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens Bioelectron 2022; 214:114521. [PMID: 35820254 DOI: 10.1016/j.bios.2022.114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Balance disorders affect approximately 30% of the population throughout their lives and result in debilitating symptoms, such as spontaneous vertigo, nystagmus, and oscillopsia. The main cause of balance disorders is peripheral vestibular dysfunction, which may occur as a result of hair cell loss, neural dysfunction, or mechanical (and morphological) abnormality. The most common cause of vestibular dysfunction is arguably vestibular hair cell damage, which can result from an array of factors, such as ototoxicity, trauma, genetics, and ageing. One promising therapy is the vestibular prosthesis, which leverages the success of the cochlear implant, and endeavours to electrically integrate the primary vestibular afferents with the vestibular scene. Other translational approaches of interest include stem cell regeneration and gene therapies, which aim to restore or modify inner ear receptor function. However, both of these techniques are in their infancy and are currently undergoing further characterization and development in the laboratory, using animal models. Another promising translational avenue to treating vestibular hair cell dysfunction is the potential development of artificial biocompatible hair cell sensors, aiming to replicate functional hair cells and generate synthetic 'receptor potentials' for sensory coding of vestibular stimuli to the brain. Recently, artificial hair cell sensors have demonstrated significant promise, with improvements in their output, such as sensitivity and frequency selectivity. This article reviews the history and current state of bioelectronic devices to interface with the labyrinth, spanning the vestibular implant and artificial hair cell sensors.
Collapse
Affiliation(s)
| | - Christopher John Pastras
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Rachel Ryan
- College of Public Health, The Ohio State University, Columbus, OH, 43210, United States
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Tisserand R, Rasman BG, Omerovic N, Peters RM, Forbes PA, Blouin JS. Unperceived motor actions of the balance system interfere with the causal attribution of self-motion. PNAS NEXUS 2022; 1:pgac174. [PMID: 36714829 PMCID: PMC9802180 DOI: 10.1093/pnasnexus/pgac174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023]
Abstract
The instability of human bipedalism demands that the brain accurately senses balancing self-motion and determines whether movements originate from self-generated actions or external disturbances. Here, we challenge the longstanding notion that this process relies on a single representation of the body and world to accurately perceive postural orientation and organize motor responses to control balance self-motion. Instead, we find that the conscious sense of balance can be distorted by the corrective control of upright standing. Using psychophysics, we quantified thresholds to imposed perturbations and balance responses evoking cues of self-motion that are (in)distinguishable from corrective balance actions. When standing immobile, participants clearly perceived imposed perturbations. Conversely, when freely balancing, participants often misattributed their own corrective responses as imposed motion because their balance system had detected, integrated, and responded to the perturbation in the absence of conscious perception. Importantly, this only occurred for perturbations encoded ambiguously with balance-correcting responses and that remained below the natural variability of ongoing balancing oscillations. These findings reveal that our balance system operates on its own sensorimotor principles that can interfere with causal attribution of our actions, and that our conscious sense of balance depends critically on the source and statistics of induced and self-generated motion cues.
Collapse
Affiliation(s)
- Romain Tisserand
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Institut PPRIME (UPR3346), Université de Poitiers ENSMA, CNRS, 86360 Chasseneuil-du-Poitou, France,Centre de Recherches sur la Cognition et l'Apprentissage (UMR 7295), Université de Poitiers, Université de Tours, CNRS, 86073 Poitiers, France
| | - Brandon G Rasman
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands,School of Physical Education, Sport, and Exercise Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Nina Omerovic
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|
43
|
Wuehr M, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Zwergal A. Effects of Low-Intensity Vestibular Noise Stimulation on Postural Instability in Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1611-1618. [PMID: 35491798 DOI: 10.3233/jpd-213127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Postural instability is a major disabling factor in patients with advanced Parkinson's disease (PD) and often resistant to treatment. Previous studies indicated that imbalance in PD may be reduced by low-intensity noisy galvanic vestibular stimulation (nGVS). OBJECTIVE To investigate the potential mode of action of this therapeutic effect. In particular, we examined whether nGVS-induced reductions of body sway in PD are compatible with stochastic resonance (SR), a mechanism by which weak sensory noise stimulation can paradoxically enhance sensory information transfer. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 15 patients with PD standing with eye closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal reductions of sway at intermediate nGVS intensities to be indicative of SR. An established SR-curve model was fitted on individual patient outcomes and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS nGVS-induced reductions of body sway compatible with SR were found in 10 patients (67%) with optimal improvements of 23±13%. In 7 patients (47%), nGVS-induced sway reductions exceeded the minimally important clinical difference (optimal improvement: 30±10%), indicative of strong SR. This beneficial effect was more likely in patients with advanced PD (R = 0.45; p = 0.045). CONCLUSIONS At least half of the assessed patients showed robust improvements in postural balance compatible with SR when treated with low-intensity nGVS. In particular, patients with more advanced disease stages and imbalance may benefit from the non-invasive and well-tolerated treatment with nGVS.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Schmidmeier
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology and Clinical Neurophysiology, Schön Klinik München Schwabing, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
44
|
Bouisset N, Villard S, Legros A. Vestibular Extremely Low-Frequency Magnetic and Electric Stimulation Effects on Human Subjective Visual Vertical Perception. Bioelectromagnetics 2022; 43:355-367. [PMID: 35801487 PMCID: PMC9541167 DOI: 10.1002/bem.22417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 11/08/2022]
Abstract
Electric fields from both extremely low‐frequency magnetic fields (ELF‐MF) and alternating current (AC) stimulations impact human neurophysiology. As the retinal photoreceptors, vestibular hair cells are graded potential cells and are sensitive to electric fields. Electrophosphene and magnetophosphene literature suggests different impacts of AC and ELF‐MF on the vestibular hair cells. Furthermore, while AC modulates the vestibular system more globally, lateral ELF‐MF stimulations could be more utricular specific. Therefore, to further address the impact of ELF‐MF‐induced electric fields on the human vestibular system and the potential differences with AC stimulations, we investigated the effects of both stimulation modalities on the perception of verticality using a subjective visual vertical (SVV) paradigm. For similar levels of SVV precision, the ELF‐MF condition required more time to adjust SVV, and SVV variability was higher with ELF‐MF than with AC vestibular‐specific stimulations. Yet, the differences between AC and ELF‐MF stimulations were small. Overall, this study highlights small differences between AC and ELF‐MF vestibular stimulations, underlines a potential utricular contribution, and has implications for international exposure guidelines and standards. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research and Bioelectromagnetics Group, Imaging, Lawson Health Research Institute, London, Canada.,Department of Kinesiology, Western University, London, Canada
| | - Sébastien Villard
- Human Threshold Research and Bioelectromagnetics Group, Imaging, Lawson Health Research Institute, London, Canada.,Department of Kinesiology, Western University, London, Canada
| | - Alexandre Legros
- Human Threshold Research and Bioelectromagnetics Group, Imaging, Lawson Health Research Institute, London, Canada.,Department of Kinesiology, Western University, London, Canada.,Department of Medical Biophysics, Western University, London, Canada.,Department of Medical Imaging, Western University, London, Canada.,Euromov Digital Heath in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.,EuroStim, Montpellier, France
| |
Collapse
|
45
|
Nguyen TT, Nam GS, Han GC, Le C, Oh SY. The Effect of Galvanic Vestibular Stimulation on Visuospatial Cognition in an Incomplete Bilateral Vestibular Deafferentation Mouse Model. Front Neurol 2022; 13:857736. [PMID: 35370874 PMCID: PMC8971559 DOI: 10.3389/fneur.2022.857736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo evaluate the efficacy of galvanic vestibular stimulation (GVS) for recovering from the locomotor and spatial memory deficits of a murine bilateral vestibular deafferentation (BVD) model.MethodsMale C57BL/6 mice (n = 36) were assigned to three groups: bilateral labyrinthectomy with (BVD_GVS group) and without (BVD_non-GVS group) the GVS intervention, and a control group with the sham operation. We used the open field and Y maze, and Morris water maze (MWM) tests to assess locomotor and visuospatial cognitive performance before (baseline) and 3, 7, and 14 days after surgical bilateral labyrinthectomy. For the GVS group, a sinusoidal current at the frequency at 1 Hz and amplitude 0.1 mA was delivered for 30 min daily from the postoperative day (POD) 0 to 4 via electrodes inserted subcutaneously close to both the bony labyrinths.ResultsShort-term spatial memory was significantly impaired in bilaterally labyrinthectomized mice (BVD_non-GVS group), as reflected by decreased spontaneous alternation performance in the place recognition test and time spent in the novel arm and increased same arm return in the Y-maze test, compared with the control. Long-term spatial memory was also impaired, as indicated by a longer escape latency in the hidden platform trial and a lower percentage of time spent in the target quadrant in the probe trial of the MWM. GVS application significantly accelerated the recovery of locomotion and short-term and long-term spatial memory deficits in the BVD mice.ConclusionsOur data demonstrate that locomotion, short-term, and long-term (at least 2 weeks) spatial memory were impaired in BVD mice. The early administration of sinusoidal GVS accelerated the recovery of those locomotion and spatial memory deficiencies. GVS could be applied to patients with BVD to improve their locomotion and vestibular cognitive functioning.
Collapse
Affiliation(s)
- Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Gi-Sung Nam
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, South Korea
| | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Gachon University of Medicine and Science, Graduate School of Medicine, Incheon, South Korea
| | - Chuyen Le
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
- Department of General-Endocrinology and Internal Medicine, Hue University Hospital, Hue, Vietnam
- *Correspondence: Chuyen Le ;
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Sun-Young Oh
| |
Collapse
|
46
|
Lee S, Smith PF, Lee WH, McKeown MJ. Frequency-Specific Effects of Galvanic Vestibular Stimulation on Response-Time Performance in Parkinson's Disease. Front Neurol 2021; 12:758122. [PMID: 34795633 PMCID: PMC8593161 DOI: 10.3389/fneur.2021.758122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Galvanic vestibular stimulation (GVS) is being increasingly explored as a non-invasive brain stimulation technique to treat symptoms in Parkinson's disease (PD). To date, behavioral GVS effects in PD have been explored with only two stimulus types, direct current and random noise (RN). The interaction between GVS effects and anti-parkinsonian medication is unknown. In the present study, we designed multisine (ms) stimuli and investigated the effects of ms and RN GVS on motor response time. In comparison to the RN stimulus, the ms stimuli contained sinusoidal components only at a set of desired frequencies and the phases were optimized to improve participants' comfort. We hypothesized GVS motor effects were a function of stimulation frequency, and specifically, that band-limited ms-GVS would result in better motor performance than conventionally used broadband RN-GVS. Materials and Methods: Eighteen PD patients (PDMOFF/PDMON: off-/on-levodopa medication) and 20 healthy controls (HC) performed a simple reaction time task while receiving sub-threshold GVS. Each participant underwent nine stimulation conditions: off-stimulation, RN (4–200 Hz), ms-θ (4–8 Hz), ms-α (8–13 Hz), ms-β (13–30 Hz), ms-γ (30–50 Hz), ms-h1 (50–100 Hz), ms-h2 (100–150 Hz), and ms-h3 (150–200 Hz). Results: The ms-γ resulted in shorter response time (RPT) in both PDMOFF and HC groups compared with the RN. In addition, the RPT of the PDMOFF group decreased during the ms-β while the RPT of the HC group decreased during the ms-α, ms-h1, ms-h2, and ms-h3. There was considerable inter-subject variability in the optimum stimulus type, although the frequency range tended to fall within 8–100 Hz. Levodopa medication significantly reduced the baseline RPT of the PD patients. In contrast to the off-medication state, GVS did not significantly change RPT of the PD patients in the on-medication state. Conclusions: Using band-limited ms-GVS, we demonstrated that the GVS frequency for the best RPT varied considerably across participants and was >30 Hz for half of the PDMOFF patients. Moreover, dopaminergic medication was found to influence GVS effects in PD patients. Our results indicate the common “one-size-fits-all” RN approach is suboptimal for PD, and therefore personalized stimuli aiming to address this variability is warranted to improve GVS effects.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, South Korea
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Gutkovich YE, Lagami D, Jamison A, Fonar Y, Tal D. Galvanic vestibular stimulation as a novel treatment for seasickness. Exp Brain Res 2021; 240:429-437. [PMID: 34782915 DOI: 10.1007/s00221-021-06263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
Motion sickness is the cause of major physical discomfort and impaired performance in many susceptible individuals. Some habituate to sea conditions, whereas others remain chronically susceptible, requiring lifelong pharmaceutical treatment. The present study sets out to investigate whether galvanic vestibular stimulation (GVS) coupled with rotatory chair stimulation could mimic sea conditions and alleviate motion sickness symptoms in individuals deemed chronically susceptible. Thirty seasickness susceptible subjects, after at least six months of regular sailing, were enrolled in a prospective, single-blind, randomised controlled study. The treatment group underwent GVS coupled with inverse phase rotatory chair impulse in sinusoidal harmonic acceleration protocol. The control group underwent a sham procedure. All subjects performed repeated velocity step tests to determine the vestibular time constant (Tc) and completed a seasickness questionnaire. The GVS rotatory chair procedure decreased the prevalence of severe seasickness. The number of motion sickness clinic visits and anti-motion sickness drug consumption were reduced in the treatment group three-month post intervention as compared to control. In addition, there was significant reduction of Tc in the treatment group. GVS coupled with rotatory chair impulse could decrease motion sickness severity, induce neurophysiological learning processes and promote habituation to seasickness in chronic susceptible subjects. This is a novel and promising non-pharmacological method to treat motion sickness susceptible individuals. Furthermore, the investigation demonstrated that adaptation to sea conditions may take place even after years of susceptibility to seasickness. This study was retrospectively registered on August 10th 2021 and assigned the identifier number NCT05004818.
Collapse
Affiliation(s)
- Yoni Evgeni Gutkovich
- Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute (INMI), Rambam Health Care Campus, P.O. Box 22, 3109601, Haifa, Israel.,Department of Otolaryngology - Head and Neck Surgery, Haemek Medical Centre, Afula, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel Lagami
- Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute (INMI), Rambam Health Care Campus, P.O. Box 22, 3109601, Haifa, Israel
| | - Anna Jamison
- Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute (INMI), Rambam Health Care Campus, P.O. Box 22, 3109601, Haifa, Israel
| | - Yuri Fonar
- Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute (INMI), Rambam Health Care Campus, P.O. Box 22, 3109601, Haifa, Israel.,Shalvata Mental Health Centre, Hod Hasharon, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Tal
- Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute (INMI), Rambam Health Care Campus, P.O. Box 22, 3109601, Haifa, Israel.
| |
Collapse
|
48
|
Huber J, Ruehl M, Flanagin V, Zu Eulenburg P. Delineating neural responses and functional connectivity changes during vestibular and nociceptive stimulation reveal the uniqueness of cortical vestibular processing. Brain Struct Funct 2021; 227:779-791. [PMID: 34611776 PMCID: PMC8930960 DOI: 10.1007/s00429-021-02394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Vestibular information is ubiquitous and often processed jointly with visual, somatosensory and proprioceptive information. Among the cortical brain regions associated with human vestibular processing, area OP2 in the parietal operculum has been proposed as vestibular core region. However, delineating responses uniquely to vestibular stimulation in this region using neuroimaging is challenging for several reasons: First, the parietal operculum is a cytoarchitectonically heterogeneous region responding to multisensory stimulation. Second, artificial vestibular stimulation evokes confounding somatosensory and nociceptive responses blurring responses contributing to vestibular perception. Furthermore, immediate effects of vestibular stimulation on the organization of functional networks have not been investigated in detail yet. Using high resolution neuroimaging in a task-based and functional connectivity approach, we compared two equally salient stimuli—unilateral galvanic vestibular (GVS) and galvanic nociceptive stimulation (GNS)—to disentangle the processing of both modalities in the parietal operculum and characterize their effects on functional network architecture. GNS and GVS gave joint responses in area OP1, 3, 4, and the anterior and middle insula, but not in area OP2. GVS gave stronger responses in the parietal operculum just adjacent to OP3 and OP4, whereas GNS evoked stronger responses in area OP1, 3 and 4. Our results underline the importance of considering this common pathway when interpreting vestibular neuroimaging experiments and underpin the role of area OP2 in central vestibular processing. Global network changes were found during GNS, but not during GVS. This lack of network reconfiguration despite the saliency of GVS may reflect the continuous processing of vestibular information in the awake human.
Collapse
Affiliation(s)
- Judita Huber
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maxine Ruehl
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Virginia Flanagin
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Zu Eulenburg
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
49
|
Potential Mechanisms of Acute Standing Balance Deficits After Concussions and Subconcussive Head Impacts: A Review. Ann Biomed Eng 2021; 49:2693-2715. [PMID: 34258718 DOI: 10.1007/s10439-021-02831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023]
Abstract
Standing balance deficits are prevalent after concussions and have also been reported after subconcussive head impacts. However, the mechanisms underlying such deficits are not fully understood. The objective of this review is to consolidate evidence linking head impact biomechanics to standing balance deficits. Mechanical energy transferred to the head during impacts may deform neural and sensory components involved in the control of standing balance. From our review of acute balance-related changes, concussions frequently resulted in increased magnitude but reduced complexity of postural sway, while subconcussive studies showed inconsistent outcomes. Although vestibular and visual symptoms are common, potential injury to these sensors and their neural pathways are often neglected in biomechanics analyses. While current evidence implies a link between tissue deformations in deep brain regions including the brainstem and common post-concussion balance-related deficits, this link has not been adequately investigated. Key limitations in current studies include inadequate balance sampling duration, varying test time points, and lack of head impact biomechanics measurements. Future investigations should also employ targeted quantitative methods to probe the sensorimotor and neural components underlying balance control. A deeper understanding of the specific injury mechanisms will inform diagnosis and management of balance deficits after concussions and subconcussive head impact exposure.
Collapse
|
50
|
Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol 2021; 12:736849. [PMID: 34539564 PMCID: PMC8446527 DOI: 10.3389/fneur.2021.736849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Objectives: To investigate the ameliorating effects of sinusoidal galvanic vestibular stimulation (GVS) on vestibular compensation from unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL). Methods: Sixteen male C57BL/6 mice were allocated into two groups that comprise UL groups with GVS (GVS group, n = 9) and without GVS intervention (non-GVS group, n = 7). In the experimental groups, we assessed vestibulo-ocular reflex (VOR) recovery before (baseline) and at 3, 7, and 14 days after surgical unilateral labyrinthectomy. In the GVS group, stimulation was applied for 30 min daily from postoperative days (PODs) 0–4 via electrodes inserted subcutaneously next to both bony labyrinths. Results: Locomotion and VOR were significantly impaired in the non-GVS group compared to baseline. The mean VOR gain of the non-GVS group was attenuated to 0.23 at POD 3 and recovered continuously to the value of 0.54 at POD 14, but did not reach the baseline values at any frequency. GVS intervention significantly accelerated recovery of locomotion, as assessed by the amount of circling and total path length in the open field tasks compared to the non-GVS groups on PODs 3 (p < 0.001 in both amount of circling and total path length) and 7 (p < 0.01 in amount of circling and p < 0.001 in total path length, Mann–Whitney U-test). GVS also significantly improved VOR gain compared to the non-GVS groups at PODs 3 (p < 0.001), 7 (p < 0.001), and 14 (p < 0.001, independent t-tests) during sinusoidal rotations. In addition, the recovery of the phase responses and asymmetry of the VOR was significantly better in the GVS group than in the non-GVS group until 2 weeks after UVD (phase, p = 0.001; symmetry, p < 0.001 at POD 14). Conclusion: Recoveries for UVD-induced locomotion and VOR deficits were accelerated by an early intervention with GVS, which implies that GVS has the potential to improve vestibular compensation in patients with acute unilateral vestibular failure.
Collapse
Affiliation(s)
- Gi-Sung Nam
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, South Korea
| | - Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Jin-Ju Kang
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gachon University of Medicine and Science, Incheon, South Korea
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|