1
|
Ma S, Chen D, Xu J, Ye Z, Zhang J. Glassy Carbon Electrodes Modified with Ru Nanoparticles Loaded in B-Doped Imidazolium Porous Organic Polymers for Hydrogen Evolution Reaction. Chem Asian J 2025; 20:e202401042. [PMID: 39422668 DOI: 10.1002/asia.202401042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Porous organic polymers (POPs) are a type of porous material composed of organic structural units connected by covalent bonds and POPs have been used as efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, glassy carbon electrode (GCE) is chemically modified by B-doped imidazolium-based porous organic polymers loaded with Ru nanoparticles on the GCE surface. The incorporation of B in the POPs regulates the electronic structure of electrocatalysts to enhance their inherent electrocatalytic activity for HER. The optimized modified electrode GCE-Ru/PIM-Br2 exhibits a low overpotential of 271 mV at a current density of 10 mA cm-2 with a small Tafel slope (80 mV dec-1) in acidic solutions, and shows long-term stability for up to 22 h. This work presents a strategy to develop B-doped porous electrodes with loaded metal nanoparticles to strengthen the catalytic performance of electrocatalysts.
Collapse
Affiliation(s)
- Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Di Chen
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Xu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhaobin Ye
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Chen C, Yan D, Jia X, Li R, Hu L, Li X, Jiao L, Zhu C, Zhai Y, Lu X. Oxygen-bridged W-Pd atomic pairs enable H 2O 2 activation for sensitive immunoassays. Chem Sci 2024:d4sc04711g. [PMID: 39246350 PMCID: PMC11376078 DOI: 10.1039/d4sc04711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024] Open
Abstract
Regulating the performance of peroxidase (POD)-like nanozymes is a prerequisite for achieving highly sensitive and accurate immunoassays. Inspired by natural enzyme catalysis, we design a highly active and selective nanozyme by loading atomically dispersed tungsten (W) sites on Pd metallene (W-O-Pdene) to construct an artificial three-dimensional (3D) catalytic center. The 3D asymmetric W-O-Pd atomic pairs can effectively stretch the O-O bonds in H2O2 and further promote the desorption of H2O to enhance POD-like activity. Moreover, the W-O-Pd sites with unique spatial structures demonstrate satisfactory specificity for H2O2 activation, effectively preventing the interference of dissolved oxygen. Accordingly, the highly active and specific W-O-Pdene nanozymes are utilized for sensitive and accurate prostate-specific antigen (PSA) immunoassay with a low detection limit of 1.92 pg mL-1, superior to commercial enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
3
|
Hu S, Xu L, Wu Y, Qin D, Deng B. Novel immunosensor based on electrochemiluminescence inner filter effect and static quenching between fibrillary Ag-MOGs and SiO 2@PANI@AuNPs for enabling the sensitive detection of neuron-specific enolase. Mikrochim Acta 2024; 191:204. [PMID: 38492076 DOI: 10.1007/s00604-024-06294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Metal-organic gels (MOGs) are unique supramolecular gels that are convenient to synthesize. In this work, a cathodic electrochemiluminescence (ECL) system based on Ag-MOGs as a luminophore and K2S2O8 as a co-reactor was developed. The ECL spectrum of the Ag-MOGs overlapped significantly with the strong UV-Vis spectrum of the SiO2@PANI@AuNPs, which effectively quenched the ECL luminescence of the Ag-MOGs. Relying on the inner filter effect between Ag-MOGs and SiO2@PANI@AuNPs, a novel ECL-IFE immunosensor was developed for the detection of neuron-specific enolase (NSE). Under optimal conditions, the ECL signal of the immunosensor displayed excellent linearity over the NSE concentration range of 10 fg/mL-100 ng/mL. The limit of detection (LOD) was 2.6 fg/mL (S/N = 3) with a correlation coefficient R2 of 0.9975. The ECL immunosensor also exhibited excellent stability and reproducibility for the detection of NSE. The results reported provide a feasible concept for the development analytical methods for the detection of other clinically relevant biomarkers.
Collapse
Affiliation(s)
- Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China.
| |
Collapse
|
4
|
Lee CJ, Shee NK, Kim HJ. Fabrication and properties of Sn(iv) porphyrin-linked porous organic polymer for environmental applications. RSC Adv 2023; 13:24077-24085. [PMID: 37577097 PMCID: PMC10415751 DOI: 10.1039/d3ra04117d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
A robust porous organic polymer cross-linked by Sn(iv) porphyrin (SnPOP) was fabricated by reacting trans-dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(iv) (SnP) with fluorinated polyimide (FPI) via sol-gel formation, followed by supercritical CO2 drying. The structural and porous properties of SnPOP were characterized using FT-IR, UV-vis, and fluorescence spectroscopies, along with field-emission scanning electron microscopy and gas sorption experiments. The reaction between the SnP's oxophilic Sn(iv) center and FPI's carboxylic acid moiety resulted in a controllable cross-linked porous texture. This material features the desirable physical properties of porphyrin and exhibits mesoporous structures with a relatively high surface area. SnPOP is thermally stable at temperatures up to 600 °C and highly resistant to boiling water, strong acids, and bases, owing to its assembly via formation of covalent bonds instead of typically weaker hydrogen bonds. The modified chemical and morphological structures of SnPOP showed an impressive CO2 uptake capacity of 58.48 mg g-1 at 273 K, with a preference for CO2 over N2. SnPOP showed significant efficiency in removing pollutant dyes, such as methylene blue and methyl orange, from dye-contaminated water. Additionally, SnPOP was a photocatalyst for fabricating silver nanoparticles of regular shape and size. All these properties make SnPOP a potential candidate for environmental applications like pollutant removal, gas storage, and separation.
Collapse
Affiliation(s)
- Chang-Ju Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| | - Nirmal Kumar Shee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| |
Collapse
|
5
|
Liu G, Li S, Shi C, Huo M, Lin Y. Progress in Research and Application of Metal-Organic Gels: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1178. [PMID: 37049272 PMCID: PMC10096755 DOI: 10.3390/nano13071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, metal-organic gels (MOGs) have attracted much attention due to their hierarchical porous structure, large specific surface area, and good surface modifiability. Compared with MOFs, the synthesis conditions of MOGs are gentler and more stable. At present, MOGs are widely used in the fields of catalysis, adsorption, energy storage, electrochromic devices, sensing, analysis, and detection. In this paper, literature metrology and knowledge graph visualization analysis are adopted to analyze and summarize the literature data in the field of MOGs. The visualization maps of the temporal distribution, spatial distribution, authors and institutions' distribution, influence of highly cited literature and journals, keyword clustering, and research trends are helpful to clearly grasp the content and development trend of MOG materials research, point out the future research direction for scholars, and promote the practical application of MOGs. At the same time, the paper reviews the research and application progress of MOGs in recent years by combining keyword clustering, time lines, and emergence maps, and looks forward to their challenges, future development trend, and application prospects.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
6
|
Liang J, Yu H, Shi J, Li B, Wu L, Wang M. Dislocated Bilayer MOF Enables High-Selectivity Photocatalytic Reduction of CO 2 to CO. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209814. [PMID: 36588326 DOI: 10.1002/adma.202209814] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The highly selective photoreduction of CO2 into valuable small-molecule chemical feedstocks such as CO is an effective strategy for addressing the energy crisis and environmental problems. However, it remains a challenge because the complex CO2 photoreduction process usually generates multiple possible products and requires a subsequent separation step. In this paper, 2D monolayer and bilayer porphyrin-based metal-organic frameworks (MOFs) are successfully constructed by adjusting the reaction temperature and solvent polarity with 5,10,15,20-tetrakis(4-pyridyl)porphyrin as the light-harvesting ligand. The bilayer MOF is a low-dimensional MOF with a special structure in which the upper and lower layers are arranged in dislocation and are bridged by halogen ions. This bilayer MOF exhibits 100% ultra-high selectivity for the reduction of CO2 to CO under simulated sunlight without any cocatalyst or photosensitizer and can be recycled at least three times. The intrinsic mechanism of this photocatalytic CO2 reduction process is explored through experimental characterization and density functional theory (DFT) calculations. This work shows that the rational design of the number of layers in 2D MOF structures can tune the stability of these structures and opens a new avenue for the design of highly selective MOF photocatalysts.
Collapse
Affiliation(s)
- Jinxia Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
7
|
Xu Y, Zhou Z, Deng N, Fu K, Zhu C, Hong Q, Shen Y, Liu S, Zhang Y. Molecular insights of nanozymes from design to catalytic mechanism. Sci China Chem 2023; 66:1318-1335. [PMID: 36817323 PMCID: PMC9923663 DOI: 10.1007/s11426-022-1529-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Emerging as cost-effective potential alternatives to natural enzymes, nanozymes have attracted increasing interest in broad fields. To exploit the in-depth potential of nanozymes, rational structural engineering and explicit catalytic mechanisms at the molecular scale are required. Recently, impressive progress has been made in mimicking the characteristics of natural enzymes by constructing metal active sites, binding pockets, scaffolds, and delicate allosteric regulation. Ingenious in-depth studies have been conducted with advances in structural characterization and theoretical calculations, unveiling the "black box" of nanozyme-catalytic mechanisms. This review introduces the state-of-art synthesis strategies by learning from the natural enzyme counterparts and summarizes the general overview of the nanozyme mechanism with a particular emphasis on the adsorbed intermediates and descriptors that predict the nanozyme activity The emerging activity assessment methodology that illustrates the relationship between electrochemical oxygen reduction and enzymatic oxygen reduction is discussed with up-to-date advances Future opportunities and challenges are presented in the end to spark more profound work and attract more researchers from various backgrounds to the flourishing field of nanozymes.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Nankai Deng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Kangchun Fu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| |
Collapse
|
8
|
Wang M, Yang Q. Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chem Sci 2022; 13:13291-13302. [PMID: 36507185 PMCID: PMC9682894 DOI: 10.1039/d2sc04223a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022] Open
Abstract
Selective hydrogenation with supported metal catalysts widely used in the production of fine chemicals and pharmaceuticals often faces a trade-off between activity and selectivity, mainly due to the inability to adjust one factor of the active sites without affecting other factors. In order to solve this bottleneck problem, the modulation of the microenvironment of active sites has attracted more and more attention, inspired by the collaborative catalytic mode of enzymes. In this perspective, we aim to summarize recent advances in the regulation of the microenvironment surrounding supported metal nanoparticles (NPs) using porous materials enriched with organic functional groups. Insights on how the microenvironment induces the enrichment, oriented adsorption and activation of substrates through non-covalent interaction and thus determines the hydrogenation activity and selectivity will be particularly discussed. Finally, a brief summary will be provided, and challenges together with a perspective in microenvironment engineering will be proposed.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
9
|
Myltykbayeva ZK, Seysembekova A, Moreno BM, Sánchez-Tovar R, Fernández-Domene RM, Vidal-Moya A, Solsona B, López Nieto JM. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7473. [PMID: 36363063 PMCID: PMC9658604 DOI: 10.3390/ma15217473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Metalloporphyrin-containing mesoporous materials, named VTPP@SBA, were prepared via a simple anchoring of vanadyl porphyrin (5,10,15,20-Tetraphenyl-21H,23H-porphine vanadium(IV) oxide) through a SBA-15-type mesoporous material. For comparison, vanadyl porphyrin was also impregnated on SiO2 (VTPP/SiO2). The characterization results of catalysts by XRD, FTIR, DR-UV-vis, and EPR confirm the incorporation of vanadyl porphyrin within the mesoporous SBA-15. These catalysts have also been studied using electrochemical and photoelectrochemical methods. Impedance measurements confirmed that supporting the porphyrin in silica improved the electrical conductivity of samples. In fact, when using mesoporous silica, current densities associated with oxidation/reduction processes appreciably increased, implying an enhancement in charge transfer processes and, therefore, in electrochemical performance. All samples presented n-type semiconductivity and provided an interesting photoelectrocatalytic response upon illumination, especially silica-supported porphyrins. This is the first time that V-porphyrin-derived materials have been tested for photoelectrochemical applications, showing good potential for this use.
Collapse
Affiliation(s)
- Zhannur K. Myltykbayeva
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Anar Seysembekova
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Beatriz M. Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Rita Sánchez-Tovar
- Departament d’Enginyeria Química, Universitat de València, Av. de les Universitats, s/n, 46100 Burjassot, Spain
| | - Ramón M. Fernández-Domene
- Departament d’Enginyeria Química, Universitat de València, Av. de les Universitats, s/n, 46100 Burjassot, Spain
| | - Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Benjamín Solsona
- Departament d’Enginyeria Química, Universitat de València, Av. de les Universitats, s/n, 46100 Burjassot, Spain
| | - José M. López Nieto
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
10
|
Zhang X, Yang C, An P, Cui C, Ma Y, Liu H, Wang H, Yan X, Li G, Tang Z. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. SCIENCE ADVANCES 2022; 8:eadd5678. [PMID: 36206342 PMCID: PMC9544332 DOI: 10.1126/sciadv.add5678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 05/20/2023]
Abstract
Numerous efforts are being made toward constructing artificial nanopockets inside heterogeneous catalysts to implement challenging reactions that are difficult to occur on traditional heterogeneous catalysts. Here, the enzyme-mimetic nanopockets are fabricated inside the typical UiO-66 by coordinating zirconium nodes with terephthalate (BDC) ligands and monocarboxylate modulators including formic acid (FC), acetic acid (AC), or trifluoroacetic acid (TFA). When used in transfer hydrogenation of alkyl levulinates with isopropanol toward γ-valerolactone (GVL), these modulators endow zirconium sites with enhanced activity and selectivity and good stability. The catalytic activity of UiO-66FC is ~30 times that of UiO-66, also outperforming the state-of-the-art heterogeneous catalysts. Distinct from general consensus on electron-withdrawing or electron-donating effect on the altered activity of metal centers, this improvement mainly originates from the conformational change of modulators in the nanopocket to assist forming the rate-determining six-membered ring intermediate at zirconium sites, which are stabilized by van der Waals force interactions.
Collapse
Affiliation(s)
- Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengqian Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yumiao Ma
- Hangzhou Yanqu Information Technology Co. Ltd., Hangzhou 310030, P. R. China
| | - Haitao Liu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, P. R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoying Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author. (Z.T.); (G.L.)
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author. (Z.T.); (G.L.)
| |
Collapse
|
11
|
Zhou C, Zeng Y, Song Z, Liu Q, Zhang Y, Wang M, Du Y. Porphyrin-Containing Metallacage with Precise Active Sites and Super Long-Term Stability as a Specific Peroxidase Mimic for Versatile Analyte Determination. Anal Chem 2022; 94:13261-13268. [DOI: 10.1021/acs.analchem.2c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenyu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yunting Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130022, China
| | - Zhimin Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130022, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Qin H, Li N, Xu H, Guo Q, Cong H, Yu S. Double Confinement Hydrogel Network Enables Continuously Regenerative Solar‐to‐Hydrogen Conversion. Angew Chem Int Ed Engl 2022; 61:e202209687. [DOI: 10.1002/anie.202209687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Na Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Hou‐Ming Xu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Qiu‐Yan Guo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Huai‐Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Shu‐Hong Yu
- Department of Chemistry Institute of Biomimetic Materials & Chemistry Anhui Engineering Laboratory of Biomimetic Materials Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
13
|
Qin H, Li N, Xu HM, Guo QY, Cong HP, Yu SH. Double Confinement Hydrogel Network Enables Continuously Regenerative Solar‐to‐Hydrogen Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haili Qin
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Na Li
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hou-Ming Xu
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Qiu-Yan Guo
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Huai-Ping Cong
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Shu-Hong Yu
- University of Science and Technology of China Division of Nanomaterials & Chemistry Jinzhai Road 96Hefei National Laboratory for Physical Sciences at Microscale 230026 Hefei CHINA
| |
Collapse
|
14
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Li Q, Gu D, Yu D, Liu Y. Caged iridium catalyst for hydrosilylation of alkynes with high site selectivity. ChemCatChem 2022. [DOI: 10.1002/cctc.202101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiaosheng Li
- Beihang University School of Chemistry and Environment CHINA
| | - Defa Gu
- Beihang University School of Chemistry and Environment CHINA
| | - Dongdong Yu
- Beihang University School of Chemistry and Environment CHINA
| | - Yuzhou Liu
- Beihang University School of Chemistry and Environment 37 Xueyuan RdHaidian District 100191 Beijing CHINA
| |
Collapse
|
16
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
17
|
Ma HC, Sun YN, Chen GJ, Dong YB. BINOL-phosphoric acid and metalloporphyrin derived chiral covalent organic framework for enantioselective α-benzylation of aldehydes. Chem Sci 2022; 13:1906-1911. [PMID: 35308838 PMCID: PMC8848806 DOI: 10.1039/d1sc06045g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
The catalytic asymmetric α-benzylation of aldehydes represents a highly valuable reaction for organic synthesis. For example, the generated α-heteroarylmethyl aldehydes, such as (R)-2-methyl-3-(pyridin-4-yl)propanal ((R)-MPP), are an important class of synthons...
Collapse
Affiliation(s)
- Hui-Chao Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Ya-Nan Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Gong-Jun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
18
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
19
|
Zacharias SC, Kamlar M, Sundén H. Exploring Supramolecular Gels in Flow-Type Chemistry—Design and Preparation of Stationary Phases. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Savannah C. Zacharias
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Martin Kamlar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
20
|
Shao M, Liu D, Yan B, Feng X, Zhang X, Zhang Y. Layer-by-Layer Electrodeposition of FTO/TiO 2 /Cu x O/CeO 2 (1 < x < 2) Photocatalysts with High Peroxidase-Like Activity by Greatly Enhanced Singlet Oxygen Generation. SMALL METHODS 2021; 5:e2100423. [PMID: 34927991 DOI: 10.1002/smtd.202100423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Indexed: 06/14/2023]
Abstract
Inorganic nanomaterials have attracted much attention as enzyme mimics because of simple and stable spatial conformation of those artificially synthesized nanocatalysts. Cu2 O, as an important kind of narrow band gap semiconductor, is identified as effective as visible-light-driven photocatalysts, which can catalyze decomposition of H2 O2 into reactive oxygen species. Moreover, after forming Cux O/CeO2 hybrids, the strongly coupled interface between the two components will further improve their catalytic performance. In this paper, the authors try to construct FTO/TiO2 /Cux O/CeO2 (1 < x < 2) nanohybrids with such a kind of active interface via a layer-by-layer electrodeposition strategy by aid of the following surface etching process. It is found that FTO/TiO2 /Cux O/CeO2 exhibits good peroxidase mimic activity in the dark but much better performance under visible light irradiation (λ ≥ 420 nm) during catalytic oxidation of 3,3',5,5'-tetramethylbenzidine substrates in the presence of H2 O2 . Detailed characterizations disclose that the construction of TiO2 /Cu2 O pn-heterojunctions do effectively accelerate separation of photogenerated carriers, and the formation of a highly active Cux O/CeO2 interface is synergistically favorable for selectively generating singlet oxygen to boost the catalytic performance of FTO/TiO2 /Cux O/CeO2 .
Collapse
Affiliation(s)
- Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Xiaojuan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
21
|
Li L, Yang L, Li X, Wang J, Liu X, He C. Supramolecular Catalysis of Acyl Transfer within Zinc Porphyrin-Based Metal-Organic Cages. Inorg Chem 2021; 60:8802-8810. [PMID: 34085514 DOI: 10.1021/acs.inorgchem.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To illustrate the supramolecular catalysis process in molecular containers, two porphyrinatozinc(II)-faced cubic cages with different sizes were synthesized and used to catalyze acyl-transfer reactions between N-acetylimidazole (NAI) and various pyridylcarbinol (PC) regioisomers (2-PC, 3-PC, and 4-PC). A systemic investigation of the supramolecular catalysis occurring within these two hosts was performed, in combination with a host-guest binding study and density functional theory calculations. Compared to the reaction in a bulk solvent, the results that the reaction of 2-PC was found to be highly efficient with high rate enhancements (kcat/kuncat = 283 for Zn-1 and 442 for Zn-2), as well as the different efficiencies of the reactions with various ortho-substituted 2-PC substrates and NAI derivates should be attributed to the cages having preconcentrated and preoriented substrates. The same cage displayed different catalytic activities toward different PC regioisomers, which should be mainly attributed to different binding affinities between the respective reactant and product with the cages. Furthermore, control experiments were carried out to learn the effect of varying reactant concentrations and product inhibition. The results all suggested that, besides the confinement effect caused by the inner microenvironment, substrate transfer, including the encapsulation of the reactant and the release of products, should be considered to be a quite important factor in supramolecular catalysis within a molecular container.
Collapse
Affiliation(s)
- LiLi Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Xin Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| |
Collapse
|
22
|
Xin Y, Chen J, Yang Z, Zhang J. Synthesis of a Stable Benzoxazole Gel from an Imine Gel for Adsorption and Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5531-5539. [PMID: 33913320 DOI: 10.1021/acs.langmuir.1c00272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing stable gel materials for adsorption and catalysis is one of the major themes of gel materials. However, it has been proven to be challenging to achieve them from small molecules. Herein, an imine gel is developed from tetra-aldehyde 4-{2,2-bis[(4-formylphenoxy)methyl]-3-(4-formylphenoxy)propoxy}benzaldehyde (A4) and 3,3'-dihydroxybenzidine (B2) based on dynamic covalent chemistry. The unstable A4B2-imine gel is further converted into a stable aromatic benzoxazole-linked A4B2-benzoxazole gel via oxidative cyclization, which has significantly improved chemical stability under acidic and basic conditions. Benefiting from the stability under acidic conditions, the A4B2-benzoxazole gel is used for Pd(II) adsorption and the adsorption capacity is 250 mg g-1. After PdCl2 immersion and reduction, palladium nanoparticles with a size distribution of 1.3-14.7 nm are encapsulated by the network structure of the stable porous benzoxazole gel matrix. The Pd@A4B2-benzoxazole gel exhibits high catalytic activity toward the reduction of toxic hexavalent chromium Cr(VI) (reaction rate constant = 0.0377 min-1), while there is no significant decrease in the catalytic efficiency after five cycles.
Collapse
Affiliation(s)
- Yu Xin
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junxing Chen
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zujin Yang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Losada-Garcia N, Jimenez-Alesanco A, Velazquez-Campoy A, Abian O, Palomo JM. Enzyme/Nanocopper Hybrid Nanozymes: Modulating Enzyme-like Activity by the Protein Structure for Biosensing and Tumor Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5111-5124. [PMID: 33472360 PMCID: PMC8486171 DOI: 10.1021/acsami.0c20501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 05/30/2023]
Abstract
Artificial enzymes with modulated enzyme-mimicking activities of natural systems represent a challenge in catalytic applications. Here, we show the creation of artificial Cu metalloenzymes based on the generation of Cu nanoparticles in an enzyme matrix. Different enzymes were used, and the structural differences between the enzymes especially influenced the controlled the size of the nanoparticles and the environment that surrounds them. Herein, we demonstrated that the oxidase-like catalytic activity of these copper nanozymes was rationally modulated by enzyme used as a scaffold, with a special role in the nanoparticle size and their environment. In this sense, these nanocopper hybrids have confirmed the ability to mimic a unique enzymatic activity completely different from the natural activity of the enzyme used as a scaffold, such as tyrosinase-like activity or as Fenton catalyst, which has extremely higher stability than natural mushroom tyrosinase. More interestingly, the oxidoreductase-like activity of nanocopper hybrids was cooperatively modulated with the synergistic effect between the enzyme and the nanoparticles improving the catalase activity (no peroxidase activity). Additionally, a novel dual (metallic and enzymatic activity) of the nanozyme made the highly improved catechol-like activity interesting for the design of 3,4-dihydroxy-l-phenylalanine (l-DOPA) biosensor for detection of tyrosinase. These hybrids also showed cytotoxic activity against different tumor cells, interesting in biocatalytic tumor therapy.
Collapse
Affiliation(s)
- Noelia Losada-Garcia
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), c/Marie curie 2, Cantoblanco Campus UAM, 28049 Madrid, Spain
| | - Ana Jimenez-Alesanco
- Instituto
de Biocomputación y Física de Sistemas Complejos, Joint
Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Fundación
ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain
- Instituto
de Biocomputación y Física de Sistemas Complejos, Joint
Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundación
Instituto de Investigación Sanitaria de Aragón (IIS
Aragón), 50009 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Olga Abian
- Instituto
de Biocomputación y Física de Sistemas Complejos, Joint
Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundación
Instituto de Investigación Sanitaria de Aragón (IIS
Aragón), 50009 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto
Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Jose M. Palomo
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), c/Marie curie 2, Cantoblanco Campus UAM, 28049 Madrid, Spain
| |
Collapse
|
24
|
Wang C, Han Q, Liu P, Zhang G, Song L, Zou X, Fu Y. A Superstable Luminescent Lanthanide Metal Organic Gel Utilized in an Electrochemiluminescence Sensor for Epinephrine Detection with a Narrow Potential Sweep Range. ACS Sens 2021; 6:252-258. [PMID: 33395257 DOI: 10.1021/acssensors.0c02272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal organic gels (MOGs) as a new type of porous soft-hybrid supramolecular material have attracted widespread interest in various aspects due to their unique optical properties. In this work, we report a novel electrochemiluminescence (ECL) emission (679 nm) lanthanide MOG, which has been synthesized by a simple and rapid method at room temperature. This MOG (Tb-Ru-MOG) consists of a central metal ion, terbium (III), and two different ligands, tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)32+) and 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy). Compared with the classic system of tris(2,2'-bipyridyl) ruthenium (II) dichloride (Ru(bpy)32+)/S2O82-, Tb-Ru-MOG/S2O82- owns a narrower potential sweep range (0.00 to -0.85 V) and a more stable and stronger ECL signal. Interestingly, the ECL intensity only decreased 2.0 and 0.1% after continuous scanning for 8000 s and storing at room temperature for 3 months. The possible ECL mechanism has been discussed in detail, which is mainly attributed to the internal synergies (antenna effect and energy transfer) and external co-reactant. Inspired by the unique luminescence characteristics of Tb-Ru-MOG, the application in electroanalytical chemistry was identified by the ECL on-off response for epinephrine with a linear range from 1.0 × 10-10 to 1.0 × 10-3 mol·L-1 and a detection limit of 5.2 × 10-11 mol·L-1. The results suggest that the as-proposed Tb-Ru-MOG will provide a robust pathway for new ECL luminophores in analysis.
Collapse
Affiliation(s)
- Cun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Qian Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Pingkun Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Gui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaochuan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Fontana LA, Almeida MP, Alcântara AFP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Ru(II)Porphyrinate-based molecular nanoreactor for carbene insertion reactions and quantitative formation of rotaxanes by active-metal-template syntheses. Nat Commun 2020; 11:6370. [PMID: 33311502 PMCID: PMC7733472 DOI: 10.1038/s41467-020-20046-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
Selectivity in N–H and S–H carbene insertion reactions promoted by Ru(II)porphyrinates currently requires slow addition of the diazo precursor and large excess of the primary amine and thiol substrates in the reaction medium. Such conditions are necessary to avoid the undesirable carbene coupling and/or multiple carbene insertions. Here, the authors demonstrate that the synergy between the steric shielding provided by a Ru(II)porphyrinate-based macrocycle with a relatively small central cavity and the kinetic stabilization of otherwise labile coordinative bonds, warranted by formation of the mechanical bond, enables single carbene insertions to occur with quantitative efficiency and perfect selectivity even in the presence of a large excess of the diazo precursor and stoichiometric amounts of the primary amine and thiol substrates. As the Ru(II)porphyrinate-based macrocycle bears a confining nanospace and alters the product distribution of the carbene insertion reactions when compared to that of its acyclic version, the former therefore functions as a nanoreactor. Selectivity in carbene insertion reactions promoted by Ru(II)porphyrinates is achieved only upon careful control of substrate stoichiometry. Here, the authors demonstrate that endotopic catalysis and formation of mechanical bonds enables carbene insertions to occur selectively and in quantitative yield regardless of substrate stoichiometry.
Collapse
Affiliation(s)
- Liniquer A Fontana
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Marlon P Almeida
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Arthur F P Alcântara
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil.,Instituto Federal do Sertão Pernambucano, Estrada do Tamboril, 56200-000, Ouricuri, Brazil
| | - Vitor H Rigolin
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Marcos A Ribeiro
- Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitória, Brazil
| | - Wdeson P Barros
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Jackson D Megiatto
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil.
| |
Collapse
|
26
|
Wang G, Wang D, Bietsch J, Chen A, Sharma P. Synthesis of Dendritic Glycoclusters and Their Applications for Supramolecular Gelation and Catalysis. J Org Chem 2020; 85:16136-16156. [PMID: 33301322 DOI: 10.1021/acs.joc.0c01978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoclusters with three, four, and six arms of glycosyl triazoles were designed, synthesized, and characterized. The self-assembling properties of these molecules and their catalytic activity as ligands in copper-catalyzed azide and alkyne cycloaddition (CuAAC) reactions were studied. The compounds with a lower number of branches exhibit excellent gelation properties and can function as supramolecular gelators. The resulting gels were characterized using optical microcopy and atomic force microscopy. The glycoconjugates containing six branches showed significant catalytic activity for copper sulfate mediated cycloaddition reactions. In aqueous solutions, 1 mol % of glycoclusters to substrates was efficient at accelerating these reactions. Several trimeric compounds were found to be capable of forming co-gels with the catalytically active hexameric compounds. Using the organogels formed by the glycoconjugates as supramolecular catalysts, efficient catalysis was demonstrated for several CuAAC reactions. The metallogels with CuSO4 were also prepared as gel columns, which can be reused for the cycloaddition reactions several times. These include the preparation of a few glycosyl triazoles and aryl triazoles and isoxazoles. We expect that these sugar-based soft biomaterials will have applications beyond supramolecular catalysis for copper-catalyzed cycloaddition reactions. They may also be useful as ligands or gel matrixes for other metal-ion catalyzed organic reactions.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Pooja Sharma
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
27
|
Wang X, Shi Z, Chen H, Huang F. Nanoscale integration of porphyrin in GroEL protein cage: Photophysical and photochemical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118596. [PMID: 32599481 DOI: 10.1016/j.saa.2020.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we introduce a new type of functional, supramolecular porphyrin conjugate created using the bacterial GroEL protein cage based on non-specific hydrophobic interaction. The synthesis, structure and property of the porphyrin conjugate were characterized by dynamic light scattering, UV-vis spectroscopy and fluorescence spectroscopy. We observed that the model zinc-tetraphenylporphyrin (Zn-TPP) with high hydrophobicity can be well-dispersed in aqueous solutions with the aid of GroEL open chamber, which is known to be a favorable nanocompartment for aggregation-prone molecules. The maximal encapsulation efficiency of Zn-TPP in GroEL was determined to be ~98%. It is further seen that the constructed double Zn-TPP-GroEL complex exhibited good photocatalytic activity in the model reactions of the production of singlet oxygen and the reduction of methyl viologen under illumination with visible light. Moreover, we found that GroEL can significantly improve the photostability of Zn-TPP molecules as a result of nanoscale assembly within its hydrophobic chamber. Hence enhanced water solubility and photostability of Zn-TPP, which are considered as the first two hurdles for the wide usage of porphyrins, were achieved simultaneously by the development of GroEL cage as a building block. Supramolecular nanostructures formed from porphyrins (or related molecules) and GroEL for photocatalysis would greatly simplify applications of such structures.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China.
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China
| | - Han Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China.
| |
Collapse
|
28
|
Gong X, Shu Y, Jiang Z, Lu L, Xu X, Wang C, Deng H. Metal-Organic Frameworks for the Exploitation of Distance between Active Sites in Efficient Photocatalysis. Angew Chem Int Ed Engl 2020; 59:5326-5331. [PMID: 31967403 DOI: 10.1002/anie.201915537] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Discoveries of the accurate spatial arrangement of active sites in biological systems and cooperation between them for high catalytic efficiency are two major events in biology. However, precise tuning of these aspects is largely missing in the design of artificial catalysts. Here, a series of metal-organic frameworks (MOFs) were used, not only to overcome the limit of distance between active sites in bio-systems, but also to unveil the critical role of this distance for efficient catalysis. A linear correlation was established between photocatalytic activity and the reciprocal of inter active-site distance; a smaller distance led to higher activity. Vacancies created at selected crystallographic positions of MOFs promoted their photocatalytic efficiency. MOF-525-J33 with 15.6 Å inter active-site distance and 33 % vacancies exhibited unprecedented high turnover frequency of 29.5 h-1 in visible-light-driven acceptorless dehydrogenation of tetrahydroquinoline at room temperature.
Collapse
Affiliation(s)
- Xuan Gong
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yufei Shu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhuo Jiang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Lingxiang Lu
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY, 14853, USA
| | - Xiaohui Xu
- Department of Chemistry, College of Chemistry Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chao Wang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
29
|
Gong X, Shu Y, Jiang Z, Lu L, Xu X, Wang C, Deng H. Metal–Organic Frameworks for the Exploitation of Distance between Active Sites in Efficient Photocatalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuan Gong
- Key Laboratory of Biomedical Polymers-Ministry of EducationCollege of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Yufei Shu
- Key Laboratory of Biomedical Polymers-Ministry of EducationCollege of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Zhuo Jiang
- Key Laboratory of Biomedical Polymers-Ministry of EducationCollege of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Lingxiang Lu
- Department of Chemistry and Chemical BiologyCornell University 259 East Avenue Ithaca NY 14853 USA
| | - Xiaohui Xu
- Department of Chemistry, College of Chemistry EngineeringXiamen University Xiamen 361005 P. R. China
| | - Chao Wang
- Key Laboratory of Biomedical Polymers-Ministry of EducationCollege of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of EducationCollege of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
30
|
Zhang P, Wang S, Ma S, Xiao FS, Sun Q. Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chem Commun (Camb) 2020; 56:10631-10641. [DOI: 10.1039/d0cc04351f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Feature article summarizes our progress in the design of biomimetic POPs for catalysis and molecular recognition with enhanced performance.
Collapse
Affiliation(s)
- Pengcheng Zhang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Sai Wang
- Key Lab of Applied Chemistry of Zhejiang Province
- Zhejiang University
- Hangzhou
- China
- Department of Chemistry
| | - Shengqian Ma
- Department of Chemistry
- University of North Texas
- USA
| | - Feng-Shou Xiao
- Key Lab of Applied Chemistry of Zhejiang Province
- Zhejiang University
- Hangzhou
- China
| | - Qi Sun
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
31
|
Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci Rep 2019; 9:17758. [PMID: 31780721 PMCID: PMC6883033 DOI: 10.1038/s41598-019-53765-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023] Open
Abstract
The uniform decoration of Cu(II) species and magnetic nanoparticles on the melamine-functionalized chitosan afforded a new supramolecular biopolymeric nanocomposite (Cs-Pr-Me-Cu(II)-Fe3O4). The morphology, structure, and catalytic activity of the Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite have been systematically investigated. It was found that Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite can smoothly promote environmentally benign oxidation of different benzyl alcohol derivatives by tert-butyl hydroperoxide (TBHP) to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile, as a multifunctional catalyst. Interestingly, Fe3O4 nanoparticles enhance the catalytic activity of Cu(II) species. The corresponding benzylidenemalononitriles were formed in high to excellent yields at ambient pressure and temperature. The heterogeneous Cs-Pr-Me-Cu(II)-Fe3O4 catalyst was also very stable with almost no leaching of the Cu(II) species into the reaction medium and could be easily recovered by an external magnet. The recycled Cs-Pr-Me-Cu(II)-Fe3O4 was reused at least four times with slight loss of its activity. This is a successful example of the combination of chemo- and bio-drived materials catalysis for mimicing biocatalysis as well as sustainable and one pot multistep synthesis.
Collapse
|