1
|
Pinezich MR, O'Neill JD, Guenthart BA, Kim J, Vila OF, Ma SP, Chen YW, Hozain AE, Krishnan A, Fawad M, Cunningham KM, Wobma HM, Van Hassel J, Snoeck HW, Bacchetta M, Vunjak-Novakovic G. Theranostic methodology for ex vivo donor lung rehabilitation. MED 2025:100644. [PMID: 40154476 DOI: 10.1016/j.medj.2025.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND About 80% of donor lungs are not utilized for transplantation. Cross-circulation of ex vivo lungs with a support swine enables the rehabilitation of donor lungs that are initially deemed unsuitable for transplantation. Robust therapeutic and diagnostic modalities are needed for ex vivo lung rehabilitation; however, no standardized "theranostic" methodology has been reported. METHODS Ex vivo lungs (n = 23; 17 injured and 6 controls) with multi-focal contusion (n = 6, human), gastric aspiration injury (n = 8, swine), ischemia-reperfusion injury (n = 3, swine), or no injury (n = 6, swine) were used to develop a therapeutic and diagnostic (theranostic) methodology for ex vivo lung rehabilitation during cross-circulation. Airway (bronchoscopic, nebulized), intravascular, and transpleural access enabled sample collection and therapeutic delivery. Diagnostic modalities included non-invasive imaging, functional testing, and molecular assays. Therapeutic modalities included bronchoalveolar lavage, surfactant replacement, recruitment maneuvers, and cell/organoid delivery. Real-time tracking of delivered cells was performed via fluorescence and bioluminescence imaging. FINDINGS Diagnostic assessments revealed tissue-, cell-, and molecular-level insights at global and regional scales of ex vivo lungs during cross-circulation, which informed therapeutic management and interventions to recover donor lungs. Mesenchymal stromal cells and lung organoids were delivered bronchoscopically and transpleurally, tracked non-invasively during cross-circulation, and observed to localize within the parenchyma. CONCLUSIONS Application of a theranostic methodology during cross-circulation enabled real-time ex vivo lung assessment and rehabilitation across a variety of lung injuries to help increase clinical utilization of donor lungs in the future. FUNDING NIH (P41 EB027062, R01HL120046, U01HL134760), CFF (VUNJAK23XX0).
Collapse
Affiliation(s)
- Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Olaia F Vila
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Stephen P Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ya-Wen Chen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ahmed E Hozain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Moeed Fawad
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Holly M Wobma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Julie Van Hassel
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Hans-Willem Snoeck
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA; Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew Bacchetta
- Departments of Cardiac Surgery and Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Zhao Y, Liu M. How relevant is xenogeneic cross-circulation as a model to repair human donor organs? J Heart Lung Transplant 2025:S1053-2498(25)01852-2. [PMID: 40121000 DOI: 10.1016/j.healun.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Affiliation(s)
- Yajin Zhao
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and Physiology, Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Tracy KM, Harris TR, Petrovic M, Cortelli M, Tucker W, François S, Shishido Y, Simon V, Petree B, Johnson CA, Wu WK, Cardwell NL, Simonds E, Adesanya TT, Fortier AK, Raietparvar K, Landstreet SR, Wickersham N, O'Neill JD, Poland J, Shah AS, DeVries S, Crannell C, Marboe CC, Ukita R, Demarest CT, Shaver CM, Bacchetta M. Lung rehabilitation using xenogeneic cross-circulation does not lead to hyperacute rejection in a human lung transplantation model. J Heart Lung Transplant 2025:S1053-2498(25)01837-6. [PMID: 40120998 DOI: 10.1016/j.healun.2025.02.1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Access to life-saving lung transplantation remains limited by a shortage of donor organs. We have previously described rehabilitation of discarded human donor lungs to a quality suitable for transplantation using cross-circulation of whole blood between xeno-support swine and human lungs. However, the immunologic implications of transplanting rehabilitated lungs remain unknown. METHODS Human donor lungs declined for clinical transplantation (N = 5) and underwent xenogeneic cross-circulation (XC) for up to 12 hours. To model subsequent human transplantation, lungs were re-exposed to autologous human whole blood via normothermic ex vivo machine perfusion for up to 6 hours. Upon human blood re-exposure (HBR), lungs were evaluated for evidence of hyperacute rejection (HAR) through physiologic assessments and tissue analyses including histology, immunostaining, and flow cytometry. RESULTS Upon HBR, lungs showed no significant change in physiologic function relative to the end of cross-circulation (PaO2/FiO2: p = 0.41; vascular resistance: p = 0.27; dynamic compliance: p = 0.24) and histologic features of HAR were absent in all lungs. Despite pulmonary deposition of porcine IgG during cross-circulation, HBR resulted in decreased complement deposition (p = 0.019) with no change in membrane attack complex formation (p = 0.65) or apoptotic signaling (p = 0.93). Endothelial integrity was maintained after HBR with preservation of microvascular tight junctions, decreasing endothelial injury marker p-selectin (p = 0.34), and intact vascular response to alpha-adrenergic stimulation. CONCLUSIONS Our findings indicate that transient exposure of human donor lungs to XC does not result in HAR upon simulated human transplantation, representing an important step toward clinical translation of this donor organ rehabilitation platform.
Collapse
Affiliation(s)
- Kaitlyn M Tracy
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy R Harris
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark Petrovic
- Department Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William Tucker
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sean François
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yutaka Shishido
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria Simon
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandon Petree
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carl A Johnson
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei K Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy L Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Simonds
- Department Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - TiOluwanimi T Adesanya
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Avery K Fortier
- School of Arts and Sciences, Vanderbilt University, Nashville, Tennessee
| | - Kimya Raietparvar
- School of Arts and Sciences, Vanderbilt University, Nashville, Tennessee
| | | | - Nancy Wickersham
- School of Arts and Sciences, Vanderbilt University, Nashville, Tennessee
| | | | - John Poland
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashish S Shah
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen DeVries
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian Crannell
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Caitlin T Demarest
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
4
|
Scheer M, Kyi P, Mammoto T, Mammoto A. Alveolar epithelial paxillin in postnatal lung alveolar development. Biol Open 2025; 14:bio061939. [PMID: 39991922 PMCID: PMC11957453 DOI: 10.1242/bio.061939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
Focal adhesion protein, paxillin plays an important role in embryonic development. We have reported that paxillin controls directional cell motility and angiogenesis. The role of paxillin in lung development remains unclear. Paxillin expression is higher in mouse pulmonary alveolar epithelial type 2 (AT2) cells at postnatal day (P)10 (alveolar stage) compared to P0 (saccular stage). The alveolar and vascular structures are disrupted, lung compliance is reduced, and the postnatal survival rate is lower in tamoxifen-induced PxniΔAT2 neonatal mice, in which the levels of paxillin in AT2 cells are knocked down. Surfactant protein expression and lamellar body structure are also inhibited in PxniΔAT2 neonatal mouse lungs. The expression of lipid transporter ABCA3 and its transcriptional regulator CEBPA that control surfactant homeostasis is inhibited in PxniΔAT2 neonatal mouse AT2 cells. These findings suggest that paxillin controls lung alveolar development through CEBPA-ABCA3 signaling in AT2 cells. Modulation of paxillin in AT2 cells may be novel interventions for neonatal lung developmental disorder.
Collapse
Affiliation(s)
- Mikaela Scheer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Liu P, Yang L, Lu Q, Qian Y, Shi A, Liu X, Wei S, Fan S, Lv Y, Xiang J. Cross-circulation combined with rapidly deployable venovenous bypass grafts for multiorgan biosystemic support in liver failure: experimental studies. Int J Surg 2025; 111:322-333. [PMID: 38954664 PMCID: PMC11745694 DOI: 10.1097/js9.0000000000001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Liver failure remains a critical clinical challenge with limited treatment options. Cross-circulation, the establishment of vascular connections between individuals, has historically been explored as a potential supportive therapy but with limited success. This study investigated the feasibility of combining cross-circulation with a rapidly deployable venovenous bypass (VVB) graft for multiorgan support in a rat model of total hepatectomy, representing the most severe form of liver failure. MATERIALS AND METHODS A Y-shaped VVB graft was fabricated using coaxial electrospinning of PLCL/heparin nanofibers and magnetic rings for rapid anastomosis. After total hepatectomy in rats, the VVB graft was implanted to divert blood flow. Cross-circulation was then established between anhepatic and normal host rats. Hemodynamics, biochemical parameters, blood gases, and survival were analyzed across three groups: hepatectomy with blocked vessels (block group), hepatectomy with VVB only (VVB group), and hepatectomy with VVB and cross-circulation (VVB/cross-circulation group). RESULTS The VVB graft exhibited suitable mechanical properties and hemocompatibility. VVB rapidly restored hemodynamic stability and mitigated abdominal congestion posthepatectomy. Cross-circulation further ameliorated liver dysfunction, metabolic derangements, and coagulation disorders in anhepatic rats, significantly prolonging survival compared to the VVB group (mean 6.56±0.58 vs. 4.05±0.51 h, P <0.05) and the block group (mean 1.01±0.05 h, P <0.05). CONCLUSION Combining cross-circulation with a rapidly deployed VVB graft provided effective multiorgan biosystemic support in a rat model of total hepatectomy, substantially improving the biochemical status and survival time. This approach holds promise for novel liver failure therapies and could facilitate liver transplantation procedures.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Yerong Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Xin Liu
- Department of Graduate School, Xi’an Medical University
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Shujuan Fan
- Department of Medical Information Management, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
6
|
Niroomand A, Nita GE, Lindstedt S. Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts. Transpl Int 2024; 37:13215. [PMID: 39267617 PMCID: PMC11390383 DOI: 10.3389/ti.2024.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Solid organ transplantation has progressed rapidly over the decades from the first experimental procedures to its role in the modern era as an established treatment for end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas, heart, and lung transplantation, is the definitive option for many patients, but despite the advances that have been made, there are still significant challenges in meeting the demand for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles, including poor early outcomes like primary graft dysfunction and acute and chronic forms of graft rejection. In an effort to address these issues, innovations in organ engineering and treatment have been developed. This review covers efforts made to expand the donor pool including bioengineering techniques and the use of ex vivo graft perfusion. It also covers modifications and treatments that have been trialed, in addition to research efforts in both abdominal organs and thoracic organs. Overall, this article discusses recent innovations in machine perfusion and organ bioengineering with the aim of improving and increasing the quality of donor organs.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - George Emilian Nita
- Department of Transplantation Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
8
|
Chen P, Van Hassel J, Pinezich MR, Diane M, Hudock MR, Kaslow SR, Gavaudan OP, Fung K, Kain ML, Lopez H, Saqi A, Guenthart BA, Hozain AE, Romanov A, Bacchetta M, Vunjak-Novakovic G. Recovery of extracorporeal lungs using cross-circulation with injured recipient swine. J Thorac Cardiovasc Surg 2024; 167:e106-e130. [PMID: 37741314 PMCID: PMC10954590 DOI: 10.1016/j.jtcvs.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Lung transplantation remains limited by the shortage of healthy organs. Cross-circulation with a healthy swine recipient provides a durable physiologic environment to recover injured donor lungs. In a clinical application, a recipient awaiting lung transplantation could be placed on cross-circulation to recover damaged donor lungs, enabling eventual transplantation. Our objective was to assess the ability of recipient swine with respiratory compromise to tolerate cross-circulation and support recovery of donor lungs subjected to extended cold ischemia. METHODS Swine donor lungs (n = 6) were stored at 4 °C for 24 hours while recipient swine (n = 6) underwent gastric aspiration injury before cross-circulation. Longitudinal multiscale analyses (blood gas, bronchoscopy, radiography, histopathology, cytokine quantification) were performed to evaluate recipient swine and extracorporeal lungs on cross-circulation. RESULTS Recipient swine lung injury resulted in sustained, impaired oxygenation (arterial oxygen tension/inspired oxygen fraction ratio 205 ± 39 mm Hg vs 454 ± 111 mm Hg at baseline). Radiographic, bronchoscopic, and histologic assessments demonstrated bilateral infiltrates, airway cytokine elevation, and significantly worsened lung injury scores. Recipient swine provided sufficient metabolic support for extracorporeal lungs to demonstrate robust functional improvement (0 hours, arterial oxygen tension/inspired oxygen fraction ratio 138 ± 28.2 mm Hg; 24 hours, 539 ± 156 mm Hg). Multiscale analyses demonstrated improved gross appearance, aeration, and cellular regeneration in extracorporeal lungs by 24 hours. CONCLUSIONS We demonstrate that acutely injured recipient swine tolerate cross-circulation and enable recovery of donor lungs subjected to extended cold storage. This proof-of-concept study supports feasibility of cross-circulation for recipients with isolated lung disease who are candidates for this clinical application.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, New York, NY
| | - Julie Van Hassel
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, New York, NY
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Mohamed Diane
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Sarah R Kaslow
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, New York, NY
| | | | - Kenmond Fung
- Clinical Perfusion, Columbia University Medical Center, New York, NY
| | - Mandy L Kain
- Institute of Comparative Medicine, Columbia University, New York, NY
| | - Hermogenes Lopez
- Clinical Perfusion, Columbia University Medical Center, New York, NY
| | - Anjali Saqi
- Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, Calif
| | - Ahmed E Hozain
- Department of Surgery, Columbia University Medical Center, New York, NY
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University, New York, NY
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tenn; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tenn
| | | |
Collapse
|
9
|
Lindstedt S, Wang Q, Niroomand A, Stenlo M, Hyllen S, Pierre L, Olm F, Bechet NB. High resolution fluorescence imaging of the alveolar scaffold as a novel tool to assess lung injury. Sci Rep 2024; 14:6662. [PMID: 38509285 PMCID: PMC10954697 DOI: 10.1038/s41598-024-57313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
Acute lung injury (ALI) represents an aetiologically diverse form of pulmonary damage. Part of the assessment and diagnosis of ALI depends on skilled observer-based scoring of brightfield microscopy tissue sections. Although this readout is sufficient to determine gross alterations in tissue structure, its categorical scores lack the sensitivity to describe more subtle changes in lung morphology. To generate a more sensitive readout of alveolar perturbation we carried out high resolution immunofluorescence imaging on 200 μm lung vibratome sections from baseline and acutely injured porcine lung tissue, stained with a tomato lectin, Lycopersicon Esculentum Dylight-488. With the ability to resolve individual alveoli along with their inner and outer wall we generated continuous readouts of alveolar wall thickness and circularity. From 212 alveoli traced from 10 baseline lung samples we established normal distributions for alveolar wall thickness (27.37; 95% CI [26.48:28.26]) and circularity (0.8609; 95% CI [0.8482:0.8667]) in healthy tissue. Compared to acutely injured lung tissue baseline tissue exhibited a significantly lower wall thickness (26.86 ± 0.4998 vs 50.55 ± 4.468; p = 0.0003) and higher degree of circularityϕ≤ (0.8783 ± 0.01965 vs 0.4133 ± 0.04366; p < 0.0001). These two components were subsequently combined into a single more sensitive variable, termed the morphological quotient (MQ), which exhibited a significant negative correlation (R2 = 0.9919, p < 0.0001) with the gold standard of observer-based scoring. Through the utilisation of advanced light imaging we show it is possible to generate sensitive continuous datasets describing fundamental morphological changes that arise in acute lung injury. These data represent valuable new analytical tools that can be used to precisely benchmark changes in alveolar morphology both in disease/injury as well as in response to treatment/therapy.
Collapse
Affiliation(s)
- Sandra Lindstedt
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
- Lund Stem Cell Centre, Lund University, Lund, Sweden.
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| | - Qi Wang
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllen
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Nicholas B Bechet
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
- Lund Stem Cell Centre, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Mody S, Nadkarni S, Vats S, Kumar A, Nandavaram S, Keshavamurthy S. Lung Donor Selection and Management: An Updated Review. OBM TRANSPLANTATION 2023; 07:1-54. [DOI: 10.21926/obm.transplant.2304203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The shortage of donor lungs for transplantation is a major challenge, resulting in longer waitlist times for patients with a higher risk of waitlist mortality. It is crucial to continue promoting awareness about organ donation through legislation, public campaigns, and health care provider education. Only a small number of cadaveric donors meet the ideal criteria for lung donation, leaving many lungs unused. Donor lung utilization can be improved by carefully considering the extended-criteria donors, actively participating in donor management, and by utilizing the modalities to assess and manage the marginal lungs after retrieval from the donor. The purpose of this article is to provide an up-to-date review of donor selection, assessment of donor lungs, and donor lung management to enhance organ recovery rates for lung transplantation.
Collapse
|
11
|
Wu WK, Ukita R, Patel YJ, Cortelli M, Trinh VQ, Ziogas IA, Francois SA, Mentz M, Cardwell NL, Talackine JR, Grogan WM, Stokes JW, Lee YA, Kim J, Alexopoulos SP, Bacchetta M. Xenogeneic cross-circulation for physiological support and recovery of ex vivo human livers. Hepatology 2023; 78:820-834. [PMID: 36988383 PMCID: PMC10440302 DOI: 10.1097/hep.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS The scarcity of suitable donor livers highlights a continuing need for innovation to recover organs with reversible injuries in liver transplantation. APPROACH AND RESULTS Explanted human donor livers (n = 5) declined for transplantation were supported using xenogeneic cross-circulation of whole blood between livers and xeno-support swine. Livers and swine were assessed over 24 hours of xeno-support. Livers maintained normal global appearance, uniform perfusion, and preservation of histologic and subcellular architecture. Oxygen consumption increased by 75% ( p = 0.16). Lactate clearance increased from -0.4 ± 15.5% to 31.4 ± 19.0% ( p = 0.02). Blinded histopathologic assessment demonstrated improved injury scores at 24 hours compared with 12 hours. Vascular integrity and vasoconstrictive function were preserved. Bile volume and cholangiocellular viability markers improved for all livers. Biliary structural integrity was maintained. CONCLUSIONS Xenogeneic cross-circulation provided multisystem physiological regulation of ex vivo human livers that enabled functional rehabilitation, histopathologic recovery, and improvement of viability markers. We envision xenogeneic cross-circulation as a complementary technique to other organ-preservation technologies in the recovery of marginal donor livers or as a research tool in the development of advanced bioengineering and pharmacologic strategies for organ recovery and rehabilitation.
Collapse
Affiliation(s)
- Wei Kelly Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vincent Q. Trinh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean A. Francois
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William M. Grogan
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Youngmin A. Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University; Nashville, Tennessee, USA
| |
Collapse
|
12
|
Huang L, Vellanki RN, Zhu Z, Wouters BG, Keshavjee S, Liu M. De Novo Design and Development of a Nutrient-Rich Perfusate for Ex Vivo Lung Perfusion with Cell Culture Models. Int J Mol Sci 2023; 24:13117. [PMID: 37685927 PMCID: PMC10487937 DOI: 10.3390/ijms241713117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Ex vivo lung perfusion (EVLP) has increased donor lung utilization through assessment of "marginal" lungs prior to transplantation. To develop it as a donor lung reconditioning platform, prolonged EVLP is necessary, and new perfusates are required to provide sufficient nutritional support. Human pulmonary microvascular endothelial cells and epithelial cells were used to test different formulas for basic cellular function. A selected formula was further tested on an EVLP cell culture model, and cell confluence, apoptosis, and GSH and HSP70 levels were measured. When a cell culture medium (DMEM) was mixed with a current EVLP perfusate-Steen solution, DMEM enhanced cell confluence and migration and reduced apoptosis in a dose-dependent manner. A new EVLP perfusate was designed and tested based on DMEM. The final formula contains 5 g/L Dextran-40 and 7% albumin and is named as D05D7A solution. It inhibited cold static storage and warm reperfusion-induced cell apoptosis, improved cell confluence, and enhanced GSH and HSP70 levels in human lung cells compared to Steen solution. DMEM-based nutrient-rich EVLP perfusate could be a promising formula to prolong EVLP and support donor lung repair, reconditioning and further improve donor lung quality and quantity for transplantation with better clinical outcome.
Collapse
Affiliation(s)
- Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
| | - Ravi N. Vellanki
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON M5G 1L7, Canada; (R.N.V.); (B.G.W.)
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON M5G 1L7, Canada; (R.N.V.); (B.G.W.)
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
- Departments of Surgery, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
- Departments of Surgery, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada
| |
Collapse
|
13
|
Noda K, Furukawa M, Chan EG, Sanchez PG. Expanding Donor Options for Lung Transplant: Extended Criteria, Donation After Circulatory Death, ABO Incompatibility, and Evolution of Ex Vivo Lung Perfusion. Transplantation 2023; 107:1440-1451. [PMID: 36584375 DOI: 10.1097/tp.0000000000004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Only using brain-dead donors with standard criteria, the existing donor shortage has never improved in lung transplantation. Currently, clinical efforts have sought the means to use cohorts of untapped donors, such as extended criteria donors, donation after circulatory death, and donors that are ABO blood group incompatible, and establish the evidence for their potential contribution to the lung transplant needs. Also, technical maturation for using those lungs may eliminate immediate concerns about the early posttransplant course, such as primary graft dysfunction or hyperacute rejection. In addition, recent clinical and preclinical advances in ex vivo lung perfusion techniques have allowed the safer use of lungs from high-risk donors and graft modification to match grafts to recipients and may improve posttransplant outcomes. This review summarizes recent trends and accomplishments and future applications for expanding the donor pool in lung transplantation.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | | | |
Collapse
|
14
|
Wu WK, Stier MT, Stokes JW, Ukita R, Patel YJ, Cortelli M, Landstreet SR, Talackine JR, Cardwell NL, Simonds EM, Mentz M, Lowe C, Benson C, Demarest CT, Alexopoulos SP, Shaver CM, Bacchetta M. Immune characterization of a xenogeneic human lung cross-circulation support system. SCIENCE ADVANCES 2023; 9:eade7647. [PMID: 37000867 PMCID: PMC10065447 DOI: 10.1126/sciadv.ade7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Improved approaches to expanding the pool of donor lungs suitable for transplantation are critically needed for the growing population with end-stage lung disease. Cross-circulation (XC) of whole blood between swine and explanted human lungs has previously been reported to enable the extracorporeal recovery of donor lungs that declined for transplantation due to acute, reversible injuries. However, immunologic interactions of this xenogeneic platform have not been characterized, thus limiting potential translational applications. Using flow cytometry and immunohistochemistry, we demonstrate that porcine immune cell and immunoglobulin infiltration occurs in this xenogeneic XC system, in the context of calcineurin-based immunosuppression and complement depletion. Despite this, xenogeneic XC supported the viability, tissue integrity, and physiologic improvement of human donor lungs over 24 hours of xeno-support. These findings provide targets for future immunomodulatory strategies to minimize immunologic interactions on this organ support biotechnology.
Collapse
Affiliation(s)
- Wei K. Wu
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew T. Stier
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R. Landstreet
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Simonds
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Lowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clayne Benson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin T. Demarest
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophoclis P. Alexopoulos
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| |
Collapse
|
15
|
Wagner MJ, Hatami S, Freed DH. Thoracic organ machine perfusion: A review of concepts with a focus on reconditioning therapies. FRONTIERS IN TRANSPLANTATION 2023; 2:1060992. [PMID: 38993918 PMCID: PMC11235380 DOI: 10.3389/frtra.2023.1060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 07/13/2024]
Abstract
Thoracic organ transplantation, including lung, heart, and heart-lung transplants are highly regarded as gold standard treatments for patients suffering from heart failure or chronic end stage lung conditions. The relatively high prevalence of conditions necessitating thoracic organ transplants combined with the lack of available organs has resulted in many either dying or becoming too ill to receive a transplant while on the waiting list. There is a dire need to increase both the number of organs available and the utilization of such organs. Improved preservation techniques beyond static storage have shown great potential to lengthen the current period of viability of thoracic organs while outside the body, promising better utilization rates, increased donation distance, and improved matching of donors to recipients. Ex-situ organ perfusion (ESOP) can also make some novel therapeutic strategies viable, and the combination of the ESOP platform with such reconditioning therapies endeavors to better improve functional preservation of organs in addition to making more organs viable for transplantation. Given the abundance of clinical and pre-clinical studies surrounding reconditioning of thoracic organs in combination with ESOP, we summarize in this review important concepts and research regarding thoracic organ machine perfusion in combination with reconditioning therapies.
Collapse
Affiliation(s)
| | - Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
| |
Collapse
|
16
|
Wu WK, Guenthart BA, O’Neill JD, Hozain AE, Tipograf Y, Ukita R, Stokes JW, Patel YJ, Pinezich M, Talackine JR, Cardwell NL, Fung K, Vunjak-Novakovic G, Bacchetta M. Technique for xenogeneic cross-circulation to support human donor lungs ex vivo. J Heart Lung Transplant 2023; 42:335-344. [PMID: 36456408 PMCID: PMC9985920 DOI: 10.1016/j.healun.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Xenogeneic cross-circulation (XC) is an experimental method for ex vivo organ support and recovery that could expand the pool of donor lungs suitable for transplantation. The objective of this study was to establish and validate a standardized, reproducible, and broadly applicable technique for performing xenogeneic XC to support and recover injured human donor lungs ex vivo. METHODS Human donor lungs (n = 9) declined for transplantation were procured, cannulated, and subjected to 24 hours of xenogeneic XC with anesthetized xeno-support swine (Yorkshire/Landrace) treated with standard immunosuppression (methylprednisolone, mycophenolate mofetil, tacrolimus) and complement-depleting cobra venom factor. Standard lung-protective perfusion and ventilation strategies, including periodic lung recruitment maneuvers, were used throughout xenogeneic XC. Every 6 hours, ex vivo donor lung function (gas exchange, compliance, airway pressures, pulmonary vascular dynamics, lung weight) was evaluated. At the experimental endpoint, comprehensive assessments of the lungs were performed by bronchoscopy, histology, and electron microscopy. Student's t-test and 1-way analysis of variance with Dunnett's post-hoc test was performed, and p < 0.05 was considered significant. RESULTS After 24 hours of xenogeneic XC, gas exchange (PaO2/FiO2) increased by 158% (endpoint: 364 ± 142 mm Hg; p = 0.06), and dynamic compliance increased by 127% (endpoint: 46 ± 20 ml/cmH2O; p = 0.04). Airway pressures, pulmonary vascular pressures, and lung weight remained stable (p > 0.05) and within normal ranges. Over 24 hours of xenogeneic XC, gross and microscopic lung architecture were preserved: airway bronchoscopy and parenchymal histomorphology appeared normal, with intact blood-gas barrier. CONCLUSIONS Xenogeneic cross-circulation is a robust method for ex vivo support, evaluation, and improvement of injured human donor lungs declined for transplantation.
Collapse
Affiliation(s)
- W. Kelly Wu
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandon A. Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, California
| | - John D. O’Neill
- Xylyx Bio, Inc., Brooklyn, New York;,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Ahmed E. Hozain
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Yuliya Tipograf
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meghan Pinezich
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kenmond Fung
- Perfusion Services, New York – Presbyterian Hospital, New York, New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York;,Department of Medicine, Columbia University Medical Center, New York, New York
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
17
|
Hudock MR, Pinezich MR, Mir M, Chen J, Bacchetta M, Vunjak-Novakovic G, Kim J. Emerging Imaging Modalities for Functional Assessment of Donor Lungs Ex Vivo. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100432. [PMID: 36778755 PMCID: PMC9913406 DOI: 10.1016/j.cobme.2022.100432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The severe shortage of functional donor lungs that can be offered to recipients has been a major challenge in lung transplantation. Innovative ex vivo lung perfusion (EVLP) and tissue engineering methodologies are now being developed to repair damaged donor lungs that are deemed unsuitable for transplantation. To assess the efficacy of donor lung reconditioning methods intended to rehabilitate rejected donor lungs, monitoring of lung function with improved spatiotemporal resolution is needed. Recent developments in live imaging are enabling non-destructive, direct, and longitudinal modalities for assessing local tissue and whole lung functions. In this review, we describe how emerging live imaging modalities can be coupled with lung tissue engineering approaches to promote functional recovery of ex vivo donor lungs.
Collapse
Affiliation(s)
- Maria R. Hudock
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
| | - Meghan R. Pinezich
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
| | - Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University,
Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
- Department of Medicine, Columbia University, New York, NY,
USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA
| |
Collapse
|
18
|
Tanneberger AE, Weiss DJ, Magin CM. An Introduction to Engineering and Modeling the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:1-13. [PMID: 37195523 DOI: 10.1007/978-3-031-26625-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the last decade, the field of lung biology has evolved considerably due to many advancements, including the advent of single-cell RNA (scRNA) sequencing, induced pluripotent stem cell (iPSC) reprogramming, and 3D cell and tissue culture. Despite rigorous research and tireless efforts, chronic pulmonary diseases remain the third leading cause of death globally, with transplantation being the only option for treating end-stage disease. This chapter will introduce the broader impacts of understanding lung biology in health and disease, provide an overview of lung physiology and pathophysiology, and summarize the key takeaways from each chapter describing engineering translational models of lung homeostasis and disease. This book is divided into broad topic areas containing chapters covering basic biology, engineering approaches, and clinical perspectives related to (1) the developing lung, (2) the large airways, (3) the mesenchyme and parenchyma, (4) the pulmonary vasculature, and (5) the interface between lungs and medical devices. Each section highlights the underlying premise that engineering strategies, when applied in collaboration with cell biologists and pulmonary physicians, will address critical challenges in pulmonary health care.
Collapse
Affiliation(s)
- Alicia E Tanneberger
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
19
|
|
20
|
Kaslow SR, Reimer JA, Pinezich MR, Hudock MR, Chen P, Morris MG, Kain ML, Leb JS, Ruzal-Shapiro CB, Marboe CC, Bacchetta M, Dorrello NV, Vunjak-Novakovic G. A clinically relevant model of acute respiratory distress syndrome in human-size swine. Dis Model Mech 2022; 15:dmm049603. [PMID: 35976034 PMCID: PMC9586570 DOI: 10.1242/dmm.049603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Despite over 30 years of intensive research for targeted therapies, treatment of acute respiratory distress syndrome (ARDS) remains supportive in nature. With mortality upwards of 30%, a high-fidelity pre-clinical model of ARDS, on which to test novel therapeutics, is urgently needed. We used the Yorkshire breed of swine to induce a reproducible model of ARDS in human-sized swine to allow the study of new therapeutics, from both mechanistic and clinical standpoints. For this, animals were anesthetized, intubated and mechanically ventilated, and pH-standardized gastric contents were delivered bronchoscopically, followed by intravenous infusion of Escherichia coli-derived lipopolysaccharide. Once the ratio of arterial oxygen partial pressure (PaO2) to fractional inspired oxygen (FIO2) had decreased to <150, the animals received standard ARDS treatment for up to 48 h. All swine developed moderate to severe ARDS. Chest radiographs taken at regular intervals showed significantly worse lung edema after induction of ARDS. Quantitative scoring of lung injury demonstrated time-dependent increases in interstitial and alveolar edema, neutrophil infiltration, and mild to moderate alveolar membrane thickening. This pre-clinical model of ARDS in human-sized swine recapitulates the clinical, radiographic and histopathologic manifestations of ARDS, providing a tool to study therapies for this highly morbid lung disease.
Collapse
Affiliation(s)
- Sarah R. Kaslow
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jonathan A. Reimer
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Surgery, Mount Sinai Hospital, Chicago, IL 60608, USA
| | - Meghan R. Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Maria R. Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Panpan Chen
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Mariya G. Morris
- Institute of Comparative Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Mandy L. Kain
- Institute of Comparative Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jay S. Leb
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Charles C. Marboe
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - N. Valerio Dorrello
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
21
|
Silva IAN, Gvazava N, Bölükbas DA, Stenlo M, Dong J, Hyllen S, Pierre L, Lindstedt S, Wagner DE. A Semi-quantitative Scoring System for Green Histopathological Evaluation of Large Animal Models of Acute Lung Injury. Bio Protoc 2022; 12:e4493. [PMID: 36199700 PMCID: PMC9486691 DOI: 10.21769/bioprotoc.4493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening, high mortality pulmonary condition characterized by acute lung injury (ALI) resulting in diffuse alveolar damage. Despite progress regarding the understanding of ARDS pathophysiology, there are presently no effective pharmacotherapies. Due to the complexity and multiorgan involvement typically associated with ARDS, animal models remain the most commonly used research tool for investigating potential new therapies. Experimental models of ALI/ARDS use different methods of injury to acutely induce lung damage in both small and large animals. These models have historically played an important role in the development of new clinical interventions, such as fluid therapy and the use of supportive mechanical ventilation (MV). However, failures in recent clinical trials have highlighted the potential inadequacy of small animal models due to major anatomical and physiological differences, as well as technical challenges associated with the use of clinical co-interventions [e.g., MV and extracorporeal membrane oxygenation (ECMO)]. Thus, there is a need for larger animal models of ALI/ARDS, to allow the incorporation of clinically relevant measurements and co-interventions, hopefully leading to improved rates of clinical translation. However, one of the main challenges in using large animal models of preclinical research is that fewer species-specific experimental tools and metrics are available for evaluating the extent of lung injury, as compared to rodent models. One of the most relevant indicators of ALI in all animal models is evidence of histological tissue damage, and while histological scoring systems exist for small animal models, these cannot frequently be readily applied to large animal models. Histological injury in these models differs due to the type and severity of the injury being modeled. Additionally, the incorporation of other clinical support devices such as MV and ECMO in large animal models can lead to further lung damage and appearance of features absent in the small animal models. Therefore, semi-quantitative histological scoring systems designed to evaluate tissue-level injury in large animal models of ALI/ARDS are needed. Here we describe a semi-quantitative scoring system to evaluate histological injury using a previously established porcine model of ALI via intratracheal and intravascular lipopolysaccharide (LPS) administration. Additionally, and owing to the higher number of samples generated from large animal models, we worked to implement a more sustainable and greener histopathological workflow throughout the entire process.
Collapse
Affiliation(s)
- Iran A. N. Silva
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
,
Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
| | - Nika Gvazava
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
,
Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
| | - Deniz A. Bölükbas
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
,
Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
,
Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Jiao Dong
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
,
Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
,
Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Snejana Hyllen
- Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
,
Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Leif Pierre
- Department of Cardiothoracic Surgery, Heart and Lung Transplantation, Skåne University Hospital, Lund, Sweden
,
Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
,
Department of Cardiothoracic Surgery, Heart and Lung Transplantation, Skåne University Hospital, Lund, Sweden
,
Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
,
Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
,
Stem Cell Center, Lund University, Lund, Sweden
,
NanoLund, Lund University, Lund, Sweden
,
*For correspondence:
| |
Collapse
|
22
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Mir M, Chen J, Pinezich MR, O'Neill JD, Guenthart BA, Vunjak-Novakovic G, Kim J. Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue. J Vis Exp 2022:10.3791/63544. [PMID: 35467661 PMCID: PMC9204391 DOI: 10.3791/63544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Repeated injury to airway tissue can impair lung function and cause chronic lung disease, such as chronic obstructive pulmonary disease. Advances in regenerative medicine and bioreactor technologies offer opportunities to produce lab-grown functional tissue and organ constructs that can be used to screen drugs, model disease, and engineer tissue replacements. Here, a miniaturized bioreactor coupled with an imaging modality that allows in situ visualization of the inner lumen of explanted rat trachea during in vitro tissue manipulation and culture is described. Using this bioreactor, the protocol demonstrates imaging-guided selective removal of endogenous cellular components while preserving the intrinsic biochemical features and ultrastructure of the airway tissue matrix. Furthermore, the delivery, uniform distribution, and subsequent prolonged culture of exogenous cells on the decellularized airway lumen with optical monitoring in situ are shown. The results highlight that the imaging-guided bioreactor can potentially be used to facilitate the generation of functional in vitro airway tissues.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center
| | | | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology;
| |
Collapse
|
24
|
Wu WK, Tumen A, Stokes JW, Ukita R, Hozain A, Pinezich M, O'Neill JD, Lee MJ, Reimer JA, Flynn CR, Talackine JR, Cardwell NL, Benson C, Vunjak-Novakovic G, Alexopoulos SP, Bacchetta M. Cross-Circulation for Extracorporeal Liver Support in a Swine Model. ASAIO J 2022; 68:561-570. [PMID: 34352819 PMCID: PMC9984766 DOI: 10.1097/mat.0000000000001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although machine perfusion has gained momentum as an organ preservation technique in liver transplantation, persistent organ shortages and high waitlist mortality highlight unmet needs for improved organ salvage strategies. Beyond preservation, extracorporeal organ support platforms can also aid the development and evaluation of novel therapeutics. Here, we report the use of veno-arterial-venous (V-AV) cross-circulation (XC) with a swine host to provide normothermic support to extracorporeal livers. Functional, biochemical, and morphological analyses of the extracorporeal livers and swine hosts were performed over 12 hours of support. Extracorporeal livers maintained synthetic function through alkaline bile production and metabolic activity through lactate clearance and oxygen consumption. Beyond initial reperfusion, no biochemical evidence of hepatocellular injury was observed. Histopathologic injury scoring showed improvements in sinusoidal dilatation and composite acute injury scores after 12 hours. Swine hosts remained hemodynamically stable throughout XC support. Altogether, these outcomes demonstrate the feasibility of using a novel V-AV XC technique to provide support for extracorporeal livers in a swine model. V-AV XC has potential applications as a translational research platform and clinical biotechnology for donor organ salvage.
Collapse
Affiliation(s)
- Wei Kelly Wu
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew Tumen
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John W Stokes
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rei Ukita
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ahmed Hozain
- Department of Surgery, Columbia University Medical Center, New York, New York
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Meghan Pinezich
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York City
| | - Michael J Lee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Jonathan A Reimer
- Department of Surgery, Columbia University Medical Center, New York, New York
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer R Talackine
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy L Cardwell
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Clayne Benson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Medicine, Columbia University, New York, New York
| | - Sophoclis P Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew Bacchetta
- From the Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
25
|
Kosaka R, Sakota D, Niikawa H, Ohuchi K, Arai H, McCurry KR, Okamoto T. Lung thermography during the initial reperfusion period to assess pulmonary function in cellular ex vivo lung perfusion. Artif Organs 2022; 46:1522-1532. [PMID: 35230734 DOI: 10.1111/aor.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thermography is a non-invasive technology to detect low temperatures in poorly circulated areas. In ex vivo lung perfusion (EVLP), lungs are rewarmed to body temperature during the initial 1 h. Currently, the effect of graft thermal changes during the rewarming phase on pulmonary function is unknown. In this study, we evaluated the correlation of lung surface temperature with physiological parameters, wet/dry ratio, and transplant suitability in Lund-type EVLP. METHODS Fifteen pigs were divided into three groups: control group (no warm ischemia) or donation after circulatory death groups with 60 or 90 min of warm ischemia (n = 5, each). Thermal images of the lower lobes were continuously collected from the bottom of organ chamber using infrared thermography throughout EVLP. RESULTS At 8 min, lung surface temperatures of non-suitable cases were significantly lower than in suitable cases (25.1 ± 0.6 vs. 27.8 ± 1.2°C, P < 0.001), while there was no difference in lung surface temperature between the two groups at 0-4 min and 12-120 min. There was a significant negative correlation between lung surface temperature at 8 min and wet/dry ratio at 2 h in the lower lobes (R = -0.769, P < 0.001, cut-off = 26°C, Area under the curve = 1.0). A lung surface temperature of < 26°C was significantly correlated with poor pulmonary function and transplant non-suitability. CONCLUSION A lung surface temperature of ≥ 26°C at 8 min is a good early predictor of transplant suitability in cellular EVLP and might be applicable in clinical EVLP.
Collapse
Affiliation(s)
- Ryo Kosaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Sakota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Katsuhiro Ohuchi
- Department of Advanced Surgical Technology Research and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kenneth R McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Zuo Q, Mogol AN, Liu YJ, Santaliz Casiano A, Chien C, Drnevich J, Imir OB, Kulkoyluoglu-Cotul E, Park NH, Shapiro DJ, Park BH, Ziegler Y, Katzenellenbogen BS, Aranda E, O'Neill JD, Raghavendra AS, Tripathy D, Madak Erdogan Z. Targeting metabolic adaptations in the breast cancer-liver metastatic niche using dietary approaches to improve endocrine therapy efficacy. Mol Cancer Res 2022; 20:923-937. [PMID: 35259269 DOI: 10.1158/1541-7786.mcr-21-0781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant (Fulv) as standard-of-care. Yet, among such patients, metastasis in the liver is associated with reduced overall survival compared to other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to Fulv. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of Fulv treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. Implications: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.
Collapse
Affiliation(s)
- Qianying Zuo
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ayca Nazli Mogol
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yu-Jeh Liu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Christine Chien
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jenny Drnevich
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ozan Berk Imir
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | - David J Shapiro
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ben Ho Park
- Vanderbilt University, Nashville, TN, United States
| | - Yvonne Ziegler
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
27
|
O'Neill JD, Guenthart BA, Hozain AE, Bacchetta M. Xenogeneic support for the recovery of human donor organs. J Thorac Cardiovasc Surg 2021; 163:1563-1570. [PMID: 34607726 DOI: 10.1016/j.jtcvs.2021.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
VIDEO ABSTRACT.
Collapse
Affiliation(s)
- John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY
| | | | - Ahmed E Hozain
- Department of Surgery, State University of New York Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University, Nashville, Tenn; Department of Cardiac Surgery, Vanderbilt University, Nashville, Tenn; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
28
|
Chen J, Mir M, Pinezich MR, O'Neill JD, Guenthart BA, Bacchetta M, Vunjak-Novakovic G, Huang SXL, Kim J. Non-destructive vacuum-assisted measurement of lung elastic modulus. Acta Biomater 2021; 131:370-380. [PMID: 34192570 PMCID: PMC9245063 DOI: 10.1016/j.actbio.2021.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
In living tissues, mechanical stiffness and biological function are intrinsically linked. Alterations in the stiffness of tissues can induce pathological interactions that affect cellular activity and tissue function. Underlying connections between tissue stiffness and disease highlights the importance of accurate quantitative characterizations of soft tissue mechanics, which can improve our understanding of disease and inform therapeutic development. In particular, accurate measurement of lung mechanical properties has been especially challenging due to the anatomical and mechanobiological complexities of the lung. Discrepancies between measured mechanical properties of dissected lung tissue samples and intact lung tissues in vivo has limited the ability to accurately characterize integral lung mechanics. Here, we report a non-destructive vacuum-assisted method to evaluate mechanical properties of soft biomaterials, including intact tissues and hydrogels. Using this approach, we measured elastic moduli of rat lung tissue that varied depending on stress-strain distribution throughout the lung. We also observed that the elastic moduli of enzymatically disrupted lung parenchyma increased by at least 64%. The reported methodology enables assessment of the nonlinear viscoelastic characteristics of intact lungs under normal and abnormal (i.e., injured, diseased) conditions and allows measurement of mechanical properties of tissue-mimetic biomaterials for use in therapeutics or in vitro models. STATEMENT OF SIGNIFICANCE: Accurate quantification of tissue stiffness is critical for understanding mechanisms of disease and developing effective therapeutics. Current modalities to measure tissue stiffness are destructive and preclude accurate assessment of lung mechanical properties, as lung mechanics are determined by complex features of the intact lung. To address the need for alternative methods to assess lung mechanics, we report a non-destructive vacuum-based approach to quantify tissue stiffness. We applied this method to correlate lung tissue mechanics with tissue disruption, and to assess the stiffness of biomaterials. This method can be used to inform the development of tissue-mimetic materials for use in therapeutics and disease models, and could potentially be applied for in-situ evaluation of tissue stiffness as a diagnostic or prognostic tool.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University, Nashville, TN, United States
| | | | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States.
| |
Collapse
|
29
|
Gao Q, Hartwig MG. Commentary: The ultimate ex vivo lung perfusion: Xenogeneic cross-circulation. J Thorac Cardiovasc Surg 2021; 163:1571-1572. [PMID: 34479715 DOI: 10.1016/j.jtcvs.2021.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
30
|
Tavakol DN, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 2021; 28:993-1015. [PMID: 34087161 DOI: 10.1016/j.stem.2021.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue engineering has markedly matured since its early beginnings in the 1980s. In addition to the original goal to regenerate damaged organs, the field has started to explore modeling of human physiology "in a dish." Induced pluripotent stem cell (iPSC) technologies now enable studies of organ regeneration and disease modeling in a patient-specific context. We discuss the potential of "organ-on-a-chip" systems to study regenerative therapies with focus on three distinct organ systems: cardiac, respiratory, and hematopoietic. We propose that the combinatorial studies of human tissues at these two scales would help realize the translational potential of tissue engineering.
Collapse
Affiliation(s)
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Medicine, Columbia University, New York, NY.
| |
Collapse
|
31
|
Tchouta LN, Alghanem F, Rojas-Pena A, Bartlett RH. Prolonged (≥24 Hours) Normothermic (≥32 °C) Ex Vivo Organ Perfusion: Lessons From the Literature. Transplantation 2021; 105:986-998. [PMID: 33031222 DOI: 10.1097/tp.0000000000003475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For 2 centuries, researchers have studied ex vivo perfusion intending to preserve the physiologic function of isolated organs. If it were indeed possible to maintain ex vivo organ viability for days, transplantation could become an elective operation with clinicians methodically surveilling and reconditioning allografts before surgery. To this day, experimental reports of successfully prolonged (≥24 hours) organ perfusion are rare and have not translated into clinical practice. To identify the crucial factors necessary for successful perfusion, this review summarizes the history of prolonged normothermic ex vivo organ perfusion. By examining successful techniques and protocols used, this review outlines the essential elements of successful perfusion, limitations of current perfusion systems, and areas where further research in preservation science is required.
Collapse
Affiliation(s)
- Lise N Tchouta
- Department of Surgery, Columbia University Medical Center, New York, NY
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Fares Alghanem
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Central Michigan University College of Medicine, Mount Pleasant, MI
| | | | | |
Collapse
|
32
|
Basil MC, Katzen J, Engler AE, Guo M, Herriges MJ, Kathiriya JJ, Windmueller R, Ysasi AB, Zacharias WJ, Chapman HA, Kotton DN, Rock JR, Snoeck HW, Vunjak-Novakovic G, Whitsett JA, Morrisey EE. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell 2021; 26:482-502. [PMID: 32243808 PMCID: PMC7128675 DOI: 10.1016/j.stem.2020.03.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The respiratory system, which includes the trachea, airways, and distal alveoli, is a complex multi-cellular organ that intimately links with the cardiovascular system to accomplish gas exchange. In this review and as members of the NIH/NHLBI-supported Progenitor Cell Translational Consortium, we discuss key aspects of lung repair and regeneration. We focus on the cellular compositions within functional niches, cell-cell signaling in homeostatic health, the responses to injury, and new methods to study lung repair and regeneration. We also provide future directions for an improved understanding of the cell biology of the respiratory system, as well as new therapeutic avenues.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy Katzen
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna E Engler
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael J Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jaymin J Kathiriya
- Division of Pulmonary Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Rebecca Windmueller
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra B Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - William J Zacharias
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hal A Chapman
- Division of Pulmonary Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jason R Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Hans-Willem Snoeck
- Center for Human Development, Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Gordana Vunjak-Novakovic
- Departments of Biomedical Engineering and Medicine, Columbia University, New York, NY 10027, USA
| | - Jeffrey A Whitsett
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Edward E Morrisey
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Use of metabolomics to identify strategies to improve and prolong ex vivo lung perfusion for lung transplants. J Heart Lung Transplant 2021; 40:525-535. [PMID: 33849769 DOI: 10.1016/j.healun.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Normothermic ex vivo lung perfusion (EVLP) allows for functional assessment of donor lungs; thus has increased the use of marginal lungs for transplantation. To extend EVLP for advanced organ reconditioning and regenerative interventions, cellular metabolic changes need to be understood. We sought to comprehensively characterize the dynamic metabolic changes of the lungs during EVLP, and to identify strategies to improve EVLP. METHODS Human donor lungs (n = 50) were assessed under a 4-hour Toronto EVLP protocol. EVLP perfusate was sampled at first (EVLP-1h) and fourth hour (EVLP-4h) of perfusion and were submitted for mass spectrometry-based untargeted metabolic profiling. Differentially expressed metabolites between the 2 timepoints were identified and analyzed from the samples of lungs transplanted post-EVLP (n = 42) to determine the underlying molecular mechanisms. RESULTS Of the total 312 detected metabolites, 84 were up-regulated and 103 were down-regulated at EVLP-4h relative to 1h (FDR adjusted p < .05, fold change ≥ |1.1|). At EVLP-4h, markedly decreased energy substrates were observed, accompanied by the increase in fatty acid β-oxidation. Concurrently, accumulation of amino acids and nucleic acids was evident, indicative of increased protein and nucleotide catabolism. The uniform decrease in free lysophospholipids and polyunsaturated fatty acids at EVLP-4h suggests cell membrane remodeling. CONCLUSIONS Untargeted metabolomics revealed signs of energy substrate consumption and metabolic by-product accumulation under current EVLP protocols. Strategies to supplement nutrients and to maintain homeostasis will be vital in improving the current clinical practice and prolonging organ perfusion for therapeutic application to further enhance donor lung utilization.
Collapse
|
34
|
Haywood N, Byler MR, Zhang A, Roeser ME, Kron IL, Laubach VE. Isolated Lung Perfusion in the Management of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21186820. [PMID: 32957547 PMCID: PMC7555278 DOI: 10.3390/ijms21186820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality, and current management has a dramatic impact on healthcare resource utilization. While our understanding of this disease has improved, the majority of treatment strategies remain supportive in nature and are associated with continued poor outcomes. There is a dramatic need for the development and breakthrough of new methods for the treatment of ARDS. Isolated machine lung perfusion is a promising surgical platform that has been associated with the rehabilitation of injured lungs and the induction of molecular and cellular changes in the lung, including upregulation of anti-inflammatory and regenerative pathways. Initially implemented in an ex vivo fashion to evaluate marginal donor lungs prior to transplantation, recent investigations of isolated lung perfusion have shifted in vivo and are focused on the management of ARDS. This review presents current tenants of ARDS management and isolated lung perfusion, with a focus on how ex vivo lung perfusion (EVLP) has paved the way for current investigations utilizing in vivo lung perfusion (IVLP) in the treatment of severe ARDS.
Collapse
|
35
|
Cotul EK, Zuo Q, Santaliz-Casiano A, Imir OB, Mogol AN, Tunc E, Duong K, Lee JK, Ramesh R, Odukoya E, Kesavadas MP, Ziogaite M, Smith BP, Mao C, Shapiro DJ, Park BH, Katzenellenbogen BS, Daly D, Aranda E, O’Neill JD, Walker C, Landesman Y, Madak-Erdogan Z. Combined Targeting of Estrogen Receptor Alpha and Exportin 1 in Metastatic Breast Cancers. Cancers (Basel) 2020; 12:E2397. [PMID: 32847042 PMCID: PMC7563274 DOI: 10.3390/cancers12092397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/23/2022] Open
Abstract
The majority of breast cancer specific deaths in women with estrogen receptor positive (ER+) tumors occur due to metastases that are resistant to therapy. There is a critical need for novel therapeutic approaches to achieve tumor regression and/or maintain therapy responsiveness in metastatic ER+ tumors. The objective of this study was to elucidate the role of metabolic pathways that undermine therapy efficacy in ER+ breast cancers. Our previous studies identified Exportin 1 (XPO1), a nuclear export protein, as an important player in endocrine resistance progression and showed that combining selinexor (SEL), an FDA-approved XPO1 antagonist, synergized with endocrine agents and provided sustained tumor regression. In the current study, using a combination of transcriptomics, metabolomics and metabolic flux experiments, we identified certain mitochondrial pathways to be upregulated during endocrine resistance. When endocrine resistant cells were treated with single agents in media conditions that mimic a nutrient deprived tumor microenvironment, their glutamine dependence for continuation of mitochondrial respiration increased. The effect of glutamine was dependent on conversion of the glutamine to glutamate, and generation of NAD+. PGC1α, a key regulator of metabolism, was the main driver of the rewired metabolic phenotype. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and our findings reveal a critical role that ERα-XPO1 crosstalk plays in reducing cancer recurrences. Combining SEL with current therapies used in clinical management of ER+ metastatic breast cancer shows promise for treating and keeping these cancers responsive to therapies in already metastasized patients.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu Cotul
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
| | - Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
| | - Ayca Nazli Mogol
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
| | - Elif Tunc
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Kevin Duong
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (K.D.); (R.R.)
| | - Jenna Kathryn Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Rithva Ramesh
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (K.D.); (R.R.)
| | - Elijah Odukoya
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Mrinali P. Kesavadas
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Monika Ziogaite
- Department of Interdisciplinary Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Brandi Patrice Smith
- Department of Informatics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.M.); (D.J.S.)
| | - David J. Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.M.); (D.J.S.)
- Cancer Center at Illinois, Urbana, IL 61801, USA;
| | - Ben Ho Park
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Benita S. Katzenellenbogen
- Cancer Center at Illinois, Urbana, IL 61801, USA;
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Drew Daly
- Xylyx Bio, Inc., Brooklyn, NY 11226, USA; (D.D.); (E.A.); (J.D.O.)
| | - Evelyn Aranda
- Xylyx Bio, Inc., Brooklyn, NY 11226, USA; (D.D.); (E.A.); (J.D.O.)
| | - John D. O’Neill
- Xylyx Bio, Inc., Brooklyn, NY 11226, USA; (D.D.); (E.A.); (J.D.O.)
| | | | - Yosef Landesman
- Karyopharm Therapeutics, Newton, MA 02459, USA; (C.W.); (Y.L.)
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
- Cancer Center at Illinois, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020; 13:259-284. [PMID: 32837585 PMCID: PMC7384395 DOI: 10.1007/s12195-020-00637-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is a disease that manifests itself in a multitude of ways across a wide range of tissues. Many factors are involved, and though impressive strides have been made in studying this novel disease in a very short time, there is still a great deal that is unknown about how the virus functions. Clinical data has been crucial for providing information on COVID-19 progression and determining risk factors. However, the mechanisms leading to the multi-tissue pathology are yet to be fully established. Although insights from SARS-CoV-1 and MERS-CoV have been valuable, it is clear that SARS-CoV-2 is different and merits its own extensive studies. In this review, we highlight unresolved questions surrounding this virus including the temporal immune dynamics, infection of non-pulmonary tissue, early life exposure, and the role of circadian rhythms. Risk factors such as sex and exposure to pollutants are also explored followed by a discussion of ways in which bioengineering approaches can be employed to help understand COVID-19. The use of sophisticated in vitro models can be employed to interrogate intercellular interactions and also to tease apart effects of the virus itself from the resulting immune response. Additionally, spatiotemporal information can be gleaned from these models to learn more about the dynamics of the virus and COVID-19 progression. Application of advanced tissue and organ system models into COVID-19 research can result in more nuanced insight into the mechanisms underlying this condition and elucidate strategies to combat its effects.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Michael J. Donzanti
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Katherine M. Nelson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
37
|
Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nat Med 2020; 26:1102-1113. [PMID: 32661401 PMCID: PMC9990469 DOI: 10.1038/s41591-020-0971-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Patients awaiting lung transplantation face high wait-list mortality, as injury precludes the use of most donor lungs. Although ex vivo lung perfusion (EVLP) is able to recover marginal quality donor lungs, extension of normothermic support beyond 6 h has been challenging. Here we demonstrate that acutely injured human lungs declined for transplantation, including a lung that failed to recover on EVLP, can be recovered by cross-circulation of whole blood between explanted human lungs and a Yorkshire swine. This xenogeneic platform provided explanted human lungs a supportive, physiologic milieu and systemic regulation that resulted in functional and histological recovery after 24 h of normothermic support. Our findings suggest that cross-circulation can serve as a complementary approach to clinical EVLP to recover injured donor lungs that could not otherwise be utilized for transplantation, as well as a translational research platform for immunomodulation and advanced organ bioengineering.
Collapse
|
38
|
Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krapf C, Boesmueller C, Oefner D, Grimm M, Schneeberger S. Transplanting Marginal Organs in the Era of Modern Machine Perfusion and Advanced Organ Monitoring. Front Immunol 2020; 11:631. [PMID: 32477321 PMCID: PMC7235363 DOI: 10.3389/fimmu.2020.00631] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Organ transplantation is undergoing profound changes. Contraindications for donation have been revised in order to better meet the organ demand. The use of lower-quality organs and organs with greater preoperative damage, including those from donation after cardiac death (DCD), has become an established routine but increases the risk of graft malfunction. This risk is further aggravated by ischemia and reperfusion injury (IRI) in the process of transplantation. These circumstances demand a preservation technology that ameliorates IRI and allows for assessment of viability and function prior to transplantation. Oxygenated hypothermic and normothermic machine perfusion (MP) have emerged as valid novel modalities for advanced organ preservation and conditioning. Ex vivo prolonged lung preservation has resulted in successful transplantation of high-risk donor lungs. Normothermic MP of hearts and livers has displayed safe (heart) and superior (liver) preservation in randomized controlled trials (RCT). Normothermic kidney preservation for 24 h was recently established. Early clinical outcomes beyond the market entry trials indicate bioenergetics reconditioning, improved preservation of structures subject to IRI, and significant prolongation of the preservation time. The monitoring of perfusion parameters, the biochemical investigation of preservation fluids, and the assessment of tissue viability and bioenergetics function now offer a comprehensive assessment of organ quality and function ex situ. Gene and protein expression profiling, investigation of passenger leukocytes, and advanced imaging may further enhance the understanding of the condition of an organ during MP. In addition, MP offers a platform for organ reconditioning and regeneration and hence catalyzes the clinical realization of tissue engineering. Organ modification may include immunological modification and the generation of chimeric organs. While these ideas are not conceptually new, MP now offers a platform for clinical realization. Defatting of steatotic livers, modulation of inflammation during preservation in lungs, vasodilatation of livers, and hepatitis C elimination have been successfully demonstrated in experimental and clinical trials. Targeted treatment of lesions and surgical treatment or graft modification have been attempted. In this review, we address the current state of MP and advanced organ monitoring and speculate about logical future steps and how this evolution of a novel technology can result in a medial revolution.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Boesmueller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Oefner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Dorrello NV, Vunjak-Novakovic G. Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Front Bioeng Biotechnol 2020; 8:269. [PMID: 32351946 PMCID: PMC7174601 DOI: 10.3389/fbioe.2020.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The shortage of transplantable donor organs directly affects patients with end-stage lung disease, for which transplantation remains the only definitive treatment. With the current acceptance rate of donor lungs of only 20%, rescuing even one half of the rejected donor lungs would increase the number of transplantable lungs threefold, to 60%. We review recent advances in lung bioengineering that have potential to repair the epithelial and vascular compartments of the lung. Our focus is on the long-term support and recovery of the lung ex vivo, and the replacement of defective epithelium with healthy therapeutic cells. To this end, we first review the roles of the lung epithelium and vasculature, with focus on the alveolar-capillary membrane, and then discuss the available and emerging technologies for ex vivo bioengineering of the lung by decellularization and recellularization. While there have been many meritorious advances in these technologies for recovering marginal quality lungs to the levels needed to meet the standards for transplantation – many challenges remain, motivating further studies of the extended ex vivo support and interventions in the lung. We propose that the repair of injured epithelium with preservation of quiescent vasculature will be critical for the immediate blood supply to the lung and the lung survival and function following transplantation.
Collapse
Affiliation(s)
- N Valerio Dorrello
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
40
|
Kao CC, Parulekar AD. Is perfusate exchange during ex vivo lung perfusion beneficial? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:43. [PMID: 32154799 DOI: 10.21037/atm.2019.12.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Amit D Parulekar
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
41
|
Chu X, Chen C, Chen C, Zhang JS, Bellusci S, Li X. Evidence for lung repair and regeneration in humans: key stem cells and therapeutic functions of fibroblast growth factors. Front Med 2019; 14:262-272. [PMID: 31741137 PMCID: PMC7095240 DOI: 10.1007/s11684-019-0717-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 01/19/2023]
Abstract
Regeneration carries the idea of regrowing partially or completely a missing organ. Repair, on the other hand, allows restoring the function of an existing but failing organ. The recognition that human lungs can both repair and regenerate is quite novel, the concept has not been widely used to treat patients. We present evidence that the human adult lung does repair and regenerate and introduce different ways to harness this power. Various types of lung stem cells are capable of proliferating and differentiating upon injury driving the repair/regeneration process. Injury models, primarily in mice, combined with lineage tracing studies, have allowed the identification of these important cells. Some of these cells, such as basal cells, broncho-alveolar stem cells, and alveolar type 2 cells, rely on fibroblast growth factor (FGF) signaling for their survival, proliferation and/or differentiation. While preclinical studies have shown the therapeutic benefits of FGFs, a recent clinical trial for acute respiratory distress syndrome (ARDS) using intravenous injection of FGF7 did not report the expected beneficial effects. We discuss the potential reasons for these negative results and propose the rationale for new approaches for future clinical trials, such as delivery of FGFs to the damaged lungs through efficient inhalation systems, which may be more promising than systemic exposure to FGFs. While this change in the administration route presents a challenge, the therapeutic promises displayed by FGFs are worth the effort.
Collapse
Affiliation(s)
- Xuran Chu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Chengshui Chen
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaolei Chen
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Saverio Bellusci
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China.
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
42
|
Hozain AE, Tipograf Y, Pinezich MR, Cunningham KM, Donocoff R, Queen D, Fung K, Marboe CC, Guenthart BA, O'Neill JD, Vunjak-Novakovic G, Bacchetta M. Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. J Thorac Cardiovasc Surg 2019; 159:1640-1653.e18. [PMID: 31761338 PMCID: PMC7094131 DOI: 10.1016/j.jtcvs.2019.09.121] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Objectives Lung remains the least-utilized solid organ for transplantation. Efforts to recover donor lungs with reversible injuries using ex vivo perfusion systems are limited to <24 hours of support. Here, we demonstrate the feasibility of extending normothermic extracorporeal lung support to 4 days using cross-circulation with conscious swine. Methods A swine behavioral training program and custom enclosure were developed to enable multiday cross-circulation between extracorporeal lungs and recipient swine. Lungs were ventilated and perfused in a normothermic chamber for 4 days. Longitudinal analyses of extracorporeal lungs (ie, functional assessments, multiscale imaging, cytokine quantification, and cellular assays) and recipient swine (eg, vital signs and blood and tissue analyses) were performed. Results Throughout 4 days of normothermic support, extracorporeal lung function was maintained (arterial oxygen tension/inspired oxygen fraction >400 mm Hg; compliance >20 mL/cm H2O), and recipient swine were hemodynamically stable (lactate <3 mmol/L; pH, 7.42 ± 0.05). Radiography revealed well-aerated lower lobes and consolidation in upper lobes of extracorporeal lungs, and bronchoscopy showed healthy airways without edema or secretions. In bronchoalveolar lavage fluid, granulocyte-macrophage colony-stimulating factor, interleukin (IL) 4, IL-6, and IL-10 levels increased less than 6-fold, whereas interferon gamma, IL-1α, IL-1β, IL-1ra, IL-2, IL-8, IL-12, IL-18, and tumor necrosis factor alpha levels decreased from baseline to day 4. Histologic evaluations confirmed an intact blood–gas barrier and outstanding preservation of airway and alveolar architecture. Cellular viability and metabolism in extracorporeal lungs were confirmed after 4 days. Conclusions We demonstrate feasibility of normothermic maintenance of extracorporeal lungs for 4 days by cross-circulation with conscious swine. Cross-circulation approaches could support the recovery of damaged lungs and enable organ bioengineering to improve transplant outcomes.
Collapse
Affiliation(s)
- Ahmed E Hozain
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY
| | - Yuliya Tipograf
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Katherine M Cunningham
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Rachel Donocoff
- Institute of Comparative Medicine, Columbia University Medical Center, Columbia University, New York, NY
| | - Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY
| | - Kenmond Fung
- Department of Clinical Perfusion, Columbia University Medical Center, Columbia University, New York, NY
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY
| | - Brandon A Guenthart
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY.
| | - Matthew Bacchetta
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
43
|
|
44
|
Weaver JD. A breath of fresh air for donor lungs. Sci Transl Med 2019. [DOI: 10.1126/scitranslmed.aax9558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Donor lungs damaged by gastric aspiration can be regenerated to meet transplantation criteria by an interventional cross circulation platform.
Collapse
Affiliation(s)
- Jessica D. Weaver
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|