1
|
Wu P, Zhang T, Zhao D, Xie Y, Huang D, Li Z, Huang Y. Microneedle-Enabled Breakthroughs in Nucleic Acid Therapeutics. Adv Healthc Mater 2025:e2501015. [PMID: 40370139 DOI: 10.1002/adhm.202501015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Nucleic acid therapy demonstrates great potential in cancer treatment, infectious disease prevention, and vaccine development due to its advantages, such as rapid production, long-lasting effects, and high target specificity. Although nucleic acid therapy is considered ideal for the development of novel therapeutic strategies, its clinical application still faces numerous challenges, including the lack of efficient delivery systems, insufficient drug formulation stability, and the limitations imposed by the skin barrier on drug dosage delivery. Microneedles, as an innovative transdermal drug delivery technology, can penetrate the stratum corneum and directly access the skin's microcirculation, enabling the efficient delivery of genes and drugs. This technology offers several advantages, such as ease of operation, minimally invasive and painless application, and high safety. Combining microneedle technology with nucleic acid therapy fully leverages the strengths of both approaches, significantly enhancing therapeutic efficacy and bioavailability while maximizing treatment potential. This review explores the application prospects and advantages of combining microneedle delivery systems with nucleic acid therapy.
Collapse
Affiliation(s)
- Pengfei Wu
- School of Life Science, School of Interdisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical, Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Engineering, School of Interdisciplinary Science, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai, 519088, P.R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250100, P.R. China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450040, P. R. China
| | - Tian Zhang
- School of Life Science, School of Interdisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical, Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Engineering, School of Interdisciplinary Science, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai, 519088, P.R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250100, P.R. China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450040, P. R. China
| | - Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, 450000, P. R. China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Dong Huang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
- AciMicro Medical Technology, Guangzhou, 510700, P. R. China
| | - Zhihong Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Yuanyu Huang
- School of Life Science, School of Interdisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical, Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Engineering, School of Interdisciplinary Science, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai, 519088, P.R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250100, P.R. China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450040, P. R. China
| |
Collapse
|
2
|
Chen W, Choi J. Molecular circuits for genomic recording of cellular events. Trends Genet 2025:S0168-9525(25)00079-4. [PMID: 40335327 DOI: 10.1016/j.tig.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Advances in precise genome editing are enabling genomic recordings of cellular events. Since the initial demonstration of CRISPR-based genome editing, the field of genomic recording has witnessed key strides in lineage recording, where clonal lineage relationships among cells are indirectly recorded as synthetic mutations. However, methods for directly recording and reconstructing past cellular events are still limited, and their potential for revealing new insights into cell fate decisions has yet to be realized. The field needs new sensing modules and genetic circuit architectures that faithfully encode past cellular states into genomic DNA recordings to achieve such goals. Here we review recently developed strategies to construct diverse sensors and explore how emerging synthetic biology tools may help to build molecular circuits for genomic recording of diverse cellular events.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Junhong Choi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, NY 10065, USA.
| |
Collapse
|
3
|
Khadake RM, Arora V, Gupta P, Rode AB. Harnessing Synthetic Riboswitches for Tunable Gene Regulation in Mammalian Cells. Chembiochem 2025; 26:e202401015. [PMID: 39995098 DOI: 10.1002/cbic.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA switches regulated by specific inducer molecules have become a powerful synthetic biology tool for precise gene regulation in mammalian systems. The engineered RNA switches can be integrated with natural RNA-mediated gene regulatory functions as a modular and customizable approach to probe and control cellular behavior. RNA switches have been used to advance synthetic biology applications, including gene therapy, bio-production, and cellular reprogramming. This review explores recent progress in the design and functional implementation of synthetic riboswitches in mammalian cells based on diverse RNA regulation mechanisms by highlighting recent studies and emerging technologies. We also discuss challenges such as off-target effects, system stability, and ligand delivery in complex biological environments. In conclusion, this review emphasizes the potential of synthetic riboswitches as a platform for customizable gene regulation in diverse biomedical applications.
Collapse
Affiliation(s)
- Rushikesh M Khadake
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Vaani Arora
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Payal Gupta
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| |
Collapse
|
4
|
Liu X, Zhou E, Qi Q, Xiong W, Tian T, Zhou X. Innovative Chemical Strategies for Advanced CRISPR Modulation. Acc Chem Res 2025; 58:1262-1274. [PMID: 40173086 DOI: 10.1021/acs.accounts.5c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
ConspectusOver the past decade, RNA-guided gene editing technologies, particularly those derived from CRISPR systems, have revolutionized life sciences and opened unprecedented opportunities for therapeutic innovation. Despite their transformative potential, achieving precise control over the activity and specificity of these molecular tools remains a formidable challenge, requiring advanced and innovative regulatory strategies. We and others have developed new approaches that integrate chemical ingenuity with bioorthogonal techniques to achieve remarkable precision in CRISPR regulation. One key innovation lies in the chemical modulation of guide RNA (gRNA), significantly expanding the CRISPR toolkit. Strategies such as CRISPR-ON and CRISPR-OFF switches rely on selective chemical masking and demasking of gRNA. These approaches use either bulky chemical groups to preemptively mask RNA or minor, less obstructive groups to fine-tune its function, followed by bioorthogonal reactions to restore or suppress activity. These methodologies have proven to be pivotal for controlled gene editing and expression, addressing the challenges of precision, reversibility, and dynamic regulation.Parallel to these advances, the development of mesoporous metal-organic frameworks (MOFs) has emerged as a promising solution for RNA deprotection and activation. By serving as catalytic tools, MOFs enhance the versatility and efficiency of CRISPR systems, pushing their applications beyond the conventional boundaries. In addition, the synthesis of novel small molecules for regulating CRISPR-Cas9 activity marks a critical milestone in the evolution of gene therapy protocols. Innovative RNA structural control strategies have also emerged, particularly through the engineering of G-quadruplex (G4) motifs and G-G mismatches. These methods exploit the structural propensities of engineered gRNAs, employing small-molecule ligands to induce specific conformational changes that modulate the CRISPR activity. Whether stabilizing G4 formation or promoting G-G mismatches, these strategies demonstrate the precision and sophistication required for the molecular-level control of gene editing.Further enhancing these innovations, techniques like host-guest chemistry and conditional diacylation cross-linking have been developed to directly alter gRNA structure and function. These approaches provide nuanced, reversible, and safe control over CRISPR systems, advancing both the precision and reliability of gene editing technologies. In conclusion, this body of work highlights the convergence of chemistry, materials science, and molecular biology to create integrative solutions for gene editing. By combination of bioorthogonal chemistry, RNA engineering, and advanced materials, these advancements offer unprecedented accuracy and control for both fundamental research and therapeutic applications. These innovations not only advance genetic research but also contribute to developing safer and more effective gene editing strategies, moving us closer to realizing the full potential of these technologies.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Cao L, Chen W, Kang W, Lei C, Nie Z. Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing. Anal Bioanal Chem 2025; 417:1699-1711. [PMID: 39601843 DOI: 10.1007/s00216-024-05678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
6
|
Zheng Y, Mo Y, Yuan Y, Su T, Qi Q. A rapid and efficient strategy for combinatorial repression of multiple genes in Escherichia coli. Microb Cell Fact 2025; 24:74. [PMID: 40148961 PMCID: PMC11951683 DOI: 10.1186/s12934-025-02697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. RESULTS In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. CONCLUSION We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yuxia Mo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
7
|
Choi J, Chen W, Liao H, Li X, Shendure J. A molecular proximity sensor based on an engineered, dual-component guide RNA. eLife 2025; 13:RP98110. [PMID: 39937081 PMCID: PMC11820115 DOI: 10.7554/elife.98110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
One of the goals of synthetic biology is to enable the design of arbitrary molecular circuits with programmable inputs and outputs. Such circuits bridge the properties of electronic and natural circuits, processing information in a predictable manner within living cells. Genome editing is a potentially powerful component of synthetic molecular circuits, whether for modulating the expression of a target gene or for stably recording information to genomic DNA. However, programming molecular events such as protein-protein interactions or induced proximity as triggers for genome editing remains challenging. Here, we demonstrate a strategy termed 'P3 editing', which links protein-protein proximity to the formation of a functional CRISPR-Cas9 dual-component guide RNA. By engineering the crRNA:tracrRNA interaction, we demonstrate that various known protein-protein interactions, as well as the chemically induced dimerization of protein domains, can be used to activate prime editing or base editing in human cells. Additionally, we explore how P3 editing can incorporate outputs from ADAR-based RNA sensors, potentially allowing specific RNAs to induce specific genome edits within a larger circuit. Our strategy enhances the controllability of CRISPR-based genome editing, facilitating its use in synthetic molecular circuits deployed in living cells.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Wei Chen
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Institute for Protein Design, University of WashingtonSeattleUnited States
| | - Hanna Liao
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Xiaoyi Li
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Jay Shendure
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
- Allen Discovery Center for Cell Lineage TracingSeattleUnited States
- Seattle Hub for Synthetic BiologySeattleUnited States
| |
Collapse
|
8
|
Garcia-Guerra A, Sathyaprakash C, de Jong O, Lim W, Vader P, El Andaloussi S, Bath J, Reine J, Aoki Y, Turberfield A, Wood MA, Rinaldi C. Tissue-specific modulation of CRISPR activity by miRNA-sensing guide RNAs. Nucleic Acids Res 2025; 53:gkaf016. [PMID: 39844454 PMCID: PMC11754125 DOI: 10.1093/nar/gkaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices. Here, we present CRISPR MiRAGE (miRNA-activated genome editing), a tool comprising a dynamic single-guide RNA that senses miRNA complexed with Argonaute proteins and controls downstream CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) activity based on the detected miRNA signature. We study the operation of the miRNA-sensing single-guide RNA and attain muscle-specific activation of gene editing through CRISPR MiRAGE in models of Duchenne muscular dystrophy. By enabling RNA-controlled gene editing activity, this technology creates opportunities to advance tissue-specific CRISPR treatments for human diseases.
Collapse
Affiliation(s)
- Antonio Garcia-Guerra
- Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| | - Chaitra Sathyaprakash
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wooi F Lim
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Laboratory Medicine, TRACK, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Jonathan Bath
- Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Jesus Reine
- Oxford Vaccine Group, University of Oxford, OX3 7LE Oxford, United Kingdom
- Clinical Sciences, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Andrew J Turberfield
- Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| |
Collapse
|
9
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2025; 54:8-32. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. Nat Commun 2024; 15:10287. [PMID: 39604381 PMCID: PMC11603292 DOI: 10.1038/s41467-024-54629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Mauricio A Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Daniel K Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Marcus B Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
11
|
Lei H, Xiong W, Li M, Qi Q, Liu X, Wang S, Tian T, Zhou X. Enhanced control of RNA modification and CRISPR-Cas activity through redox-triggered disulfide cleavage. Bioorg Med Chem 2024; 112:117878. [PMID: 39167979 DOI: 10.1016/j.bmc.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Chemical RNA modification has emerged as a flexible approach for post-synthetic modifications in chemical biology research. Guide RNA (gRNA) plays a crucial role in the clustered regularly interspaced short palindromic repeats and associated protein system (CRISPR-Cas). Several toolkits have been developed to regulate gene expression and editing through modifications of gRNA. However, conditional regulation strategies to control gene editing in cells as required are still lacking. In this context, we introduce a strategy employing a cyclic disulfide-substituted acylating agent to randomly acylate the 2'-OH group on the gRNA strand. The CRISPR-Cas systems demonstrate off-on transformation activity driven by redox-triggered disulfide cleavage and undergo intramolecular cyclization, which releases the functionalized gRNA. Dithiothreitol (DTT) exhibits superior reductive capabilities in cleaving disulfides compared to glutathione (GSH), requiring fewer reductants. This acylation method with cyclic disulfides enables conditional control of CRISPR-Cas9, CRISPR-Cas13a, RNA hybridization, and aptamer folding. Our strategy facilitates precise in vivo control of gene editing, making it particularly valuable for targeted applications.
Collapse
Affiliation(s)
- Huajun Lei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Ming Li
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xingyu Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Shaoru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
12
|
Cardiff RAL, Carothers JM, Zalatan JG, Sauro HM. Systems-Level Modeling for CRISPR-Based Metabolic Engineering. ACS Synth Biol 2024; 13:2643-2652. [PMID: 39119666 DOI: 10.1021/acssynbio.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux balance models have successfully been applied to identify targets for improving biosynthetic production yields using combinatorial CRISPR-interference (CRISPRi) programs. The advent of new approaches for tunable and dynamic CRISPR activation (CRISPRa) promises to further advance these engineering capabilities. Once appropriate targets are identified, guide RNA prediction models can lead to increased efficacy in gene targeting. Developing improved models and incorporating approaches from machine learning may be able to overcome current limitations and greatly expand the capabilities of CRISPR-Cas9 tools for metabolic engineering.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Herbert M Sauro
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Puppala AK, Nielsen AC, Regan MR, Mancinelli GE, De Pooter RF, Arnovitz S, Harding C, McGregor M, Balanis NG, Clarke R, Merrill BJ. A modular system for programming multistep activation of endogenous genes in stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613466. [PMID: 39345516 PMCID: PMC11429781 DOI: 10.1101/2024.09.17.613466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Although genomes encode instructions for mammalian cell differentiation with rich syntactic relationships, existing methods for genetically programming cells have modest capabilities for stepwise regulation of genes. Here, we developed a sequential genetic system that enables transcriptional activation of endogenous genes in a preprogrammed, stepwise manner. The system relies on the removal of an RNA polymerase III termination signal to induce both the transcriptional activation and the DNA endonuclease activities of a Cas9-VPR protein to effect stepwise progression through cascades of gene activation events. The efficiency of the cascading system enables a new dimension for cellular programming by allowing the manipulation of the sequential order of gene activation for directing the differentiation of human stem cells. One-Sentence Summary Development of a synthetic biology system for preprogrammed, stepwise activation of endogenous genes.
Collapse
|
14
|
Jaybhaye SG, Chavhan RL, Hinge VR, Deshmukh AS, Kadam US. CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology 2024; 597:110160. [PMID: 38955083 DOI: 10.1016/j.virol.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant viruses threaten global food security by infecting commercial crops, highlighting the critical need for efficient virus detection to enable timely preventive measures. Current techniques rely on polymerase chain reaction (PCR) for viral genome amplification and require laboratory conditions. This review explores the applications of CRISPR-Cas assisted diagnostic tools, specifically CRISPR-Cas12a and CRISPR-Cas13a/d systems for plant virus detection and analysis. The CRISPR-Cas12a system can detect viral DNA/RNA amplicons and can be coupled with PCR or isothermal amplification, allowing multiplexed detection in plants with mixed infections. Recent studies have eliminated the need for expensive RNA purification, streamlining the process by providing a visible readout through lateral flow strips. The CRISPR-Cas13a/d system can directly detect viral RNA with minimal preamplification, offering a proportional readout to the viral load. These approaches enable rapid viral diagnostics within 30 min of leaf harvest, making them valuable for onsite field applications. Timely identification of diseases associated with pathogens is crucial for effective treatment; yet developing rapid, specific, sensitive, and cost-effective diagnostic technologies remains challenging. The current gold standard, PCR technology, has drawbacks such as lengthy operational cycles, high costs, and demanding requirements. Here we update the technical advancements of CRISPR-Cas in viral detection, providing insights into future developments, versatile applications, and potential clinical translation. There is a need for approaches enabling field plant viral nucleic acid detection with high sensitivity, specificity, affordability, and portability. Despite challenges, CRISPR-Cas-mediated pathogen diagnostic solutions hold robust capabilities, paving the way for ideal diagnostic tools. Alternative applications in virus research are also explored, acknowledging the technology's limitations and challenges.
Collapse
Affiliation(s)
- Siddhant G Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Rahul L Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Vidya R Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Abhijit S Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Ulhas S Kadam
- Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Gyeongsangnam-do, South Korea.
| |
Collapse
|
15
|
Choi J, Chen W, Liao H, Li X, Shendure J. A molecular proximity sensor based on an engineered, dual-component guide RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.14.553235. [PMID: 37645782 PMCID: PMC10461971 DOI: 10.1101/2023.08.14.553235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
One of the goals of synthetic biology is to enable the design of arbitrary molecular circuits with programmable inputs and outputs. Such circuits bridge the properties of electronic and natural circuits, processing information in a predictable manner within living cells. Genome editing is a potentially powerful component of synthetic molecular circuits, whether for modulating the expression of a target gene or for stably recording information to genomic DNA. However, programming molecular events such as protein-protein interactions or induced proximity as triggers for genome editing remains challenging. Here we demonstrate a strategy termed "P3 editing", which links protein-protein proximity to the formation of a functional CRISPR-Cas9 dual-component guide RNA. By engineering the crRNA:tracrRNA interaction, we demonstrate that various known protein-protein interactions, as well as the chemically-induced dimerization of protein domains, can be used to activate prime editing or base editing in human cells. Additionally, we explore how P3 editing can incorporate outputs from ADAR-based RNA sensors, potentially allowing specific RNAs to induce specific genome edits within a larger circuit. Our strategy enhances the controllability of CRISPR-based genome editing, facilitating its use in synthetic molecular circuits deployed in living cells.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Hanna Liao
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558319. [PMID: 37781609 PMCID: PMC10541143 DOI: 10.1101/2023.09.18.558319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W. Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel K. Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Marcus B. Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201
| |
Collapse
|
17
|
Pandit B, Fang L, Kool ET, Royzen M. Reversible RNA Acylation Using Bio-Orthogonal Chemistry Enables Temporal Control of CRISPR-Cas9 Nuclease Activity. ACS Chem Biol 2024; 19:1719-1724. [PMID: 39051564 PMCID: PMC11334111 DOI: 10.1021/acschembio.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The CRISPR-Cas9 system is a widely popular tool for genome engineering. There is strong interest in developing tools for temporal control of CRISPR-Cas9 activity to address some of the challenges and to broaden the scope of potential applications. In this work, we describe a bio-orthogonal chemistry-based approach to control nuclease activity with temporal precision. We report a trans-cyclooctene (TCO)-acylimidazole reagent that acylates 2'-OH groups of RNA. Poly acylation ("cloaking") of RNA was optimized in vitro using a model 18-nt oligonucleotide, as well as CRISPR single guide RNA (sgRNA). Two hours of treatment completely inactivated sgRNA for Cas9-assisted DNA cleavage. Nuclease activity was restored upon addition of tetrazine, which removes the TCO moieties via a two-step process ("uncloaking"). The approach was applied to target the GFP gene in live HEK293 cells. GFP expression was analyzed by flow cytometry. In the future, we anticipate that our approach will be useful in the field of developmental biology, by enabling investigation of genes of interest at different stages of an organism's development.
Collapse
Affiliation(s)
- Bhoomika Pandit
- Department
of Chemistry, University at Albany, 1400 Washington Ave, Albany, New York 12222, United States
| | - Linglan Fang
- Department
of Chemistry, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Eric T. Kool
- Department
of Chemistry, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Maksim Royzen
- Department
of Chemistry, University at Albany, 1400 Washington Ave, Albany, New York 12222, United States
| |
Collapse
|
18
|
Kang H, Park D, Kim J. Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs. Nucleic Acids Res 2024; 52:8595-8608. [PMID: 38943344 DOI: 10.1093/nar/gkae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
The CRISPR-Cas system provides a versatile RNA-guided approach for a broad range of applications. Thanks to advances in RNA synthetic biology, the engineering of guide RNAs (gRNAs) has enabled the conditional control of the CRISPR-Cas system. However, achieving precise regulation of the CRISPR-Cas system for efficient modulation of internal metabolic processes remains challenging. In this work, we developed a robust dCas9 regulator with engineered conditional gRNAs to enable tight control of endogenous genes. Our conditional gRNAs in Escherichia coli can control gene expression upon specific interaction with trigger RNAs with a dynamic range as high as 130-fold, evaluating up to a three-input logic A OR (B AND C). The conditional gRNA-mediated targeting of endogenous metabolic genes, lacZ, malT and poxB, caused differential regulation of growth in Escherichia coli via metabolic flux control. Further, conditional gRNAs could regulate essential cytoskeleton genes, ftsZ and mreB, to control cell filamentation and division. Finally, three types of two-input logic gates could be applied for the conditional control of ftsZ regulation, resulting in morphological changes. The successful operation and application of conditional gRNAs based on programmable RNA interactions suggests that our system could be compatible with other Cas-effectors and implemented in other host organisms.
Collapse
Affiliation(s)
- Hansol Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Dongwon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
19
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
20
|
Martin TD, Watson EV, Choi MY, Nabet B, Gray NS, Xu Q, Elledge SJ. Proteasomal control of anti-CRISPRs for the regulation of CRISPR/Cas9 activity using Cas9-ACROBAT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593596. [PMID: 38798327 PMCID: PMC11118331 DOI: 10.1101/2024.05.13.593596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Small molecule-mediated proteasomal degradation of proteins is a powerful tool for synthetic regulation of biological activity. To control Cas9 activity in cells, we engineered an anti-CRISPR protein, AcrIIA4, fused to a degradation (dTAG) or small molecule assisted shutoff (SMASh) tag. Co-expression of the tagged AcrIIA4 along with Cas9 and riboswitch-regulated sgRNAs enables precise tunable control of CRISPR activity by small molecule addition.
Collapse
|
21
|
Lin CL, Chen WD, Liu L, Cheng L. Chemical control of CRISPR/Cpf1 editing via orthogonal activation and deactivation of crosslinked crRNA. Chem Commun (Camb) 2024; 60:5197-5200. [PMID: 38651297 DOI: 10.1039/d4cc01106f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Through the integration of CRISPR/Cpf1 with optogenetics and a reduction-responsive motif, we have developed a photoactivatable cross-linked crRNA that enables precise genome editing upon light exposure. This system also allows for termination of editing activity through external application of reducing agent. The dual-stimuli-responsive CRISPR/Cpf1 editing process operates in a unique OFF → ON → OFF sequence, making it a valuable tool for investigating time-sensitive biological events.
Collapse
Affiliation(s)
- Cui-Lian Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Da Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Bagheri N, Chamorro A, Idili A, Porchetta A. PAM-Engineered Toehold Switches as Input-Responsive Activators of CRISPR-Cas12a for Sensing Applications. Angew Chem Int Ed Engl 2024; 63:e202319677. [PMID: 38284432 DOI: 10.1002/anie.202319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The RNA-programmed CRISPR effector protein Cas12a has emerged as a powerful tool for gene editing and molecular diagnostics. However, additional bio-engineering strategies are required to achieve control over Cas12a activity. Here, we show that Toehold Switch DNA hairpins, presenting a rationally designed locked protospacer adjacent motif (PAM) in the loop, can be used to control Cas12a in response to molecular inputs. Reconfiguring the Toehold Switch DNA from a hairpin to a duplex conformation through a strand displacement reaction provides an effective means to modulate the accessibility of the PAM, thereby controlling the binding and cleavage activities of Cas12a. Through this approach, we showcase the potential to trigger downstream Cas12a activity by leveraging proximity-based strand displacement reactions in response to target binding. By utilizing the trans-cleavage activity of Cas12a as a signal transduction method, we demonstrate the versatility of our approach for sensing applications. Our system enables rapid, one-pot detection of IgG antibodies and small molecules with high sensitivity and specificity even within complex matrices. Besides the bioanalytical applications, the switchable PAM-engineered Toehold Switches serve as programmable tools capable of regulating Cas12a-based targeting and DNA processing in response to molecular inputs and hold promise for a wide array of biotechnological applications.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alejandro Chamorro
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Andrea Idili
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
23
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
24
|
Schambach A, Buchholz CJ, Torres-Ruiz R, Cichutek K, Morgan M, Trapani I, Büning H. A new age of precision gene therapy. Lancet 2024; 403:568-582. [PMID: 38006899 DOI: 10.1016/s0140-6736(23)01952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 11/27/2023]
Abstract
Gene therapy has become a clinical reality as market-approved advanced therapy medicinal products for the treatment of distinct monogenetic diseases and B-cell malignancies. This Therapeutic Review aims to explain how progress in genome editing technologies offers the possibility to expand both therapeutic options and the types of diseases that will become treatable. To frame these impressive advances in the context of modern medicine, we incorporate examples from human clinical trials into our discussion on how genome editing will complement currently available strategies in gene therapy, which still mainly rely on gene addition strategies. Furthermore, safety considerations and ethical implications, including the issue of accessibility, are addressed as these crucial parameters will define the impact that gene therapy in general and genome editing in particular will have on how we treat patients in the near future.
Collapse
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; German Center for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Christian J Buchholz
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany; Frankfurt Cancer Institute, Goethe-University, Frankfurt, Germany
| | - Raul Torres-Ruiz
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain; Molecular Cytogenetics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Klaus Cichutek
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Advanced Biomedical Sciences, Università degli studi di Napoli Federico II, Naples, Italy
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; German Center for Infection Research, partner site Hannover-Braunschweig, Germany.
| |
Collapse
|
25
|
Zheng B, Chen Y, Niu L, Zhang X, Yang Y, Wang S, Chen W, Cai Z, Huang W, Huang W. Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J Control Release 2024; 366:596-610. [PMID: 38184232 DOI: 10.1016/j.jconrel.2023.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Insufficient delivery of therapeutic agents into solid tumors by systemic administration remains a major challenge in cancer treatment. Secreted protein acidic and rich in cysteine (SPARC) has high binding affinity to albumin and has been shown to enhance the penetration and uptake of albumin-based drug carriers in tumors. Here, we developed a strategy to alter the tumor microenvironment (TME) by upregulating SPARC to enhance the delivery efficiency of albumin-based drug carriers into tumors. We prepared albumin nanoparticles encapsulating an NF-κB controllable CRISPR activation system (SP-NPs). SP-NPs achieved tumor-selective SPARC upregulation by responding to the highly activated NF-κB in tumor cells. Whereas a single dose of SP-NPs only modestly upregulated SPARC expression, serial administration of SP-NPs created a positive feedback loop that induced progressive increases in SPARC expression as well as tumor cell uptake and tumor penetration of the nanoparticles in vitro, in organoids, and in subcutaneous tumors in vivo. Additionally, pre-treatment with SP-NPs significantly enhanced the anti-tumor efficacy of Abraxane, a commercialized albumin-bound paclitaxel nanoformulation. Our data provide evidence that modulating SPARC in the TME can enhance the efficiency of albumin-based drug delivery to solid tumors, which may result in new strategies to increase the efficacy of nanoparticle-based cancer drugs.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xinyuan Zhang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Shanzhao Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Zhiming Cai
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China.
| |
Collapse
|
26
|
Zheng B, Niu L, Xu H, Yang Y, Chen Y, Wang C, Chen W, Huang W. Engineering redirected NF-κB/OIP5 expression programs to enhance tumor responses to chemotherapy in bladder cancer. Sci Bull (Beijing) 2023; 68:3207-3224. [PMID: 37993335 DOI: 10.1016/j.scib.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Nuclear factor kappa-B (NF-κB), a pivotal transcriptional regulator, plays a crucial role in modulating downstream genes implicated in tumor drug resistance. We establish a programmable system within bladder cancer cells to tailor drug responses by employing a synthetic clustered regularly interspaced short palindromic repeats (CRISPR)-based expression strategy that emulates natural transcriptional regulators. Our investigation uncovers the functional significance of Opa-interacting protein 5 (OIP5), upregulated upon NF-κB activation, as a key regulator governing drug-resistance to vincristine (VCR) treatment in bladder cancer. Through engineered guide RNAs (sgRNAs) targeting OIP5 to integrate NF-κB aptamers, we construct a modular scaffold RNA that encodes both the target locus and regulatory functionality. This engineered CRISPR scaffold RNA effectively responds to VCR stimulus by binding with activated NF-κB. Intriguingly, it redirects NF-κB to attenuate OIP5 expression-a reversal of its original role-while concurrently obstructing multiple NF-κB-mediated drug resistance pathways. This dual action thwarts drug resistance development. Further enhancing therapeutic potential, we develop a versatile nanoparticle system capable of co-delivering CRISPR scaffold RNAs and VCR. This synergistic approach demonstrates potent anti-tumor effects in both in vitro and in vivo settings. Our nanoparticle-mediated combination presents a compelling proof-of-concept, showcasing the utility of engineered CRISPR-based synthetic expression programs to reconfigure cellular drug responses and heighten tumor cell susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haibo Xu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China
| | - Chenguang Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China.
| |
Collapse
|
27
|
Barbier I, Kusumawardhani H, Chauhan L, Harlapur PV, Jolly MK, Schaerli Y. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in E. coli: Importance of Equal Guide RNA Binding Affinities to Avoid Context-Dependent Effects. ACS Synth Biol 2023; 12:3064-3071. [PMID: 37813387 PMCID: PMC10594877 DOI: 10.1021/acssynbio.3c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/11/2023]
Abstract
Gene expression control based on clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a powerful approach for constructing synthetic gene circuits. While the use of CRISPR interference (CRISPRi) is already well-established in prokaryotic circuits, CRISPR activation (CRISPRa) is less mature, and a combination of the two in the same circuits is only just emerging. Here, we report that combining CRISPRi with SoxS-based CRISPRa in Escherichia coli can lead to context-dependent effects due to different affinities in the formation of CRISPRa and CRISPRi complexes, resulting in loss of predictable behavior. We show that this effect can be avoided by using the same scaffold guide RNA structure for both complexes.
Collapse
Affiliation(s)
- Içvara Barbier
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| | | | - Lakshya Chauhan
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | | | - Mohit Kumar Jolly
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Yolanda Schaerli
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Wang Y, Liu Y, Wang LL, Zhang QL, Xu L. Integrating Ligands into Nucleic Acid Systems. Chembiochem 2023; 24:e202300292. [PMID: 37401635 DOI: 10.1002/cbic.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Signal transduction from non-nucleic acid ligands (small molecules and proteins) to structural changes of nucleic acids plays a crucial role in both biomedical analysis and cellular regulations. However, how to bridge between these two types of molecules without compromising the expandable complexity and programmability of the nucleic acid nanomachines is a critical challenge. Compared with the previously most widely applied transduction strategies, we review the latest advances of a kinetically controlled approach for ligand-oligonucleotide transduction in this Concept article. This new design works through an intrinsic conformational alteration of the nucleic acid aptamer upon the ligand binding as a governing factor for nucleic acid strand displacement reactions. The functionalities and applications of this transduction system as a ligand converter on biosensing and DNA computation are described and discussed. Furthermore, we propose some potential scenarios for utilization of this ligand transduction design to regulate gene expression through synthetic RNA switches in the cellular contexts. Finally, future perspectives regarding this ligand-oligonucleotide transduction platform are also discussed.
Collapse
Affiliation(s)
- Yang Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, School of Medicine, Shenzhen, 518060, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiu-Long Zhang
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, Fujian, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Bush K, Corsi GI, Yan AC, Haynes K, Layzer JM, Zhou JH, Llanga T, Gorodkin J, Sullenger BA. Utilizing directed evolution to interrogate and optimize CRISPR/Cas guide RNA scaffolds. Cell Chem Biol 2023; 30:879-892.e5. [PMID: 37390831 PMCID: PMC10529641 DOI: 10.1016/j.chembiol.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
CRISPR-based editing has revolutionized genome engineering despite the observation that many DNA sequences remain challenging to target. Unproductive interactions formed between the single guide RNA's (sgRNA) Cas9-binding scaffold domain and DNA-binding antisense domain are often responsible for such limited editing resolution. To bypass this limitation, we develop a functional SELEX (systematic evolution of ligands by exponential enrichment) approach, termed BLADE (binding and ligand activated directed evolution), to identify numerous, diverse sgRNA variants that bind Streptococcus pyogenes Cas9 and support DNA cleavage. These variants demonstrate surprising malleability in sgRNA sequence. We also observe that particular variants partner more effectively with specific DNA-binding antisense domains, yielding combinations with enhanced editing efficiencies at various target sites. Using molecular evolution, CRISPR-based systems could be created to efficiently edit even challenging DNA sequences making the genome more tractable to engineering. This selection approach will be valuable for generating sgRNAs with a range of useful activities.
Collapse
Affiliation(s)
- Korie Bush
- Department of Surgery, Duke University, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA; Moderna Genomics, Cambridge, MA 02139, USA
| | - Giulia I Corsi
- Center for non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; Tessera Therapeutics, Somerville, MA 02143, USA
| | - Amy C Yan
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Keith Haynes
- Department of Information Technology, Midlands Technical College, Columbia, SC 29202, USA
| | | | - Jonathan H Zhou
- Department of Surgery, Duke University, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Telmo Llanga
- Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jan Gorodkin
- Center for non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Wang WJ, Lin J, Wu CQ, Luo AL, Xing X, Xu L. Establishing artificial gene connections through RNA displacement-assembly-controlled CRISPR/Cas9 function. Nucleic Acids Res 2023; 51:7691-7703. [PMID: 37395400 PMCID: PMC10415155 DOI: 10.1093/nar/gkad558] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023] Open
Abstract
Construction of synthetic circuits that can reprogram genetic networks and signal pathways is a long-term goal for manipulation of biosystems. However, it is still highly challenging to build artificial genetic communications among endogenous RNA species due to their sequence independence and structural diversities. Here we report an RNA-based synthetic circuit that can establish regulatory linkages between expression of endogenous genes in both Escherichiacoli and mammalian cells. This design employs a displacement-assembly approach to modulate the activity of guide RNA for function control of CRISPR/Cas9. Our experiments demonstrate the great effectiveness of this RNA circuit for building artificial connections between expression of originally unrelated genes. Both exogenous and naturally occurring RNAs, including small/microRNAs and long mRNAs, are capable of controlling expression of another endogenous gene through this approach. Moreover, an artificial signal pathway inside mammalian cells is also successfully established to control cell apoptosis through our designed synthetic circuit. This study provides a general strategy for constructing synthetic RNA circuits, which can introduce artificial connections into the genetic networks of mammalian cells and alter the cellular phenotypes.
Collapse
Affiliation(s)
- Wei-Jia Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ai-Ling Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University Institution, Guangzhou 510632, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
31
|
Ma X, Zhang Y, Qiao X, Yuan Y, Sheng Q, Yue T. Target-Induced AIE Effect Coupled with CRISPR/Cas12a System Dual-Signal Biosensing for the Ultrasensitive Detection of Gliotoxin. Anal Chem 2023; 95:11723-11731. [PMID: 37493946 DOI: 10.1021/acs.analchem.3c01760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Here, a novel rapid and ultrasensitive aptamer biosensor was designed for target-induced activation of AIE effect and followed by the activation of Crispr Cas12a (LbCpf1)-mediated cleavage to achieve dual-signal detection. The prepared DNA building blocks contain the target aptamer, ssDNA-Fc, and Activator1. In this system, the activation mode was divided into two steps. First, when the target interacts with the aptamers, the DNA building blocks would be disintegrated rapidly, releasing a mass of Ac1, generating ETTC-dsDNA aggregated to produce a fluorescence signal by the AIE effect. Second, with the release of Ac2, LbCpf1-crRNA was activated, which greatly improves the ssDNA-Fc cleavage efficiency to render signal amplification and ultrasensitive detection of the target. Satisfactorily, using this approach to detect gliotoxin, optimal conditions for detection was achieved for reducing the detection time to 55 min, achieving a low detection limit of 2.4 fM and a satisfactory linear in the range of 50 fM to 1 nM, which addressed the shortcoming of a weak electrochemical signal in previous sensors. The water-insoluble AIE material was coupled with DNA to obtain water-soluble ETTC-dsDNA and successfully introduced into the sensor system, with a low detection limit of 5.6 fM. Subsequently, the biosensor combined with handheld electrochemical workstation was successfully applied in the detection of gliotoxin in five actual samples, with a detection range of 32.0 to 2.09 × 108 pM. This strategy not only provides a novel and effective detection platform for mycotoxins in complex food matrices but also opens a promising avenue for various molecules detection in imaging and disease diagnosis.
Collapse
Affiliation(s)
- Xin Ma
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Yu Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| |
Collapse
|
32
|
Wei CT, Popp NA, Peleg O, Powell RL, Borenstein E, Maly DJ, Fowler DM. A chemically controlled Cas9 switch enables temporal modulation of diverse effectors. Nat Chem Biol 2023; 19:981-991. [PMID: 36879061 PMCID: PMC10480357 DOI: 10.1038/s41589-023-01278-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
CRISPR-Cas9 has yielded a plethora of effectors, including targeted transcriptional activators, base editors and prime editors. Current approaches for inducibly modulating Cas9 activity lack temporal precision and require extensive screening and optimization. We describe a versatile, chemically controlled and rapidly activated single-component DNA-binding Cas9 switch, ciCas9, which we use to confer temporal control over seven Cas9 effectors, including two cytidine base editors, two adenine base editors, a dual base editor, a prime editor and a transcriptional activator. Using these temporally controlled effectors, we analyze base editing kinetics, showing that editing occurs within hours and that rapid early editing of nucleotides predicts eventual editing magnitude. We also reveal that editing at preferred nucleotides within target sites increases the frequency of bystander edits. Thus, the ciCas9 switch offers a simple, versatile approach to generating chemically controlled Cas9 effectors, informing future effector engineering and enabling precise temporal effector control for kinetic studies.
Collapse
Affiliation(s)
- Cindy T Wei
- Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Novartis Institutes for BioMedical Research Inc, San Diego, CA, USA
| | - Nicholas A Popp
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Omri Peleg
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Rachel L Powell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elhanan Borenstein
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, NM, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
33
|
Alba Burbano D, Cardiff RAL, Tickman BI, Kiattisewee C, Maranas CJ, Zalatan JG, Carothers JM. Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits. Proc Natl Acad Sci U S A 2023; 120:e2220358120. [PMID: 37463216 PMCID: PMC10374173 DOI: 10.1073/pnas.2220358120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Dynamic, multi-input gene regulatory networks (GRNs) are ubiquitous in nature. Multilayer CRISPR-based genetic circuits hold great promise for building GRNs akin to those found in naturally occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) GRNs. By integrating sequence-based design and in vivo screening, we engineer activatable promoters that achieve up to 1,000-fold dynamic range in an Escherichia coli-based cell-free system. These components enable CRISPRa GRNs that are six layers deep and four branches wide. We show the generalizability of the promoter engineering workflow by improving the dynamic range of the light-dependent EL222 optogenetic system from 6-fold to 34-fold. Additionally, high dynamic range promoters enable CRISPRa systems mediated by small molecules and protein-protein interactions. We apply these tools to build input-responsive CRISPRa/i GRNs, including feedback loops, logic gates, multilayer cascades, and dynamic pulse modulators. Our work provides a generalizable approach for the design of high dynamic range activatable promoters and enables classes of gene regulatory functions in cell-free systems.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
| | - Ryan A. L. Cardiff
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Benjamin I. Tickman
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Cholpisit Kiattisewee
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Cassandra J. Maranas
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Jesse G. Zalatan
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| |
Collapse
|
34
|
Yuan T, Tang H, Xu X, Shao J, Wu G, Cho YC, Ping Y, Liang G. Inflammation conditional genome editing mediated by the CRISPR-Cas9 system. iScience 2023; 26:106872. [PMID: 37260750 PMCID: PMC10227425 DOI: 10.1016/j.isci.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
The specificity of CRISPR-Cas9 in response to particular pathological stimuli remains largely unexplored. Hence, we designed an inflammation-inducible CRISPR-Cas9 system by grafting a sequence that binds with NF-κB to the CRISPR-Cas9 framework, termed NBS-CRISPR. The genetic scissor function of this developed genome-editing tool is activated on encountering an inflammatory attack and is inactivated or minimized in non-inflammation conditions. Furthermore, we employed this platform to reverse inflammatory conditions by targeting the MyD88 gene, a crucial player in the NF-κB signaling pathway, and achieved impressive therapeutic effects. Finally, during inflammation, P65 (RELA) can translocate to the nucleus from the cytoplasm. Herein, to avoid Cas9 leaky DNA cleavage activity i, we constructed an NBS-P65-CRISPR system expressing the Cas9-p65 fusion protein. Our inflammation inducible Cas9-mediated genome editing strategy provides new perspectives and avenues for pathological gene interrogation.
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Shao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Young-Chang Cho
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
35
|
Chingarande RG, Tian K, Kuang Y, Sarangee A, Hou C, Ma E, Ren J, Hawkins S, Kim J, Adelstein R, Chen S, Gillis KD, Gu LQ. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor. Proc Natl Acad Sci U S A 2023; 120:e2108118120. [PMID: 37276386 PMCID: PMC10268594 DOI: 10.1073/pnas.2108118120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Nucleic acids can undergo conformational changes upon binding small molecules. These conformational changes can be exploited to develop new therapeutic strategies through control of gene expression or triggering of cellular responses and can also be used to develop sensors for small molecules such as neurotransmitters. Many analytical approaches can detect dynamic conformational change of nucleic acids, but they need labeling, are expensive, and have limited time resolution. The nanopore approach can provide a conformational snapshot for each nucleic acid molecule detected, but has not been reported to detect dynamic nucleic acid conformational change in response to small -molecule binding. Here we demonstrate a modular, label-free, nucleic acid-docked nanopore capable of revealing time-resolved, small molecule-induced, single nucleic acid molecule conformational transitions with millisecond resolution. By using the dopamine-, serotonin-, and theophylline-binding aptamers as testbeds, we found that these nucleic acids scaffolds can be noncovalently docked inside the MspA protein pore by a cluster of site-specific charged residues. This docking mechanism enables the ion current through the pore to characteristically vary as the aptamer undergoes conformational changes, resulting in a sequence of current fluctuations that report binding and release of single ligand molecules from the aptamer. This nanopore tool can quantify specific ligands such as neurotransmitters, elucidate nucleic acid-ligand interactions, and pinpoint the nucleic acid motifs for ligand binding, showing the potential for small molecule biosensing, drug discovery assayed via RNA and DNA conformational changes, and the design of artificial riboswitch effectors in synthetic biology.
Collapse
Affiliation(s)
- Rugare G. Chingarande
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Kai Tian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Yu Kuang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Aby Sarangee
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Chengrui Hou
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Emily Ma
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Jarett Ren
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sam Hawkins
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Joshua Kim
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Ray Adelstein
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sally Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Kevin D. Gillis
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Li-Qun Gu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| |
Collapse
|
36
|
Kraus C, Sontheimer EJ. Applications of Anti-CRISPR Proteins in Genome Editing and Biotechnology. J Mol Biol 2023; 435:168120. [PMID: 37100169 DOI: 10.1016/j.jmb.2023.168120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
In the ten years since the discovery of the first anti-CRISPR (Acr) proteins, the number of validated Acrs has expanded rapidly, as has our understanding of the diverse mechanisms they employ to suppress natural CRISPR-Cas immunity. Many, though not all, function via direct, specific interaction with Cas protein effectors. The abilities of Acr proteins to modulate the activities and properties of CRISPR-Cas effectors have been exploited for an ever-increasing spectrum of biotechnological uses, most of which involve the establishment of control over genome editing systems. This control can be used to minimize off-target editing, restrict editing based on spatial, temporal, or conditional cues, limit the spread of gene drive systems, and select for genome-edited bacteriophages. Anti-CRISPRs have also been developed to overcome bacterial immunity, facilitate viral vector production, control synthetic gene circuits, and other purposes. The impressive and ever-growing diversity of Acr inhibitory mechanisms will continue to allow the tailored applications of Acrs.
Collapse
Affiliation(s)
| | - Erik J Sontheimer
- RNA Therapeutics Institute; Program in Molecular Medicine, and; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Han YH, Kim G, Seo SW. Programmable synthetic biology tools for developing microbial cell factories. Curr Opin Biotechnol 2023; 79:102874. [PMID: 36610368 DOI: 10.1016/j.copbio.2022.102874] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Microbial conversion to generate value-added chemicals from diverse biomass is one of the keystones of energy biotechnology. Programmable synthetic biology tools offer versatile, standardized options for developing microbial cell factories. These tools thus can be reprogrammed in a user-defined manner for flexible wiring of stimuli and response, highly efficient genome engineering, and extensive perturbation of metabolic flux and genetic circuits. They also can be modularly assembled to construct elaborate and unprecedented biological systems with unique features. This review highlights recent advances in programmable synthetic biology tools based on biosensors, CRISPR-Cas, and RNA devices for developing microbial cell factories that have the potential to be utilized for energy biotechnology.
Collapse
Affiliation(s)
- Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Giho Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
38
|
Wang T, Hellmer H, Simmel FC. Genetic switches based on nucleic acid strand displacement. Curr Opin Biotechnol 2023; 79:102867. [PMID: 36535150 DOI: 10.1016/j.copbio.2022.102867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Toehold-mediated strand displacement (TMSD) is an isothermal switching process that enables the sequence-programmable and reversible conversion of DNA or RNA strands between single- and double-stranded conformations or other secondary structures. TMSD processes have already found widespread application in DNA nanotechnology, where they are used to drive DNA-based molecular devices or for the realization of synthetic biochemical computing circuits. Recently, researchers have started to employ TMSD also for the control of RNA-based gene regulatory processes in vivo, in particular in the context of synthetic riboregulators and conditional guide RNAs for CRISPR/Cas. Here, we provide a review over recent developments in this emerging field and discuss the opportunities and challenges for such systems in in vivo applications.
Collapse
Affiliation(s)
- Tianhe Wang
- Physics of Synthetic Biological Systems - E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Henning Hellmer
- Physics of Synthetic Biological Systems - E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Friedrich C Simmel
- Physics of Synthetic Biological Systems - E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany.
| |
Collapse
|
39
|
Sun YJ, Chen WD, Liu J, Li JJ, Zhang Y, Cai WQ, Liu L, Tang XJ, Hou J, Wang M, Cheng L. A Conformational Restriction Strategy for the Control of CRISPR/Cas Gene Editing with Photoactivatable Guide RNAs. Angew Chem Int Ed Engl 2023; 62:e202212413. [PMID: 36453982 DOI: 10.1002/anie.202212413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The CRISPR/Cas system is one of the most powerful tools for gene editing. However, approaches for precise control of genome editing and regulatory events are still desirable. Here, we report the spatiotemporal and efficient control of CRISPR/Cas9- and Cas12a-mediated editing with conformationally restricted guide RNAs (gRNAs). This approach relied on only two or three pre-installed photo-labile substituents followed by an intramolecular cyclization, representing a robust synthetic method in comparison to the heavily modified linear gRNAs that often require extensive screening and time-consuming optimization. This tactic could direct the precise cleavage of the genes encoding green fluorescent protein (GFP) and the vascular endothelial growth factor A (VEGFA) protein within a predefined cutting region without notable editing leakage in live cells. We also achieved light-mediated myostatin (MSTN) gene editing in embryos, wherein a new bow-knot-type gRNA was constructed with excellent OFF/ON switch efficiency. Overall, our work provides a significant new strategy in CRISPR/Cas editing with modified circular gRNAs to precisely manipulate where and when genes are edited.
Collapse
Affiliation(s)
- Ying-Jie Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen-Da Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Liu
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun-Jin Li
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei-Qi Cai
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Jing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ming Wang
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Jiang W, Aman R, Ali Z, Mahfouz M. Bio-SCAN V2: A CRISPR/dCas9-based lateral flow assay for rapid detection of theophylline. Front Bioeng Biotechnol 2023; 11:1118684. [PMID: 36741753 PMCID: PMC9893010 DOI: 10.3389/fbioe.2023.1118684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Rapid, specific, and robust diagnostic strategies are needed to develop sensitive biosensors for small molecule detection, which could aid in controlling contamination and disease transmission. Recently, the target-induced collateral activity of Cas nucleases [clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases] was exploited to develop high-throughput diagnostic modules for detecting nucleic acids and small molecules. Here, we have expanded the diagnostic ability of the CRISPR-Cas system by developing Bio-SCAN V2, a ligand-responsive CRISPR-Cas platform for detecting non-nucleic acid small molecule targets. The Bio-SCAN V2 consists of an engineered ligand-responsive sgRNA (ligRNA), biotinylated dead Cas9 (dCas9-biotin), 6-carboxyfluorescein (FAM)-labeled amplicons, and lateral flow assay (LFA) strips. LigRNA interacts with dCas9-biotin only in the presence of sgRNA-specific ligand molecules to make a ribonucleoprotein (RNP). Next, the ligand-induced ribonucleoprotein is exposed to FAM-labeled amplicons for binding, and the presence of the ligand (small molecule) is detected as a visual signal [(dCas9-biotin)-ligRNA-FAM labeled DNA-AuNP complex] at the test line of the lateral flow assay strip. With the Bio-SCAN V2 platform, we are able to detect the model molecule theophylline with a limit of detection (LOD) up to 2 μM in a short time, requiring only 15 min from sample application to visual readout. Taken together, Bio-SCAN V2 assay provides a rapid, specific, and ultrasensitive detection platform for theophylline.
Collapse
|
41
|
Huang X, Wang M, Wu X, Zou Y, Xu J, Cao C, Ma Q, Yu B, Liu Y, Gui Y. Screening DNA aptamers that control the DNA cleavage, homology-directed repair, and transcriptional regulation of the CRISPR-(d)Cas9 system. Mol Ther 2023; 31:260-268. [PMID: 36245127 PMCID: PMC9840146 DOI: 10.1016/j.ymthe.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Accurate genome editing based on various molecular tools has always been the focus of gene-editing research and the primary goal for therapeutic application. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a well-established gene-editing method that is preferred due to its simplicity and high efficiency. In this study, a group of single-stranded DNA aptamers with high affinity and high specificity for the Cas9 protein were obtained by the systematic evolution of ligands through the exponential enrichment method. Their binding affinity and possible binding domains to the Cas9 protein were analyzed. In addition, we demonstrated the effectiveness of aptamers in regulating dCas9-modulated gene transcription, in terms of both transcriptional activation and repression. Additionally, the aptamers successfully reduced the off-target effect and improved the efficiency of gene homologous recombination repair mediated by CRISPR-Cas9. The findings suggest a potential method to better control precise gene editing and enrich the diversity of modulating tools for the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China; Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Mingxia Wang
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xia Wu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yanfen Zou
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jinming Xu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China.
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China.
| |
Collapse
|
42
|
Gao J, Liu H, Zhang Z, Liang Z. Establishment, optimization, and application of genetic technology in Aspergillus spp. Front Microbiol 2023; 14:1141869. [PMID: 37025635 PMCID: PMC10071863 DOI: 10.3389/fmicb.2023.1141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Zhihong Liang,
| |
Collapse
|
43
|
Cai W, Liu J, Chen X, Mao L, Wang M. Orthogonal Chemical Activation of Enzyme-Inducible CRISPR/Cas9 for Cell-Selective Genome Editing. J Am Chem Soc 2022; 144:22272-22280. [PMID: 36367552 DOI: 10.1021/jacs.2c10545] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The precision and therapeutic potential of CRISPR/Cas9 genome editing are greatly challenged by the less control over Cas9-mediated DNA cleavage. Herein, we introduce a conditional and cell-selective genome editing system controlled by disease-associated enzymes, termed enzyme-inducible CRISPR (eiCRISPR). eiCRISPR comprises Cas9 protein, a self-blocked inactive single-guide RNA (bsgRNA), and a chemically caged deoxyribozyme (DNAzyme) that activates bsgRNA and eiCRISPR in a controllable manner. We design chemical modifications of DNAzyme to suppress its ability to cleave the blocking region of bsgRNA, while the decaging of DNAzyme triggered by the tumor cell-overexpressed enzyme, for instance, NAD(P)H:quinone oxidoreductase (NQO1), restores the activity of bsgRNA and switches on eiCRISPR selectively for genome editing in cancer cells. Moreover, using a biodegradable lipid nanoparticle to deliver eiCRISPR in a tumor-bearing xenograft, we show that the in vivo activation of eiCRISPR enables the editing of human papillomavirus 18 E6 for potential cancer therapy. The strategy of postsynthetic and site-specific modification of DNAzyme is compatible with endogenous chemistries for regulating eiCRISPR for cell-selective genome editing and targeted gene therapy.
Collapse
Affiliation(s)
- Weiqi Cai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Siddiqui M, Tous C, Wong WW. Small molecule-inducible gene regulatory systems in mammalian cells: progress and design principles. Curr Opin Biotechnol 2022; 78:102823. [PMID: 36332343 PMCID: PMC9951109 DOI: 10.1016/j.copbio.2022.102823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022]
Abstract
Small molecule-inducible gene circuits are some of the most important tools in biology because they provide a convenient way to exert precise regulation of biological systems. These systems typically are designed to govern gene activation, repression, or disruption at multiple levels, such as through genome modification, transcription, translation, or post-translational regulation of protein activity. Due to their importance, many new systems have been created in the past few years to address different needs or afford orthogonality. They can be broadly characterized based on the inducer used, the mode of regulation, and the effector protein enabling the regulation. Furthermore, each synthetic circuit has varying performance metrics and design considerations. Here, we provide a concise comparison of recently developed tools and recommend standardized metrics for evaluating their performance and potential as biological interrogators or therapeutics.
Collapse
Affiliation(s)
- Menna Siddiqui
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Cristina Tous
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Liu X, Cui S, Qi Q, Lei H, Zhang Y, Shen W, Fu F, Tian T, Zhou X. G-quadruplex-guided RNA engineering to modulate CRISPR-based genomic regulation. Nucleic Acids Res 2022; 50:11387-11400. [PMID: 36263801 PMCID: PMC9638906 DOI: 10.1093/nar/gkac870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022] Open
Abstract
It is important to develop small moelcule-based methods to modulate gene editing and expression in human cells. The roles of the G-quadruplex (G4) in biological systems have been widely studied. Here, G4-guided RNA engineering is performed to generate guide RNA with G4-forming units (G4-gRNA). We further demonstrate that chemical targeting of G4-gRNAs holds promise as a general approach for modulating gene editing and expression in human cells. The rich structural diversity of RNAs offers a reservoir of targets for small molecules to bind, thus creating the potential to modulate RNA biology.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Shuangyu Cui
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Huajun Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yutong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
46
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
47
|
Pelea O, Fulga TA, Sauka-Spengler T. RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and Potential Applications. CRISPR J 2022; 5:642-659. [PMID: 36206027 PMCID: PMC9618385 DOI: 10.1089/crispr.2022.0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/17/2022] [Indexed: 01/31/2023] Open
Abstract
CRISPR-Cas9 has emerged as a major genome manipulation tool. As Cas9 can cause off-target effects, several methods for controlling the expression of CRISPR systems were developed. Recent studies have shown that CRISPR activity could be controlled by sensing expression levels of endogenous transcripts. This is particularly interesting, as endogenous RNAs could harbor important information about the cell type, disease state, and environmental challenges cells are facing. Single-guide RNA (sgRNA) engineering played a major role in the development of RNA-responsive CRISPR systems. Following further optimizations, RNA-responsive sgRNAs could enable the development of novel therapeutic and research applications. This review introduces engineering strategies that could be employed to modify Streptococcus pyogenes sgRNAs with a focus on recent advances made toward the development of RNA-responsive sgRNAs. Future directions and potential applications of these technologies are also discussed.
Collapse
Affiliation(s)
- Oana Pelea
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
| | - Tudor A. Fulga
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
48
|
Shin S, Jang S, Lim D. Small Molecules for Enhancing the Precision and Safety of Genome Editing. Molecules 2022; 27:6266. [PMID: 36234804 PMCID: PMC9573751 DOI: 10.3390/molecules27196266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome-editing technologies have revolutionized biology, biotechnology, and medicine, and have spurred the development of new therapeutic modalities. However, there remain several barriers to the safe use of CRISPR technologies, such as unintended off-target DNA cleavages. Small molecules are important resources to solve these problems, given their facile delivery and fast action to enable temporal control of the CRISPR systems. Here, we provide a comprehensive overview of small molecules that can precisely modulate CRISPR-associated (Cas) nucleases and guide RNAs (gRNAs). We also discuss the small-molecule control of emerging genome editors (e.g., base editors) and anti-CRISPR proteins. These molecules could be used for the precise investigation of biological systems and the development of safer therapeutic modalities.
Collapse
Affiliation(s)
- Siyoon Shin
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| | - Seeun Jang
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| | - Donghyun Lim
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| |
Collapse
|
49
|
Ji H, Xiong W, Zhang K, Tian T, Zhou X. Hydrogen Peroxide-triggered Chemical Strategy for Controlling CRISPR systems. Chem Asian J 2022; 17:e202200214. [PMID: 35483968 DOI: 10.1002/asia.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
The function of the CRISPR system can be conditionally controlled through rationally guided RNA engineering such that the target sequences can be precisely selected and manipulated. In particular, gRNA, as an important component of the CRISPR system, provides a unique tool for multifunctional control of the system based on the structure of the RNA itself. Therefore, we introduced here a protective group on the 2'-OH position of RNA to inhibit RNA-guided nucleic acid cleavage. Next, the modified gRNA can restore its original function under the chemical stimulation of hydrogen peroxide to realize the control of the CRISPR system. The experiment result demonstrated that the operating mechanism of this strategy may be based on chemical modifications that reduce the number of complementary base pairs between RNAs and targets, and the RNA-protein interaction. This further enriches the toolbox of conditional control of CRISPR function and has broad potential for gene editing in living cells and disease treatment using endogenous hydrogen peroxide.
Collapse
Affiliation(s)
- Huimin Ji
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Wei Xiong
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Kaisong Zhang
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Tian Tian
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Xiang Zhou
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| |
Collapse
|
50
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|