1
|
Yan Y, Li C, Jie Q, Zhang J, Liu Y, Li Y, Cui D, Hua D, Huang J. 3β-hydroxysteroid-Δ24 reductase integrates cholesterol metabolism and innate immune to promote PRRSV replication. Int J Biol Macromol 2025; 309:142867. [PMID: 40203946 DOI: 10.1016/j.ijbiomac.2025.142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Cholesterol metabolism is a strategy used by PRRSV to inhibit host antiviral innate immunity. However, the key enzymes or the natural products and mechanisms involved have not been well elucidated. Here, we show that PRRSV infection upregulated DHCR24, the rate-limiting enzyme in the cholesterol synthesis pathway, to increase virus proliferation. We further elucidated that PRRSV Nsp4 interacts with the FAD domain of DHCR24, promoting its expression and increasing cellular cholesterol levels. In addition, U18666A treatment inhibited DHCR24 enzyme activity, significantly reduced cell cholesterol content and PRRSV replication, and exogenous cholesterol supplementation could rescued this effect. We also found that DHCR24 is a negative regulator of type I interferon (IFN-I) production upon viral infection. Mechanistically, DHCR24 interacts with TBK1 and disrupts the interaction of TBK1-IRF3, thereby inhibiting IRF3 phosphorylation and nuclear translocation. Taken together, these findings elucidate that DHCR24 is utilized by PRRSV to regulate host cholesterol content, inhibit the innate immune response, and promote virus proliferation.
Collapse
Affiliation(s)
- Yuchao Yan
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Changyan Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Qun Jie
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Junyang Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yijia Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yong Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Daqing Cui
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Deping Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Miao W, Li N, Chen JQ, Wu JL. Composition-dependent MRM transitions and structure-indicative elution segments (CMTSES)-based LC-MS strategy for disaccharide profiling and isomer differentiation. Anal Chim Acta 2025; 1337:343562. [PMID: 39800516 DOI: 10.1016/j.aca.2024.343562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Carbohydrates exhibit diverse functions and extensive biological activities and are notable in the field of life sciences. However, their inherent diversity and complexity-steaming from variations in isomeric monomers, glycosidic bonds, configurations, etc.-present considerable challenges in structural analysis. Considering these challenges, the disaccharide building blocks with simpler structures could provide more structural information. Although various approaches have been explored, sufficient standards or specialized equipment are required to differentiate and characterize isomers. Therefore, a strategy that addresses these challenges is urgently needed. RESULTS A Composition-dependent MRM Transitions and Structure-indicative Elution Segments (CMTSES)-based liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS) strategy was developed to comprehensively profile disaccharide units and differentiate isomers. First, the composition-related precursor and structure-specific product ions of disaccharides were generated by QQQ-MS. Thereout, MRM transitions were proposed to enable the comprehensive profiling of disaccharides and rapid annotation of their compositions and saccharide types at both termini. Next, the linkage, composition, and configuration isomers of disaccharides were effectively differentiated and presented characteristic LC elution. Furthermore, low-cost and available "location references" (mannose, galactose, and isomaltose) were sought to define structure-indicative elution segments for the identification of isomeric hexose disaccharides. Building on this foundation, the novel CMTSES-based LC-MS strategy was designed, and its feasibility was further verified by successfully differentiating and identifying mixed homogenous and/or heterogenous disaccharide isomers in real samples. Sufficient structural information was obtained even for those consisting of diversified monomer types. SIGNIFICANCE AND NOVELTY This strategy comprehensively profiles both major and minor disaccharides and effectively differentiates multiple types of isomers. The use of readily available "location references" facilitated the identification of isomeric hexose disaccharide with reduced dependence on standards, thereby broadening the applicability of this strategy. However, the characterization of disaccharides with other compositions is challenging. Further in-depth investigations into intramolecular hydrogen bond simulation should provide solutions. Additionally, CMTSES-based LC-MS strategy is promising to analyze complex structures and samples.
Collapse
Affiliation(s)
- Wen Miao
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Na Li
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Jia-Qian Chen
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian-Lin Wu
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
3
|
Yin X, Wang L, Niu Y, Xie D, Zhang Q, Xiao J, Dong L, Wang C. Unmasking Chemokine-Inducing Specificity in Oligosaccharide Biomaterial to Promote Hair Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304655. [PMID: 37567583 DOI: 10.1002/adma.202304655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Hair loss affects over 50 million people worldwide with limited therapeutic options. Despite evidence highlighting the vital role of local immune cells in regulating the life cycle of hair follicles (HFs), accurate regulation of immunocytes to directly promote hair growth remains unachieved. Here, inspired by the physiological feedback in the skin immunity to suppress microbe-triggered inflammation, an oligosaccharide biomaterial with "unmasked" specific activity is developed to recruit regulatory T (Treg ) cells around HFs, leading to accelerated hair growth in mice. By processing the glucomannan polysaccharide via controllable enzymatic cleavage, a series of oligosaccharide fractions with more specific chemokine-inducing functions is obtained. Notably, a hexasaccharide-based fraction (OG6) stimulates macrophages to selectively express Treg -chemoattractant C-C Motif Chemokine Ligand 5 (CCL5) through a mannose receptor-mediated endocytosis and NOD1/2-dependent signaling, as evidenced by molecular docking, inhibition assays, and a Foxp3-reporter mouse model. Intradermal delivery of OG6 to the depilated mouse skin promotes Treg mobilization around HFs and stimulates de novo regeneration of robust hairs. This study demonstrates that unmasking precise immunomodulatory functions in oligosaccharides from their parental polysaccharide can potentially solve the long-lasting dilemma with polysaccharide biomaterials that are widely renowned for versatile activities yet high heterogeneity, opening new avenues to designing glycan-based therapeutic tools with improved specificity and safety.
Collapse
Affiliation(s)
- Xiaoyu Yin
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lintao Wang
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiming Niu
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Qingwen Zhang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei Dong
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- National Resource Center For Mutant Mice, Nanjing, 210023, China
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Hengqin, 519000, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
4
|
Keenan T, Hatton NE, Porter J, Vendeville JB, Wheatley DE, Ghirardello M, Wahart AJC, Ahmadipour S, Walton J, Galan MC, Linclau B, Miller GJ, Fascione MA. Reverse thiophosphorylase activity of a glycoside phosphorylase in the synthesis of an unnatural Manβ1,4GlcNAc library. Chem Sci 2023; 14:11638-11646. [PMID: 37920340 PMCID: PMC10619541 DOI: 10.1039/d3sc04169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jack Porter
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alice J C Wahart
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Julia Walton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Department of Organic and Macromolecular Chemistry, Ghent University Campus Sterre, Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
5
|
Hassan AA, Huang ML. Stereoselective synthesis of photoactivatable Man(β1,4)GlcNAc-based bioorthogonal probes. Tetrahedron Lett 2023; 122:154521. [PMID: 37274137 PMCID: PMC10237449 DOI: 10.1016/j.tetlet.2023.154521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report an operationally facile protocol to prepare photoactivatable probes of the bioactive mammalian disaccharide, Man(β1,4)GlcNAc. Using conformationally restricted mannosyl hemi-acetal donors in a one-pot chlorination, iodination and glycosylation sequence, β-mannosides were generated in excellent diastereoselectivities and yields. Upon accessing the disaccharide, we generated the corresponding photoactivatable probes by appending a diazirine-alkyne equipped linker via a condensation reaction between a diazirine-containing linker and C-1 and C-2 derivatized mannosylamines to furnish the desired C-1 and C-2 modified Man(β1,4)GlcNAc-based probes. This new synthetic protocol greatly simplifies the preparation of this important bioactive disaccharide to enable future work to identify its protein binding partners in cells.
Collapse
Affiliation(s)
- Abdullah A. Hassan
- Department of Molecular Medicine and Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Mia L. Huang
- Department of Molecular Medicine and Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
6
|
Fang L, Ying S, Xu X, Wu D. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Clin Exp Immunol 2023; 211:193-207. [PMID: 36745566 PMCID: PMC10038326 DOI: 10.1093/cei/uxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The N-terminal domain of Three Prime Repair Exonuclease 1 (TREX1) is catalytically active and can degrade dsDNA or ssDNA in the cytosol, whereas the C-terminal domain is primarily involved in protein localization. TREX1 deficiency induces cytosolic DNA accumulation as well as activation of the cGAS-STING-IFN signaling pathway, which results in tissue inflammation and autoimmune diseases. Furthermore, TREX1 expression in cancer immunity can be adaptively regulated to promote tumor proliferation, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xi Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Convergent synthesis of oligomannose-type glycans via step-economical construction of branch structures. Carbohydr Res 2023; 525:108764. [PMID: 36812846 DOI: 10.1016/j.carres.2023.108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Oligomannose-type glycans on glycoproteins are important signaling molecules in the glycoprotein quality control system in the endoplasmic reticulum. Recently, free oligomannose-type glycans generated by the hydrolysis of glycoproteins or dolichol pyrophosphate-linked oligosaccharides were recognized as important signals for immunogenicity. Hence, there is a high demand for pure oligomannose-type glycans for biochemical experiments; however, the chemical synthesis of glycans to achieve high-concentration products is laborious. In this study, we demonstrate a simple and efficient synthetic strategy for oligomannose-type glycans. Sequential regioselective α-mannosylation at the C-3 and C-6 positions of 2,3,4,6-unprotected galactose residues in galactosylchitobiose derivatives was demonstrated. Subsequently, the inversion of the configuration of the two hydroxy groups at the C-2 and C-4 positions of the galactose moiety was successfully carried out. This synthetic route reduces the number of the protection-deprotection reactions and is suitable for constructing different branching patterns of oligomannose-type glycans, such as M9, M5A, and M5B.
Collapse
|
8
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
9
|
The Microtubule Destabilizer Eribulin Synergizes with STING Agonists to Promote Antitumor Efficacy in Triple-Negative Breast Cancer Models. Cancers (Basel) 2022; 14:cancers14235962. [PMID: 36497445 PMCID: PMC9740651 DOI: 10.3390/cancers14235962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Eribulin is a microtubule destabilizer used in the treatment of triple-negative breast cancer (TNBC). Eribulin and other microtubule targeted drugs, such as the taxanes, have shared antimitotic effects, but differ in their mechanism of microtubule disruption, leading to diverse effects on cellular signaling and trafficking. Herein, we demonstrate that eribulin is unique from paclitaxel in its ability to enhance expression of the immunogenic cytokine interferon beta (IFNβ) in combination with STING agonists in both immune cells and TNBC models, including profound synergism with ADU-S100 and E7766, which are currently undergoing clinical trials. The mechanism by which eribulin enhances STING signaling is downstream of microtubule disruption and independent of the eribulin-dependent release of mitochondrial DNA. Eribulin did not override the requirement of ER exit for STING activation and did not inhibit subsequent STING degradation; however, eribulin significantly enhanced IRF3 phosphorylation and IFNβ production downstream of the RNA sensing pathway that converges on this transcription factor. Additionally, we found that eribulin enhanced the population of activated CD4+ T-cells in vivo when combined with either a STING agonist or tumor, demonstrating the ability to function as an immune adjuvant. We further interrogated the combination of eribulin with ADU-S100 in the MMTV-PyVT spontaneous murine mammary tumor model where we observed significant antitumor efficacy with combination treatment. Together, our findings demonstrate that microtubule targeted chemotherapeutics have distinct immunological effects and that eribulin's ability to enhance innate immune sensing pathways supports its use in combination with immunotherapies, such as STING agonists, for the more effective treatment of TNBC and other malignancies.
Collapse
|
10
|
Hassan AA, Wozniak JM, Vilen Z, Li W, Jadhav A, Parker CG, Huang ML. Chemoproteomic mapping of human milk oligosaccharide (HMO) interactions in cells. RSC Chem Biol 2022; 3:1369-1374. [PMID: 36544572 PMCID: PMC9709932 DOI: 10.1039/d2cb00176d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a family of unconjugated soluble glycans found in human breast milk that exhibit a myriad of biological activity. While recent studies have uncovered numerous biological functions for HMOs (antimicrobial, anti-inflammatory & probiotic properties), the receptors and protein binding partners involved in these processes are not well characterized. This can be attributed largely in part to the low affinity and transient nature of soluble glycan-protein interactions, precluding the use of traditional characterization techniques to survey binding partners in live cells. Here, we present the use of synthetic photoactivatable HMO probes to capture, enrich and identify HMO protein targets in live cells using mass spectrometry-based chemoproteomics. Following initial validation studies using purified lectins, we profiled the targets of HMO probes in live mouse macrophages. Using this strategy, we mapped hundreds of HMO binding partners across multiple cellular compartments, including many known glycan-binding proteins as well as numerous proteins previously not known to bind glycans. We expect our findings to inform future investigations of the diverse roles of how HMOs may regulate protein function.
Collapse
Affiliation(s)
- Abdullah A Hassan
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Jacob M Wozniak
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Zak Vilen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Weichao Li
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Appaso Jadhav
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Christopher G Parker
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| |
Collapse
|
11
|
Impact of Multiple Sclerosis Risk Polymorphism rs7665090 on MANBA Activity, Lysosomal Endocytosis, and Lymphocyte Activation. Int J Mol Sci 2022; 23:ijms23158116. [PMID: 35897697 PMCID: PMC9331056 DOI: 10.3390/ijms23158116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Deficiencies in Mannosidase β (MANBA) are associated with neurological abnormalities and recurrent infections. The single nucleotide polymorphism located in the 3′UTR of MANBA, rs7665090, was found to be associated with multiple sclerosis (MS) susceptibility. We aimed to study the functional impact of this polymorphism in lymphocytes isolated from MS patients and healthy controls. A total of 152 MS patients and 112 controls were genotyped for rs7665090. MANBA mRNA expression was quantified through qPCR and MANBA enzymatic activity was analyzed. Upon phytohemagglutinin stimulation, immune activation was evaluated by flow cytometry detection of CD69, endocytic function, and metabolic rates with Seahorse XFp Analyzer, and results were stratified by variation in rs7665090. A significantly reduced gene expression (p < 0.0001) and enzymatic activity (p = 0.018) of MANBA were found in lymphocytes of MS patients compared to those of controls. The rs7665090*GG genotype led to a significant β-mannosidase enzymatic deficiency correlated with lysosomal dysfunction, as well as decreased metabolic activation in lymphocytes of MS patients compared to those of rs7665090*GG controls. In contrast, lymphocytes of MS patients and controls carrying the homozygous AA genotype behaved similarly. Our work provides new evidence highlighting the impact of the MS-risk variant, rs7665090, and the role of MANBA in the immunopathology of MS.
Collapse
|
12
|
Liu Y, Kuai S, Ding M, Wang Z, Zhao L, Zhao P. Dexmedetomidine and Ketamine Attenuated Neuropathic Pain Related Behaviors via STING Pathway to Induce ER-Phagy. Front Synaptic Neurosci 2022; 14:891803. [PMID: 35645765 PMCID: PMC9136071 DOI: 10.3389/fnsyn.2022.891803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work indicated that ER-phagy level had altered in spinal nerve ligation (SNL) rats. In this study, we investigated whether dexmedetomidine or ketamine exhibits anti-anxiety or anti-nociceptive effects via modulation of the spinal STING/TBK pathway to alter ER-phagy in SNL rats. We evaluated the analgesic and anti-anxiety effects of ketamine and dexmedetomidine in SNL rats. 2’3’-cGAMP (a STING pathway agonist) was administrated to investigate whether enhanced spinal STING pathway activation could inhibit dexmedetomidine or ketamine treatment effects in SNL rats. Analgesic effects were assessed with the mechanical withdrawal threshold (MWT) and anti-anxiety effects were measured via an open field test (OFT). Protein expression levels were evaluated by immunoblotting. Distribution and cellular localization of Grp78 (ER stress marker) were evaluated by confocal immunofluorescence. SNL induced mechanical hypersensitivity and anxiety in rats; dexmedetomidine and ketamine both provided analgesia and anti-anxiety effects in SNL rats. Furthermore, the STING pathway was involved in the modulation of ER stress and ER-phagy in SNL rats and dexmedetomidine and ketamine alleviated ER stress by inhibiting STING pathway to enhance ER-phagy. Thus, both ketamine and dexmedetomidine provided anti-anxiety and anti-nociceptive effects by alleviating ER stress through the inhibition of the STING/TBK pathway to modulate spinal ER-phagy in SNL rats.
Collapse
Affiliation(s)
- Yongda Liu
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shihui Kuai
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengmeng Ding
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhibin Wang
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Limei Zhao Ping Zhao
| | - Ping Zhao
- Department of Anesthesiology and Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Limei Zhao Ping Zhao
| |
Collapse
|
13
|
Harapas CR, Idiiatullina E, Al-Azab M, Hrovat-Schaale K, Reygaerts T, Steiner A, Laohamonthonkul P, Davidson S, Yu CH, Booty L, Masters SL. Organellar homeostasis and innate immune sensing. Nat Rev Immunol 2022; 22:535-549. [PMID: 35197578 DOI: 10.1038/s41577-022-00682-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
A cell is delimited by numerous borders that define specific organelles. The walls of some organelles are particularly robust, such as in mitochondria or endoplasmic reticulum, but some are more fluid such as in phase-separated stress granules. Either way, all organelles can be damaged at times, leading their contents to leak out into the surrounding environment. Therefore, an elegant way to construct an innate immune defence system is to recognize host molecules that do not normally reside within a particular compartment. Here, we provide several examples where organellar homeostasis is lost, leading to the activation of a specific innate immune sensor; these include NLRP3 activation owing to a disrupted trans-Golgi network, Pyrin activation due to cytoskeletal damage, and cGAS-STING activation following the leakage of nuclear or mitochondrial DNA. Frequently, organelle damage is observed downstream of pathogenic infection but it can also occur in sterile settings as associated with auto-inflammatory disease. Therefore, understanding organellar homeostasis is central to efforts that will identify new innate immune pathways, and therapeutics that balance organellar homeostasis, or target the breakdown pathways that trigger innate immune sensors, could be useful treatments for infection and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Elina Idiiatullina
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Mahmoud Al-Azab
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lee Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, UK
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. .,Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Mohr L, Toufektchan E, von Morgen P, Chu K, Kapoor A, Maciejowski J. ER-directed TREX1 limits cGAS activation at micronuclei. Mol Cell 2021; 81:724-738.e9. [PMID: 33476576 PMCID: PMC7897315 DOI: 10.1016/j.molcel.2020.12.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Micronuclei are aberrant nuclear compartments that can form as a result of chromosome mis-segregation. Frequent loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and immune activation. Here, we use micronuclei purification to show that the endoplasmic reticulum (ER)-associated nuclease TREX1 inhibits cGAS activation at micronuclei by degrading micronuclear DNA upon micronuclear envelope rupture. We demonstrate that the ER accesses ruptured micronuclei and plays a critical role in enabling TREX1 nucleolytic attack. TREX1 mutations, previously implicated in immune disease, untether TREX1 from the ER, disrupt TREX1 localization to micronuclei, diminish micronuclear DNA damage, and enhance cGAS activation. These results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER tethering in preventing autoimmunity.
Collapse
Affiliation(s)
- Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick von Morgen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kevan Chu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aakanksha Kapoor
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
Liao W, Du C, Wang J. The cGAS-STING Pathway in Hematopoiesis and Its Physiopathological Significance. Front Immunol 2020; 11:573915. [PMID: 33329537 PMCID: PMC7734179 DOI: 10.3389/fimmu.2020.573915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cytosolic DNA sensing is a fundamental mechanism by which organisms handle various stresses, including infection and genotoxicity. The hematopoietic system is sensitive to stresses, and hematopoietic changes are often rapid and the first response to stresses. Based on the transcriptome database, cytosolic DNA sensing pathways are widely expressed in the hematopoietic system, and components of these pathways may be expressed at even higher levels in hematopoietic stem and progenitor cells (HSPCs) than in their certain progeny immune cells. Recent studies have described a previously unrecognized role for cytosolic DNA sensing pathways in the regulation of hematopoiesis under both homeostatic and stress conditions. In particular, the recently discovered cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical modulator of hematopoiesis. Perturbation of the cGAS-STING pathway in HSPCs may be involved in the pathogenesis of hematopoietic disorders, autoimmune diseases, and inflammation-related diseases and may be candidate therapeutic targets. In this review, we focus on the recent findings of the cGAS-STING pathway in the regulation of hematopoiesis, and its physiopathological significance including its implications in diseases and therapeutic potential.
Collapse
Affiliation(s)
- Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Wang X, Caffrey-Carr AK, Liu KW, Espinosa V, Croteau W, Dhingra S, Rivera A, Cramer RA, Obar JJ. MDA5 Is an Essential Sensor of a Pathogen-Associated Molecular Pattern Associated with Vitality That Is Necessary for Host Resistance against Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 205:3058-3070. [PMID: 33087405 DOI: 10.4049/jimmunol.2000802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
RIG-I-like receptors (RLR) are cytosolic RNA sensors that signal through the MAVS adaptor to activate IFN responses against viruses. Whether the RLR family has broader effects on host immunity against other pathogen families remains to be fully explored. In this study, we demonstrate that MDA5/MAVS signaling was essential for host resistance against pulmonary Aspergillus fumigatus challenge through the regulation of antifungal leukocyte responses in mice. Activation of MDA5/MAVS signaling was driven by dsRNA from live A. fumigatus serving as a key vitality-sensing pattern recognition receptor. Interestingly, induction of type I IFNs after A. fumigatus challenge was only partially dependent on MDA5/MAVS signaling, whereas type III IFN expression was entirely dependent on MDA5/MAVS signaling. Ultimately, type I and III IFN signaling drove the expression of CXCL10. Furthermore, the MDA5/MAVS-dependent IFN response was critical for the induction of optimal antifungal neutrophil killing of A. fumigatus spores. In conclusion, our data broaden the role of the RLR family to include a role in regulating antifungal immunity against A. fumigatus.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alayna K Caffrey-Carr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Walburga Croteau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
17
|
Niu Y, Wang L, Yu N, Xing P, Wang Z, Zhong Z, Feng Y, Dong L, Wang C. An "all-in-one" scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomater 2020; 111:153-169. [PMID: 32447062 DOI: 10.1016/j.actbio.2020.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022]
Abstract
Scaffolds for tissue repair are designed in an increasingly complicated manner to meet multi-facet biological needs during the healing process. However, overly sophisticated design, especially the use of multiple components and delivery of exogenous cells, hampers the bench-to-bedside translation. Here, a multi-functional - yet mono-compositional - bioactive scaffold is devised to mediate the full-range, endogenous bone repair. Based on immunoactivity screening, a chemically-modified glucomannan polysaccharide is selected and processed into an anisotropic porous scaffold, which accurately stimulates macrophages to produce pro-regenerative cytokines. These cytokines effectively enhance the recruitment ("R") and induced osteogenesis ("IO") of the bone progenitor cells in situ. Meanwhile, the anisotropic porosity and carbohydrate signal of the scaffold facilitate differential adhesion ("A") and distribution ("D") of the macrophages and bone progenitor cells - enabling the former's accumulation at the surface while encouraging the latter's infiltration into the scaffold. Implanted in a rat calvarial defect model, this "RADIO" system effectively promotes healing over 12 weeks, with the obvious formation of hard callus through the scaffold. In summary, RADIO integrates multiple functions into one single scalable system ("all-in-one") to govern the dynamic bone-repair process, by harnessing the power of host macrophages. RADIO represents an open platform to solving the long-lasting complexity-versus-simplicity dilemma in biomaterials design. STATEMENT OF SIGNIFICANCE: Biomaterials as versatile tools for tissue repair are becoming increasingly complicated, yet overly sophisticated design - especially the use of multiple components, exogenous cells, and overdosed growth factors - hampers their clinical application. The pre-requisite for designing a successful integrative scaffold is to identify an inherent biological target responding to biomaterial signals, thereby efficiently and safely promoting tissue repair via the endogenous healing capability instead of extra multifarious biochemical components. For bone regeneration, the pivotal regulator is macrophages. Through activating host macrophages, our single-component scaffold system coordinates the entire bone regenerative cascade in situ and induces successful bone regeneration in a calvarial defect model. This scaffold represents a scalable and multi-functional approach to effectively simplify the sophisticated design in regenerative medicine.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Panfei Xing
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Yanxian Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China.
| |
Collapse
|
18
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|