1
|
Otani T, Miyake T, Ota T, Yarimizu D, Nakagawa Y, Murai I, Okamura H, Hasegawa E, Doi M. Identification of angiotensin II-responsive circadian clock gene expression in adrenal zona glomerulosa cells and human adrenocortical H295R cells. Front Endocrinol (Lausanne) 2025; 16:1525844. [PMID: 40206597 PMCID: PMC11978646 DOI: 10.3389/fendo.2025.1525844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in peripheral tissues. Because of the diversity of peripheral tissues and cell-types in the body, the existence of autonomous clock and identification of its potential entrainment signals need to be empirically defined on a cell type-by-cell type basis. In this study, we characterized the basic circadian clock properties of the adrenal zona glomerulosa cells, or ZG cells. Using isolated adrenal explants from Per2Luc mice, dissociated ZG cells from Per2-dluc rats, and a related human adrenocortical cell line H295R, we showed that ZG cells possess genetically-encoded, self-sustained and cell-autonomous circadian clock. As to the potential entrainment signals, angiotensin II (Ang II) caused phase-dependent phase-shifts of adrenal ZG cells in cultured slices. Ang II treatment also drove initiation (or reset) of circadian clock gene expression in H295R cells with associated immediate up-regulation of PER1 and E4BP4 mRNA expression. We found that the type I Ang II receptor blocker CV11974, one of the most widely used clinical drugs for hypertensive diseases, caused attenuation of the phase resetting of H295R cells. Our in vitro data provide a basis to understand and argue for the adrenal gland ZG cells as a component of autonomous and entrainable peripheral clocks.
Collapse
Affiliation(s)
- Tomohiro Otani
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takumi Ota
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Yarimizu
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuuki Nakagawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Division of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emi Hasegawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Hunter AL, Bechtold DA. The metabolic significance of peripheral tissue clocks. Commun Biol 2025; 8:497. [PMID: 40140664 PMCID: PMC11947457 DOI: 10.1038/s42003-025-07932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The circadian clock is a transcriptional-translational feedback loop which oscillates in virtually all nucleated cells of the body. In the decades since its discovery, it has become evident that the molecular clockwork is inextricably linked to energy metabolism. Given the frequency with which metabolic dysfunction and clock disruption co-occur, understanding why and how clock and metabolic processes are reciprocally coupled will have important implications for supporting human health and wellbeing. Here, we discuss the relevance of molecular clock function in metabolic tissues and explore its role not only as a driver of day-night variation in gene expression, but as a key mechanism for maintaining metabolic homeostasis in the face of fluctuating energy supply and demand.
Collapse
Affiliation(s)
- A Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
- Diabetes, Endocrinology & Metabolism Centre, Oxford Road Campus, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Nguyen Pham KT, Miyake T, Suzuki T, Kinoshita S, Hamada Y, Uehara H, Machida M, Nakajima T, Hasegawa E, Doi M. Identification of meibomian gland testosterone metabolites produced by tissue-intrinsic intracrine deactivation activity. iScience 2025; 28:111808. [PMID: 39995859 PMCID: PMC11848505 DOI: 10.1016/j.isci.2025.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/03/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Intracrinology-wherein hormones are synthesized in the organ where they exert their effect without release into circulation-has been described. However, molecular mechanisms of hormone deactivation within intracrine tissue are still largely unknown. The meibomian glands in the eyelids produce oil (meibum) to the ocular surface to prevent dehydration (dry eye). Androgens are generated inside this gland and are crucial for its tissue-homeostasis. However, there is no data showing the presence of androgens in meibum, implying local conversion/deactivation into unknown metabolites. Here, we performed radioactive tracer studies in combination with pharmacological enzyme inhibition, followed by targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and found three androgen metabolites-androstanedione, androsterone, and epiandrosterone-in mouse and human meibomian glands. Accounting for the enzymatic conversion, we show tissue-endogenous 3α/3β-ketosteroid reductase expression. We therefore reinforce the idea that androgens are metabolically inactivated within the glands. These metabolite markers may help to assess meibomian local androgen activity using meibum.
Collapse
Affiliation(s)
- Khanh Tien Nguyen Pham
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Tomo Suzuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kamigyō-ku, Kyoto 602-0841, Japan
- Department of Ophthalmology, Kyoto City Hospital, Nakagyō-ku, Kyoto 604-8845, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kamigyō-ku, Kyoto 602-0841, Japan
| | - Yuki Hamada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Hikari Uehara
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Mamiko Machida
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe 650-0047, Japan
| | - Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe 650-0047, Japan
| | - Emi Hasegawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Miyake T, Tanaka K, Inoue Y, Nagai Y, Nishimura R, Seta T, Nakagawa S, Inoue KI, Hasegawa E, Minamimoto T, Doi M. Size-reduced DREADD derivatives for AAV-assisted multimodal chemogenetic control of neuronal activity and behavior. CELL REPORTS METHODS 2024; 4:100881. [PMID: 39437713 PMCID: PMC11573748 DOI: 10.1016/j.crmeth.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced DREADD derivatives miniDq and miniDi, which inherit the basic receptor properties from the Gq-coupled excitatory receptor hM3Dq and the Gi-coupled inhibitory receptor hM4Di, respectively, while being approximately 30% smaller in size. Taking advantage of the compact size of the receptors, we generated an adeno-associated virus (AAV) vector carrying both miniDq and the other DREADD family receptor (κ-opioid receptor-based inhibitory DREADD [KORD]) within the maximum AAV capacity (4.7 kb), allowing us to modulate neuronal activity and animal behavior in both excitatory and inhibitory directions using a single viral vector. We confirmed that expressing miniDq, but not miniDi, allowed activation of striatum activity in the cynomolgus monkey (Macaca fascicularis). The compact DREADDs may thus widen the opportunity for multiplexed interrogation and/or intervention in neuronal regulation in mice and non-human primates.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.
| | - Kaho Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yutsuki Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Reo Nishimura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takehito Seta
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Shumpei Nakagawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Emi Hasegawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Ma C, Li H, Shen B, Zheng H, Chen Y, Chen L, Yang G. Differential Effects of Light and Dark Phase Modifications on Jet Lag Adaptability in Mice. J Pineal Res 2024; 76:e13010. [PMID: 40008645 DOI: 10.1111/jpi.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 02/27/2025]
Abstract
In chronobiology, shifting light/dark cycles is a common method to disrupt circadian rhythms. While the direction and magnitude of a phase shift (e.g., +6 denoting a 6-h advanced shift) dictate the temporal change before and after the shift, little attention has been paid to the duration and relative proportion of daytime and nighttime during the shift, leading to a critical, unexamined variable in circadian research. In this study, we introduce the concepts of "L-shift" (longer light phase on the shift day) and "D-shift" (longer dark phase), and investigate how these variations impact the adaptability of mice to jet lag. By examining multiple phase shifts (12L vs. 12D, +6L vs. +6D, -6L vs. -6D), we demonstrate that L-shifts not only facilitate faster adaptation but also significantly reduce the severity of sepsis in a jet lag-sensitive lipopolysaccharide-induced sepsis model. Further investigations with additional phase shifts at 1-h intervals (+8 to +11) reinforced the enhanced fitness of mice under L-shifts. Mechanistically, L-shifts were found to increase sleep duration, thereby improving circadian entrainment, with sleep deprivation nullifying the adaptability differences between lighting protocols. These findings underscore a previously unrecognized factor in circadian biology and suggest that optimizing lighting protocols could profoundly improve adaptability to circadian disruptions. This research opens new avenues for enhancing therapeutic strategies and refining experimental designs in the field of chronobiology.
Collapse
Affiliation(s)
- Changxiao Ma
- Health Science Center, East China Normal University, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Haonan Li
- Health Science Center, East China Normal University, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Huiwen Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yunfei Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Sakai S, Tanaka Y, Tsukamoto Y, Kimura-Ohba S, Hesaka A, Hamase K, Hsieh CL, Kawakami E, Ono H, Yokote K, Yoshino M, Okuzaki D, Matsumura H, Fukushima A, Mita M, Nakane M, Doi M, Isaka Y, Kimura T. d -Alanine Affects the Circadian Clock to Regulate Glucose Metabolism in the Kidney. KIDNEY360 2024; 5:237-251. [PMID: 38098136 PMCID: PMC10914205 DOI: 10.34067/kid.0000000000000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Key Points d -Alanine affects the circadian clock to regulate gluconeogenesis in the kidney. d -Alanine itself has a clear intrinsic circadian rhythm, which is regulated by urinary excretion, and acts on the circadian rhythm. d -Alanine is a signal activator for circadian rhythm and gluconeogenesis through circadian transcriptional network. Background The aberrant glucose circadian rhythm is associated with the pathogenesis of diabetes. Similar to glucose metabolism in the kidney and liver, d -alanine, a rare enantiomer of alanine, shows circadian alteration, although the effect of d- alanine on glucose metabolism has not been explored. Here, we show that d- alanine acts on the circadian clock and affects glucose metabolism in the kidney. Methods The blood and urinary levels of d -alanine in mice were measured using two-dimensional high-performance liquid chromatography system. Metabolic effects of d -alanine were analyzed in mice and in primary culture of kidney proximal tubular cells from mice. Behavioral and gene expression analyses of circadian rhythm were performed using mice bred under constant darkness. Results d- Alanine levels in blood exhibited a clear intrinsic circadian rhythm. Since this rhythm was regulated by the kidney through urinary excretion, we examined the effect of d -alanine on the kidney. In the kidney, d -alanine induced the expressions of genes involved in gluconeogenesis and circadian rhythm. Treatment of d- alanine mediated glucose production in mice. Ex vivo glucose production assay demonstrated that the treatment of d -alanine induced glucose production in primary culture of kidney proximal tubular cells, where d -amino acids are known to be reabsorbed, but not in that of liver cells. Gluconeogenetic effect of d -alanine has an intraday variation, and this effect was in part mediated through circadian transcriptional network. Under constant darkness, treatment of d- alanine normalized the circadian cycle of behavior and kidney gene expressions. Conclusions d- Alanine induces gluconeogenesis in the kidney and adjusts the period of the circadian clock. Normalization of circadian cycle by d -alanine may provide the therapeutic options for life style–related diseases and shift workers.
Collapse
Affiliation(s)
- Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Youichi Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Tsukamoto
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Shihoko Kimura-Ohba
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Atsushi Hesaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kenji Hamase
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chin-Ling Hsieh
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiryo Kawakami
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science (ADSP), RIKEN Information R&D and Strategy Headquarters, Yokohama, Kanagawa, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Hiraku Ono
- Department of Endocrinology, Hematology and Gerontorogy, Graduate School of Medicine, Chiba University,Chiba, Japan
| | - Kotaro Yokote
- Department of Endocrinology, Hematology and Gerontorogy, Graduate School of Medicine, Chiba University,Chiba, Japan
| | - Mitsuaki Yoshino
- Laboratory of Rare Disease Information and Resource library, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Hiroyo Matsumura
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Atsuko Fukushima
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | | | | | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Kimura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
7
|
Miyake T, Inoue Y, Maekawa Y, Doi M. Circadian Clock and Body Temperature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:177-188. [PMID: 39289281 DOI: 10.1007/978-981-97-4584-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The circadian fluctuation of body temperature is one of the most prominent and stable outputs of the circadian clock and plays an important role in maintaining optimal day-night energy homeostasis. The body temperature of homothermic animals is not strictly constant, but it shows daily oscillation within a range of 1-3 °C, which is sufficient to synchronize the clocks of peripheral tissues throughout the body. The thermal entrainment mechanisms of the clock are partly mediated by the action of the heat shock transcription factor and cold-inducible RNA-binding protein-both have the ability to affect clock gene expression. Body temperature in the poikilotherms is not completely passive to the ambient temperature change; they can travel to the place of preferred temperature in a manner depending on the time of their endogenous clock. Based on this behavior-level thermoregulation, flies exhibit a clear body temperature cycle. Noticeably, flies and mice share the same molecular circuit for the controlled body temperature; in both species, the calcitonin receptors participate in the formation of body temperature rhythms during the active phase and exhibit rather specific expression in subsets of clock neurons in the brain. We summarize knowledge on mutual relationships between body temperature regulation and the circadian clock.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuichi Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yota Maekawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Yamaguchi Y, Maekawa Y, Kabashima K, Mizuno T, Tainaka M, Suzuki T, Dojo K, Tominaga T, Kuroiwa S, Masubuchi S, Doi M, Tominaga K, Kobayashi K, Yamagata S, Itoi K, Abe M, Schwartz WJ, Sakimura K, Okamura H. An intact pituitary vasopressin system is critical for building a robust circadian clock in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2308489120. [PMID: 37844254 PMCID: PMC10614613 DOI: 10.1073/pnas.2308489120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
The circadian clock is a biological timekeeping system that oscillates with a circa-24-h period, reset by environmental timing cues, especially light, to the 24-h day-night cycle. In mammals, a "central" clock in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes "peripheral" clocks throughout the body to regulate behavior, metabolism, and physiology. A key feature of the clock's oscillation is resistance to abrupt perturbations, but the mechanisms underlying such robustness are not well understood. Here, we probe clock robustness to unexpected photic perturbation by measuring the speed of reentrainment of the murine locomotor rhythm after an abrupt advance of the light-dark cycle. Using an intersectional genetic approach, we implicate a critical role for arginine vasopressin pathways, both central within the SCN and peripheral from the anterior pituitary.
Collapse
Grants
- 18H04015 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 15H05642 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K06594 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K18384 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K20864 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18002016 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06276 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJCR14W3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- BR220401 MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita564-8680, Japan
| | - Yota Maekawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kyohei Kabashima
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Takanobu Mizuno
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Motomi Tainaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Toru Suzuki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kumiko Dojo
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Takeichiro Tominaga
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Sayaka Kuroiwa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Satoru Masubuchi
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute480-1195, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Keiko Tominaga
- Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima960-1295, Japan
| | - Satoshi Yamagata
- Graduate School of Information Sciences, Tohoku University, Sendai980-0845, Japan
| | - Keiichi Itoi
- Graduate School of Information Sciences, Tohoku University, Sendai980-0845, Japan
- Department of Nursing, Faculty of Health Sciences, Tohoku Fukushi University, Sendai981-8522, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata951-8585, Japan
| | - William J. Schwartz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX78712
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata951-8585, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
9
|
Millius A, Yamada RG, Fujishima H, Maeda K, Standley DM, Sumiyama K, Perrin D, Ueda HR. Circadian ribosome profiling reveals a role for the Period2 upstream open reading frame in sleep. Proc Natl Acad Sci U S A 2023; 120:e2214636120. [PMID: 37769257 PMCID: PMC10556633 DOI: 10.1073/pnas.2214636120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Daron M. Standley
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Dimitri Perrin
- School of Computer Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
- Centre for Data Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
10
|
Ballester Roig MN, Roy PG, Hannou L, Delignat-Lavaud B, Sully Guerrier TA, Bélanger-Nelson E, Dufort-Gervais J, Mongrain V. Transcriptional regulation of the mouse EphA4, Ephrin-B2 and Ephrin-A3 genes by the circadian clock machinery. Chronobiol Int 2023; 40:983-1003. [PMID: 37551686 DOI: 10.1080/07420528.2023.2237580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3β (GSK3β; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Murakami A, Tsuji K, Isoda M, Matsuo M, Abe Y, Yasui M, Okamura H, Tominaga K. Prolonged Light Exposure Induces Circadian Impairment in Aquaporin-4-Knockout Mice. J Biol Rhythms 2023; 38:208-214. [PMID: 36694941 DOI: 10.1177/07487304221146242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Astrocytes are densely present in the suprachiasmatic nucleus (SCN), which is the master circadian oscillator in mammals, and are presumed to play a key role in circadian oscillation. However, specific astrocytic molecules that regulate the circadian clock are not yet well understood. In our study, we found that the water channel aquaporin-4 (AQP4) was abundantly expressed in SCN astrocytes, and we further examined its circadian role using AQP4-knockout mice. There was no prominent difference in circadian behavioral rhythms between Aqp4-/- and Aqp4+/+ mice subjected to light-dark cycles and constant dark conditions. However, exposure to constant light induced a greater decrease in the Aqp4-/- mice rhythmicity. Although the damped rhythm in long-term constant light recovered after transfer to constant dark conditions in both genotypes, the period until the reappearance of original rhythmicity was severely prolonged in Aqp4-/- mice. In conclusion, AQP4 absence exacerbates the prolonged light-induced impairment of circadian oscillations and delays their recovery to normal rhythmicity.
Collapse
Affiliation(s)
- Atsumi Murakami
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kouki Tsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Japan
| | - Minako Isoda
- Graduate School of Science, Kyoto University, Sakyo-ku, Japan
| | - Masahiro Matsuo
- Department of Psychiatry, Shiga University Graduate School of Medicine, Otsu, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
- Keio University Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
- Keio University Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Japan
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Sakyō-ku, Japan
| | - Keiko Tominaga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Miyake T, Inoue Y, Shao X, Seta T, Aoki Y, Nguyen Pham KT, Shichino Y, Sasaki J, Sasaki T, Ikawa M, Yamaguchi Y, Okamura H, Iwasaki S, Doi M. Minimal upstream open reading frame of Per2 mediates phase fitness of the circadian clock to day/night physiological body temperature rhythm. Cell Rep 2023; 42:112157. [PMID: 36882059 DOI: 10.1016/j.celrep.2023.112157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Body temperature in homeothermic animals does not remain constant but displays a regular circadian fluctuation within a physiological range (e.g., 35°C-38.5°C in mice), constituting a fundamental systemic signal to harmonize circadian clock-regulated physiology. Here, we find the minimal upstream open reading frame (uORF) encoded by the 5' UTR of the mammalian core clock gene Per2 and reveal its role as a regulatory module for temperature-dependent circadian clock entrainment. A temperature shift within the physiological range does not affect transcription but instead increases translation of Per2 through its minimal uORF. Genetic ablation of the Per2 minimal uORF and inhibition of phosphoinositide-3-kinase, lying upstream of temperature-dependent Per2 protein synthesis, perturb the entrainment of cells to simulated body temperature cycles. At the organismal level, Per2 minimal uORF mutant skin shows delayed wound healing, indicating that uORF-mediated Per2 modulation is crucial for optimal tissue homeostasis. Combined with transcriptional regulation, Per2 minimal uORF-mediated translation may enhance the fitness of circadian physiology.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuichi Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Xinyan Shao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takehito Seta
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuto Aoki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Khanh Tien Nguyen Pham
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyō-ku, Tokyo 113-8510, Japan; Department of Cellular and Molecular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyō-ku, Tokyo 113-8510, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyō-ku, Tokyo 113-8510, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan; Division of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals. Nat Commun 2022; 13:4652. [PMID: 35999195 PMCID: PMC9399252 DOI: 10.1038/s41467-022-32326-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
In mammals, the circadian clock consists of transcriptional and translational feedback loops through DNA cis-elements such as E-box and RRE. The E-box-mediated core feedback loop is interlocked with the RRE-mediated feedback loop, but biological significance of the RRE-mediated loop has been elusive. In this study, we established mutant cells and mice deficient for rhythmic transcription of Bmal1 gene by deleting its upstream RRE elements and hence disrupted the RRE-mediated feedback loop. We observed apparently normal circadian rhythms in the mutant cells and mice, but a combination of mathematical modeling and experiments revealed that the circadian period and amplitude of the mutants were more susceptible to disturbance of CRY1 protein rhythm. Our findings demonstrate that the RRE-mediated feedback regulation of Bmal1 underpins the E-box-mediated rhythm in cooperation with CRY1-dependent posttranslational regulation of BMAL1 protein, thereby conferring the perturbation-resistant oscillation and chronologically-organized output of the circadian clock.
Collapse
|
14
|
Yamaguchi Y, Murai I, Takeda M, Doi S, Seta T, Hanada R, Kangawa K, Okamura H, Miyake T, Doi M. <i>Nmu</i>/<i>Nms</i>/<i>Gpr176</i> Triple-Deficient Mice Show Enhanced Light-Resetting of Circadian Locomotor Activity. Biol Pharm Bull 2022; 45:1172-1179. [DOI: 10.1248/bpb.b22-00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Momoko Takeda
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shotaro Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takehito Seta
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
15
|
Sasaki L, Hamada Y, Yarimizu D, Suzuki T, Nakamura H, Shimada A, Pham KTN, Shao X, Yamamura K, Inatomi T, Morinaga H, Nishimura EK, Kudo F, Manabe I, Haraguchi S, Sugiura Y, Suematsu M, Kinoshita S, Machida M, Nakajima T, Kiyonari H, Okamura H, Yamaguchi Y, Miyake T, Doi M. Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. NATURE AGING 2022; 2:105-114. [PMID: 37117756 PMCID: PMC10154200 DOI: 10.1038/s43587-021-00167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/22/2021] [Indexed: 04/30/2023]
Abstract
Canonically, hormones are produced in the endocrine organs and delivered to target tissues. However, for steroids, the concept of tissue intracrinology, whereby hormones are produced in the tissues where they exert their effect without release into circulation, has been proposed, but its role in physiology/disease remains unclear. The meibomian glands in the eyelids produce oil to prevent tear evaporation, which reduces with aging. Here, we demonstrate that (re)activation of local intracrine activity through nicotinamide adenine dinucleotide (NAD+)-dependent circadian 3β-hydroxyl-steroid dehydrogenase (3β-HSD) activity ameliorates age-associated meibomian gland dysfunction and accompanying evaporative dry eye disease. Genetic ablation of 3β-HSD nullified local steroidogenesis and led to atrophy of the meibomian gland. Conversely, reactivation of 3β-HSD activity by boosting its coenzyme NAD+ availability improved glandular cell proliferation and alleviated the dry eye disease phenotype. Both women and men express 3β-HSD in the meibomian gland. Enhancing local steroidogenesis may help combat age-associated meibomian gland dysfunction.
Collapse
Affiliation(s)
- Lena Sasaki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Hamada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Yarimizu
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomo Suzuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Ophthalmology, Kyoto City Hospital, Kyoto, Japan
| | - Hiroki Nakamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Aya Shimada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Khanh Tien Nguyen Pham
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Xinyan Shao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koki Yamamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tsutomu Inatomi
- Department of Ophthalmology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hironobu Morinaga
- Dpartment of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi K Nishimura
- Dpartment of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fujimi Kudo
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mamiko Machida
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Kobe, Japan
| | - Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
- Division of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
16
|
Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-running period and light resetting capacity of the circadian clock. Sci Rep 2021; 11:22406. [PMID: 34789778 PMCID: PMC8599615 DOI: 10.1038/s41598-021-01764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/03/2021] [Indexed: 01/26/2023] Open
Abstract
Gpr19 encodes an evolutionarily conserved orphan G-protein-coupled receptor (GPCR) with currently no established physiological role in vivo. We characterized Gpr19 expression in the suprachiasmatic nucleus (SCN), the locus of the master circadian clock in the brain, and determined its role in the context of the circadian rhythm regulation. We found that Gpr19 is mainly expressed in the dorsal part of the SCN, with its expression fluctuating in a circadian fashion. A conserved cAMP-responsive element in the Gpr19 promoter was able to produce circadian transcription in the SCN. Gpr19−/− mice exhibited a prolonged circadian period and a delayed initiation of daily locomotor activity. Gpr19 deficiency caused the downregulation of several genes that normally peak during the night, including Bmal1 and Gpr176. In response to light exposure at night, Gpr19−/− mice had a reduced capacity for light-induced phase-delays, but not for phase-advances. This defect was accompanied by reduced response of c-Fos expression in the dorsal region of the SCN, while apparently normal in the ventral area of the SCN, in Gpr19−/− mice. Thus, our data demonstrate that Gpr19 is an SCN-enriched orphan GPCR with a distinct role in circadian regulation and may provide a potential target option for modulating the circadian clock.
Collapse
|
17
|
The Expression and Function of Circadian Rhythm Genes in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4044606. [PMID: 34697563 PMCID: PMC8541861 DOI: 10.1155/2021/4044606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.
Collapse
|
18
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
19
|
Han Q, Bagi Z, Rudic RD. Review: Circadian clocks and rhythms in the vascular tree. Curr Opin Pharmacol 2021; 59:52-60. [PMID: 34111736 DOI: 10.1016/j.coph.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
The progression of vascular disease is influenced by many factors including aging, gender, diet, hypertension, and poor sleep. The intrinsic vascular circadian clock and the timing it imparts on the vasculature both conditions and is conditioned by all these variables. Circadian rhythms and their molecular components are rhythmically cycling in each endothelial cell, smooth muscle cell, in each artery, arteriole, vein, venule, and capillary. New research continues to tackle how circadian clocks act in the vasculature, describing influences in experimental and human disease, identifying potential target genes, compensatory molecules, that ultimately reveal a complexity that is vascular-bed-specific, cell-type-specific, and even single-cell-specific. Though we are yet to achieve a complete understanding, here we survey recent observations that are shedding more light on the nature of the interaction between circadian rhythms and the vascular system with implications for blood vessel disease.
Collapse
Affiliation(s)
- Qimei Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raducu Daniel Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
20
|
Shimatani H, Inoue Y, Maekawa Y, Miyake T, Yamaguchi Y, Doi M. Thermographic imaging of mouse across circadian time reveals body surface temperature elevation associated with non-locomotor body movements. PLoS One 2021; 16:e0252447. [PMID: 34048467 PMCID: PMC8162700 DOI: 10.1371/journal.pone.0252447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
Circadian clocks orchestrate multiple different physiological rhythms in a well-synchronized manner. However, how these separate rhythms are interconnected is not exactly understood. Here, we developed a method that allows for the real-time simultaneous measurement of locomotor activity and body temperature of mice using infrared video camera imaging. As expected from the literature, temporal profiles of body temperature and locomotor activity were positively correlated with each other. Basically, body temperatures were high when animals were in locomotion. However, interestingly, increases in body temperature were not always associated with the appearance of locomotor activity. Video imaging revealed that mice exhibit non-locomotor activities such as grooming and postural adjustments, which alone induce considerable elevation of body temperature. Noticeably, non-locomotor movements always preceded the initiation of locomotor activity. Nevertheless, non-locomotor movements were not always accompanied by locomotor movements, suggesting that non-locomotor movements provide a mechanism of thermoregulation independent of locomotor activity. In addition, in the current study, we also report the development of a machine learning-based recording method for the detection of circadian feeding and drinking behaviors of mice. Our data illustrate the potential utility of thermal video imaging in the investigation of different physiological rhythms.
Collapse
Affiliation(s)
- Hiroyuki Shimatani
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuichi Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yota Maekawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
21
|
Matsuo M, Seo K, Mizuguchi N, Yamazaki F, Urabe S, Yamada N, Doi M, Tominaga K, Okamura H. Role of α2δ3 in Cellular Synchronization of the Suprachiasmatic Nucleus Under Constant Light Conditions. Neuroscience 2021; 461:1-10. [PMID: 33609639 DOI: 10.1016/j.neuroscience.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
By the effort to identify candidate signaling molecules important for the formation of robust circadian rhythms in the suprachiasmatic nucleus (SCN), the mammalian circadian center, here we characterize the role of α2δ proteins, synaptic molecules initially identified as an auxiliary subunit of the voltage dependent calcium channel, in circadian rhythm formation. In situ hybridization study demonstrated that type 3 α2δ gene (α2δ3) was strongly expressed in the SCN. Mice without this isoform (Cacna2d3-/-) did not maintain proper circadian locomotor activity rhythms under a constant light (LL) condition, whereas under a constant dark (DD) condition, these mice showed a similar period length and similar light-responsiveness as compared to wild type mice. Reflecting this behavioral phenotype, Cacna2d3-/- mice showed a severely impaired Per1 expression rhythm in the SCN under LL, but not under DD. Cultured SCN slices from Per1-luc transgenic Cacna2d3-/- mice revealed reduced synchrony of Per1-luc gene expression rhythms among SCN neurons. These findings suggest that α2δ3 is essential for synchronized cellular oscillations in the SCN and thereby contributes to enhancing the sustainability of circadian rhythms in behavior.
Collapse
Affiliation(s)
- Masahiro Matsuo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; Department of Psychiatry, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kazuyuki Seo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naoki Mizuguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shoichi Urabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naoto Yamada
- Department of Psychiatry, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masao Doi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Keiko Tominaga
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka 565-0871, Japan
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. BIOLOGY 2021; 10:biology10010065. [PMID: 33477463 PMCID: PMC7829919 DOI: 10.3390/biology10010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In mammals, including humans, the body temperature displays a circadian rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological processes. Body temperature increases during the daytime and decreases during the nighttime thus influencing the expression of the molecular clock and the clock-control genes such as immune genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight aggression by promoting the activation, function, and delivery of immune cells. Many factors may affect body temperature level and rhythm, including environment, age, hormones, or treatment. The disruption of the body temperature is associated with many kinds of diseases and their severity, thus supporting the assumed association between body temperature rhythm and immune functions. Recent studies using complex analysis suggest that circadian rhythm may change in all aspects (level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy. Abstract The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.
Collapse
|
23
|
Romerowicz-Misielak M, Kozioł K, Nowak S, Koziorowski M. Altered circadian dynamics of Per2 after cystathionine-β-synthase and/or cystathionine-γ-lyase pharmacological inhibition in serum-shocked NIH-3T3 cells. Arch Biochem Biophys 2020; 697:108713. [PMID: 33271147 DOI: 10.1016/j.abb.2020.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/14/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Circadian clock genes are found in almost every cell that has a nucleus; they regulate the rhythmic nature of all processes that are cyclical. Among the genes controlled by the circadian clock, there are numerous factors that regulate key processes in the functioning of the cell. Disturbances in the functioning of the circadian clock are associated with numerous disorders. A recent study has shown the key role of H2S in regulating circadian rhythm. In this study, we investigated the in vitro effect of pharmacological inhibition of cystathionine-β-synthase (CBS) and/or cystathionine-γ-lyase (CSE) on the circadian dynamics of Per2 expression in serum-shocked NIH-3T3 cells. Alternatively, Cbs and Cse were knocked down by transfection with siRNA. The 48-h treatment of serum-shocked NIH-3T3 cells with 1 mM dl-propargylglycine (PAG), a specific CSE inhibitor, significantly decreased the amplitude and baseline expression of Per2. During exposure to an effective CBS and CSE inhibitor (aminooxyacetic acid [AOAA]), the amplitude of oscillation and baseline expression of Per2 significantly increased. Incubation of NIH-3T3 cells with both inhibitors also significantly increased the amplitude and baseline expression of Per2 messenger RNA (mRNA). siCbs or siCse knockdowan significantly reduced the baseline and amplitude of oscillation of Per2. In conclusion, we showed that CBS/CSE/H2S pathway participates in the regulation of the circadian clock system. PAG and AOAA, change the general expression and dynamics of Per2 genes, but the increase of amplitude and overall Per2 mRNA level due to exposure to AOAA is probably caused by factors other than CBS and CSE activity.
Collapse
Affiliation(s)
- Maria Romerowicz-Misielak
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Poland.
| | - Katarzyna Kozioł
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Poland
| | - Sławomir Nowak
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Poland
| | - Marek Koziorowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Poland
| |
Collapse
|
24
|
Time-Restricted G-Protein Signaling Pathways via GPR176, G z, and RGS16 Set the Pace of the Master Circadian Clock in the Suprachiasmatic Nucleus. Int J Mol Sci 2020; 21:ijms21145055. [PMID: 32709014 PMCID: PMC7404074 DOI: 10.3390/ijms21145055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are an important source of drug targets with diverse therapeutic applications. However, there are still more than one hundred orphan GPCRs, whose ligands and functions remain unidentified. The suprachiasmatic nucleus (SCN) is the central circadian clock of the brain, directing daily rhythms in activity–rest behavior and physiology. Malfunction of the circadian clock has been linked to a wide variety of diseases, including sleep–wake disorders, obesity, diabetes, cancer, and hypertension, making the circadian clock an intriguing target for drug development. The orphan receptor GPR176 is an SCN-enriched orphan GPCR that sets the pace of the circadian clock. GPR176 undergoes asparagine (N)-linked glycosylation, a post-translational modification required for its proper cell-surface expression. Although its ligand remains unknown, this orphan receptor shows agonist-independent basal activity. GPR176 couples to the unique G-protein subclass Gz (or Gx) and participates in reducing cAMP production during the night. The regulator of G-protein signaling 16 (RGS16) is equally important for the regulation of circadian cAMP synthesis in the SCN. Genome-wide association studies, employing questionnaire-based evaluations of individual chronotypes, revealed loci near clock genes and in the regions containing RGS16 and ALG10B, a gene encoding an enzyme involved in protein N-glycosylation. Therefore, increasing evidence suggests that N-glycosylation of GPR176 and its downstream G-protein signal regulation may be involved in pathways characterizing human chronotypes. This review argues for the potential impact of focusing on GPCR signaling in the SCN for the purpose of fine-tuning the entire body clock.
Collapse
|
25
|
Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. J Mol Biol 2020; 432:3639-3660. [PMID: 31996314 DOI: 10.1016/j.jmb.2020.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Circadian (approximately daily) rhythms of physiology and behaviour adapt organisms to the alternating environments of day and night. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian timekeeper of mammals. The mammalian cell-autonomous circadian clock is built around a self-sustaining transcriptional-translational negative feedback loop (TTFL) in which the negative regulators Per and Cry suppress their own expression, which is driven by the positive regulators Clock and Bmal1. Importantly, such TTFL-based clocks are present in all major tissues across the organism, and the SCN is their central co-ordinator. First, we analyse SCN timekeeping at the cell-autonomous and the circuit-based levels of organisation. We consider how molecular-genetic manipulations have been used to probe cell-autonomous timing in the SCN, identifying the integral components of the clock. Second, we consider new approaches that enable real-time monitoring of the activity of these clock components and clock-driven cellular outputs. Finally, we review how intersectional genetic manipulations of the cell-autonomous clockwork can be used to determine how SCN cells interact to generate an ensemble circadian signal. Critically, it is these network-level interactions that confer on the SCN its emergent properties of robustness, light-entrained phase and precision- properties that are essential for its role as the central co-ordinator. Remaining gaps in knowledge include an understanding of how the TTFL proteins behave individually and in complexes: whether particular SCN neuronal populations act as pacemakers, and if so, by which signalling mechanisms, and finally the nature of the recently discovered role of astrocytes within the SCN network.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|