1
|
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int J Mol Sci 2024; 25:2559. [PMID: 38473804 PMCID: PMC10931553 DOI: 10.3390/ijms25052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, marked by poor outcomes and dismal prognosis. Due to the absence of targetable receptors, chemotherapy still represents the main therapeutic option. Therefore, current research is now focusing on understanding the specific molecular pathways implicated in TNBC, in order to identify novel biomarker signatures and develop targeted therapies able to improve its clinical management. With the aim of identifying novel molecular features characterizing TNBC, elucidating the mechanisms by which these molecular biomarkers are implicated in the tumor development and progression, and assessing the impact on cancerous cells following their inhibition or modulation, we conducted a literature search from the earliest works to December 2023 on PubMed, Scopus, and Web Of Science. A total of 146 studies were selected. The results obtained demonstrated that TNBC is characterized by a heterogeneous molecular profile. Several biomarkers have proven not only to be characteristic of TNBC but also to serve as potential effective therapeutic targets, holding the promise of a new era of personalized treatments able to improve its prognosis. The pre-clinical findings that have emerged from our systematic review set the stage for further investigation in forthcoming clinical trials.
Collapse
Affiliation(s)
- Paola Pastena
- Department of Medicine, Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Hiran Perera
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | | | - William Kartsonis
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Francesco Giovinazzo
- Department of Surgery, Saint Camillus Hospital, 31100 Treviso, Italy
- Department of Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
3
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Li C, Zhang L, Guo T, Zou L. Long Non-Coding RNA Prostate Cancer Non-Coding RNA 1/miR-211-5p/Death Effector Domain Containing 2 Axis Affects Preeclampsia by Modulating Trophoblast Cells Proliferation and Apoptosis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific hypertensive disorder that affects 5–7% of pregnant women and is characterized by edema, hypertension and proteinuria. It is one of the leading causes of morbidity and mortality in pregnant women and newborns. Evidences
reveal that the expression of long non-coding RNA (lncRNA) prostate cancer non-coding RNA 1 (PRNCR1) is abnormal in PE. Therefore, we investigated the role of lncRNA PRNCR1 in PE development and its molecular mechanism. Methods: Quantitative reverse transcription PCR (qRT-PCR) was used
to determine the expression levels of lncRNA PRNCR1, microRNA (miR)-211-5p and mRNA leval of death effector domain containing 2 (DEDD2). Besides, the expression level of DEDD2 was detected by western blot assay. Cell proliferation ability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay, and cell apoptosis was detected by flow cytometry assay. Transwell assay was used to detect the migration and invasion of HTR-8/SVneo cells. The relationship between miR-211-5p and lncRNA PRNCR1 or DEDD2 was verified by dual luciferase reporter gene assay. Results:
Over-expression of lncRNA PRNCR1 induced apoptosis, impeded proliferation, migration, invasion in HTR-8/SVneo cells. Knockdown of lncRNA PRNCR1 inhibited apoptosis, promoted cell proliferation, migration and invasion, and all these effects were offset by miR-211-5p inhibitor. The mRNA and
protein levels of DEDD2 were decreased by overexpressing miR-211-5p in HTR-8/SVneo cells, while miR-211-5p inhibitor significantly increased the mRNA and protein levels of DEDD2. Conclusions: lncRNA PRNCR1 regulated cell behavior (proliferation, apoptosis, migration, and invasion) via
the miR-211-5p/DEDD2 axis in HTR-8/SVneo cells. Thus, lncRNA PRNCR1 participated in the occurrence and development of PE.
Collapse
Affiliation(s)
- Caijuan Li
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Lina Zhang
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Taoying Guo
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Lina Zou
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| |
Collapse
|
5
|
Discovery of fused benzimidazole-imidazole autophagic flux inhibitors for treatment of triple-negative breast cancer. Eur J Med Chem 2022; 240:114565. [DOI: 10.1016/j.ejmech.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
|
6
|
Geng Y, Chen S, Yang Y, Miao H, Li X, Li G, Ma J, Zhang T, Ren T, Li Y, Li L, Liu L, Yang J, Wang Z, Zou L, Liu K, Li Y, Yan S, Cui X, Sun X, Yang B, Zhang L, Han X, Wang C, Chen B, Yue X, Liang W, Ren J, Jia J, Gu J, Li Z, Zhao T, Wang P, Wei D, Qiu S, Xiang D, Xu X, Chen W, He M, Yang L, Wang H, Chen T, Hua R, Wang X, Wu X, Gong W, Wang G, Li M, Zhang W, Shao R, Wu W, Liu Y. Long-term exposure to genistein inhibits the proliferation of gallbladder cancer by downregulating the MCM complex. Sci Bull (Beijing) 2022; 67:813-824. [PMID: 36546234 DOI: 10.1016/j.scib.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 02/08/2023]
Abstract
Soy isoflavones are natural tyrosine kinase inhibitors closely associated with decreased morbidity and mortality of various tumors. The activation of tyrosine kinases such as ERBB2 is the mechanism by which cholecystitis transforms into gallbladder cancer (GBC), therefore, it is important to investigate the relationship between long-term exposure to soy isoflavones and the occurrence and progression of GBC. This case-control study (n = 85 pairs) found that the high level of plasma soy isoflavone-genistein (GEN) was associated with a lower risk of gallbladder cancer (≥326.00 ng/mL compared to ≤19.30 ng/mL, crude odds ratio 0.15, 95% CI 0.04-0.59; P for trend = 0.016), and that the level of GEN exposure negatively correlated with Ki67 expression in GBC tissue (n = 85). Consistent with these results, the proliferation of GBC cells was inhibited in the long-term exposure models of GEN in vitro and in vivo. The long-term exposure to GEN reduced the tyrosine kinase activity of ERBB2 and impaired the function of the PTK6-AKT-GSK3β axis, leading to downregulation of the MCM complex in GBC cells. In summary, long-term exposure to GEN associated with soy products intake might play a certain role in preventing GBC and even inhibiting the proliferation of GBC cells.
Collapse
Affiliation(s)
- Yajun Geng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shili Chen
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jian Ma
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining 272129, China
| | - Tong Zhang
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Tai Ren
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lin Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiahua Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Siyuan Yan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuya Cui
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuheng Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Bo Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lingxiao Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xusheng Han
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Xueliang Yue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Wei Liang
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jianjun Ren
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jianguang Jia
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233099, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu No. 1 People's Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Zhizhen Li
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200433, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Peng Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Dong Wei
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Dongxi Xiang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xinsen Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xu'an Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China.
| | - Wei Zhang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Shanghai 200127, China.
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai 200127, China.
| |
Collapse
|
7
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
8
|
Liu C, Huang Y, Qin T, You L, Lu F, Hu D, Xiao R, Qin X, Guo E, Yang B, Li X, Fan J, Li X, Fu Y, Liu S, Wang Z, Dou Y, Wang W, Li W, Yang X, Liu J, Peng W, Zhang L, Cui Y, Sun C, Chen G. AZD5153 reverses palbociclib resistance in ovarian cancer by inhibiting cell cycle-related proteins and the MAPK/PI3K-AKT pathway. Cancer Lett 2021; 528:31-44. [PMID: 34942306 DOI: 10.1016/j.canlet.2021.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022]
Abstract
The CDK4/6 inhibitor, palbociclib has recently entered clinic-trial stage for breast cancer treatment. However, translating its efficacy to other solid tumors has been challenging, especially for aggressive solid tumors. We found that the effect of palbociclib as a single agent was limited due to primary and acquired resistance in multiple ovarian cancer (OC) models. Among these, patient-derived organoid and xenograft models are two most representative models of drug responsiveness in patients with OC. In preclinical models, this study demonstrated that activated MAPK/PI3K-AKT pathway and cell cycle-related proteins induced the resistance to palbociclib, which was overcome by the addition of the bromodomain protein 4 (BRD4) inhibitor AZD5153. Moreover, this study revealed that AZD5153 and palbociclib had a synergistic lethal effect on inducing the cell cycle arrest and increasing apoptosis, even in RB-deficient cell lines. Based on these results, it is anticipated that this class of drugs, including AZD5153, which inhibit the cell cycle-related protein and MAPK/PI3K-AKT pathway, will exhibit synergistic effects with palbociclib in OC.
Collapse
Affiliation(s)
- Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lixin You
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junpeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuozi Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingyu Dou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenting Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingbo Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoyuan Cui
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Wang R, Xu K, Gao F, Huang J, Guan X. Clinical considerations of CDK4/6 inhibitors in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188590. [PMID: 34271137 DOI: 10.1016/j.bbcan.2021.188590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
Abstract
The formation of cyclinD-CDK4/6 complex plays vital roles in the cell cycle transition from G1 phase to S phase which is characterized by vigorous transcription and synthesis. Through cyclinD-CDK4/6-Rb axis, CDK4/6 inhibitors arrest the cell cycle in the G1 phase and block the proliferation of aggressive cells, exhibiting promising effects in containing the aggressiveness of breast cancers. To date, there are three CDK4/6 inhibitors approved by the U.S. Food and Drug Administration in treating advanced hormone receptor-positive breast cancer, including palbociclib, abemaciclib, and ribociclib. In fact, several preclinical experiments and clinical trials presented therapeutic effects of CDK4/6 inhibitor-based treatment in triple-negative breast cancer.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyi Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Hu Y, Gao J, Wang M, Li M. Potential Prospect of CDK4/6 Inhibitors in Triple-Negative Breast Cancer. Cancer Manag Res 2021; 13:5223-5237. [PMID: 34234565 PMCID: PMC8257068 DOI: 10.2147/cmar.s310649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, difficult-to-treat subtype of cancer with a poor prognosis; there is an urgent need for effective, targeted molecular therapies. The cyclin D/cyclin-dependent kinase (CDK)4/6–retinoblastoma protein (Rb) pathway plays a critical role in regulating cell cycle checkpoints, a process which is often disrupted in cancer cells. Selective CDK4/6 inhibitors can prevent retinoblastoma protein phosphorylation by invoking cell cycle arrest in the first growth phase (G1), and may therefore represent an effective treatment option. In this article, we review the molecular mechanisms and therapeutic efficacy of CDK4/6 inhibitors in combination with other targeted therapies for the treatment of triple-negative breast cancer. Three selective CDK4/6 inhibitors have so far received the approval of the Food and Drug Administration (FDA) for patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2) breast cancer. Trilaciclib, a small molecule short-acting inhibitor of CDK4/6, has also been approved recently for people with small cell lung cancer, and is also expected to be clinically effective against breast cancer. Although the efficacy of CDK4/6 inhibitors in patients with triple-negative breast cancer remains uncertain, their use in conjunction with other targeted therapies may improve outcomes and is therefore currently being explored. Identifying biomarkers for response or resistance to CDK4/6 inhibitor treatment may optimize the personalization of treatment strategies for this disease. Ongoing and future clinical trials and biomarker studies will shed further light on these topics, and help to realize the full potential of CDK4/6 inhibitor treatment in triple-negative breast cancer.
Collapse
Affiliation(s)
- Ye Hu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jiyue Gao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Meiling Wang
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Man Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
11
|
Chen Q, Ma X, Xie L, Chen W, Xu Z, Song E, Zhu X, Song Y. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. NANOSCALE 2021; 13:4855-4870. [PMID: 33624647 DOI: 10.1039/d0nr08757b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferroptosis therapy, which applies ferroptotic inducers to produce lethal lipid peroxidation and induce the death of tumor cells, is regarded as a promising therapeutic strategy for cancer treatment. However, there is still a challenge regarding how to increase reactive oxygen species (ROS) accumulation in the tumor microenvironment (TME) to enhance antitumor efficacy. Herein, we designed a nanosystem coated with the FDA approved poly(lactic-co-glycolic acid) (PLGA) containing ferrous ferric oxide (Fe3O4) and chlorin E6 (Ce6) for synergistic ferroptosis-photodynamic anticancer therapy. The Fe3O4-PLGA-Ce6 nanosystem can dissociate in the acidic TME to release ferrous/ferric ions and Ce6. Then, the Fenton reaction between the released ferrous/ferric ions and intracellular excess hydrogen peroxide can occur to produce hydroxyl radicals (˙OH) and induce tumor cell ferroptosis. The released Ce6 can increase the generation and accumulation of ROS under laser irradiation to offer photodynamic therapy, which can boost ferroptosis in 4T1 cells. Moreover, magnetic monodisperse Fe3O4 loading provides excellent T2-weighted magnetic resonance imaging (MRI) properties. The Fe3O4-PLGA-Ce6 nanosystem possesses MRI ability and highly efficient tumor suppression with high biocompatibility in vivo due to the synergism of photodynamic and ferroptosis antitumor therapies.
Collapse
Affiliation(s)
- Qifang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xianbin Ma
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wenjie Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhigang Xu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Maskey RS, Wang F, Lehman E, Wang Y, Emmanuel N, Zhong W, Jin G, Abraham RT, Arndt KT, Myers JS, Mazurek A. Sustained mTORC1 activity during palbociclib-induced growth arrest triggers senescence in ER+ breast cancer cells. Cell Cycle 2020; 20:65-80. [PMID: 33356791 DOI: 10.1080/15384101.2020.1859195] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Palbociclib, a selective CDK4/6 kinase inhibitor, is approved in combination with endocrine therapies for the treatment of advanced estrogen receptor positive (ER+) breast cancer. In pre-clinical cancer models, CDK4/6 inhibitors act primarily as cytostatic agents. In two commonly studied ER+ breast cancer cell lines (MCF7 and T47D), CDK4/6 inhibition drives G1-phase arrest and the acquisition of a senescent-like phenotype, both of which are reversible upon palbociclib withdrawal (incomplete senescence). Here we identify an ER+ breast cancer cell line, CAMA1, in which palbociclib treatment induces irreversible cell cycle arrest and senescence (complete senescence). In stark contrast to T47D and MCF7 cells, mTORC1 activity is not stably suppressed in CAMA1 cells during palbociclib treatment. Importantly, inhibition of mTORC1 signaling either by the mTORC1 inhibitor rapamycin or by knockdown of Raptor, a unique component of mTORC1, during palbociclib treatment of CAMA1 cells blocks the induction of complete senescence. These results indicate that sustained mTORC1 activity promotes complete senescence in ER+ breast cancer cells during CDK4/6 inhibitor-induced cell cycle arrest. Consistent with this mechanism, genetic depletion of TSC2, a negative regulator of mTORC1, in MCF7 cells resulted in sustained mTORC1 activity during palbociclib treatment and evoked a complete senescence response. These findings demonstrate that persistent mTORC1 signaling during palbociclib-induced G1 arrest is a potential liability for ER+ breast cancer cells, and suggest a strategy for novel drug combinations with palbociclib.
Collapse
Affiliation(s)
- Reeja S Maskey
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Fang Wang
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Elyssa Lehman
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Yiqun Wang
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Natasha Emmanuel
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Wenyan Zhong
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Guixian Jin
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Robert T Abraham
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Kim T Arndt
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Jeremy S Myers
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Anthony Mazurek
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| |
Collapse
|
14
|
Wang T, Gautam P, Rousu J, Aittokallio T. Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer. Comput Struct Biotechnol J 2020; 18:3819-3832. [PMID: 33335681 PMCID: PMC7720026 DOI: 10.1016/j.csbj.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022] Open
Abstract
While high-throughput drug screening offers possibilities to profile phenotypic responses of hundreds of compounds, elucidation of the cell context-specific mechanisms of drug action requires additional analyses. To that end, we developed a computational target deconvolution pipeline that identifies the key target dependencies based on collective drug response patterns in each cell line separately. The pipeline combines quantitative drug-cell line responses with drug-target interaction networks among both intended on- and potent off-targets to identify pharmaceutically actionable and selective therapeutic targets. To demonstrate its performance, the target deconvolution pipeline was applied to 310 small molecules tested on 20 genetically and phenotypically heterogeneous triple-negative breast cancer (TNBC) cell lines to identify cell line-specific target mechanisms in terms of cytotoxic and cytostatic drug target vulnerabilities. The functional essentiality of each protein target was quantified with a target addiction score (TAS), as a measure of dependency of the cell line on the therapeutic target. The target dependency profiling was shown to capture inhibitory information that is complementary to that obtained from the structure or sensitivity of the drugs. Comparison of the TAS profiles and gene essentiality scores from CRISPR-Cas9 knockout screens revealed that certain proteins with low gene essentiality showed high target addictions, suggesting that they might be functioning as protein groups, and therefore be resistant to single gene knock-out. The comparative analysis discovered protein groups of potential multi-target synthetic lethal interactions, for instance, among histone deacetylases (HDACs). Our integrated approach also recovered a number of well-established TNBC cell line-specific drivers and known TNBC therapeutic targets, such as HDACs and cyclin-dependent kinases (CDKs). The present work provides novel insights into druggable vulnerabilities for TNBC, and opportunities to identify multi-target synthetic lethal interactions for further studies.
Collapse
Affiliation(s)
- Tianduanyi Wang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juho Rousu
- Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland.,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Yang Y, Chen P, Zhao L, Zhang B, Xu C, Zhang H, Zhou J. Design, synthesis and biological evaluation of imidazolopyridone derivatives as novel BRD4 inhibitors. Bioorg Med Chem 2020; 29:115857. [PMID: 33191086 DOI: 10.1016/j.bmc.2020.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022]
Abstract
Bromodomain containing protein 4 (BRD4) has been demonstrated to play critical roles in cellular proliferation and cell cycle progression. In this study, using the BRD4 inhibitor Fragment 9 as a lead compound, a series of imidazolopyridone derivatives were designed and tested for their inhibitory activity against BRD4 protein in vitro. Among them, HB100-A7 showed excellent BRD4(1) inhibitory activities with an IC50 value of 0.035 μM in amplified luminescent proximity homogeneous assay (Alphascreen). The result of MTT assay showed that HB100-A7 could suppress the proliferation of pancreatic cancer cells. In addition, flow cytometry further illustrated that HB100-A7 treatment resulted in G0/G1 phase arrest and promoted apoptosis of BxPc3 cells. Furthermore, the in vivo study found that HB100-A7 displayed significant tumor growth inhibition in a pancreatic mouse tumor model (Panc-02). Moreover, IHC staining suggested that HB100-A7 induce cell apoptosis in pancreatic cancer tumor tissue. Together, this study revealed, for the first time, HB100-A7 is a promising lead compound for further development as a new generation of small molecule inhibitors targeting the BRD4 protein.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pan Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Leilei Zhao
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China.
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
16
|
Wu SY, Wang H, Shao ZM, Jiang YZ. Triple-negative breast cancer: new treatment strategies in the era of precision medicine. SCIENCE CHINA-LIFE SCIENCES 2020; 64:372-388. [PMID: 32803712 DOI: 10.1007/s11427-020-1714-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) remains the most aggressive cluster of all breast cancers, which is due to its rapid progression, high probabilities of early recurrence, and distant metastasis resistant to standard treatment. Following the advances in cancer genomics and transcriptomics that can illustrate the comprehensive profiling of this heterogeneous disease, it is now possible to identify different subclasses of TNBC according to both intrinsic signals and extrinsic microenvironment, which have a huge influence on predicting response to established therapies and picking up novel therapeutic targets for each cluster. In this review, we summarize basic characteristics and critical subtyping systems of TNBC, and particularly discuss newly found prospective targets and relevant medications, which were proved promising in clinical trials, thus shedding light on the future development of precision treatment strategies.
Collapse
Affiliation(s)
- Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hai Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Zhang Y, Weng Q, Han J, Chen J. Alantolactone suppresses human osteosarcoma through the PI3K/AKT signaling pathway. Mol Med Rep 2019; 21:675-684. [PMID: 31974628 PMCID: PMC6947914 DOI: 10.3892/mmr.2019.10882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone cancer and results in cancer-related deaths among adolescents. Alantolactone (ALT) demonstrates antitumor properties in various diseases; however, its potential role in osteosarcoma is relatively unclear. The aim of the present study was to evaluate the effect of ALT on osteosarcoma. ALT significantly decreased the viability of U2OS and HOS osteosarcoma cell lines. Cells flow cytometry assay and Hoechst 33258 staining assay revealed that ALT significantly increased the proportion of apoptotic U2OS cells. In addition, wound healing and Transwell invasion assays demonstrated that the invasion and migration of osteosarcoma were markedly reduced upon ALT treatment. It was hypothesized that the antitumor functions of ALT are mediated through inhibition of the PI3K/AKT signaling pathway. In conclusion, the results of the present study confirmed the inhibition of ALT on osteosarcoma cells via downregulation of PI3K/AKT signaling pathways, suggesting ALT as a potential therapeutic candidate for osteosarcoma.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Qiuyan Weng
- Department of Neurology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Jinming Han
- Department of Spinal Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jianming Chen
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|