1
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Kyritsi K, Pacholczyk R, Douglass E, Yu M, Fang H, Zhou G, Kaur B, Wang Q, Munn DH, Hong B. β-blocker suppresses both tumoral sympathetic neurons and perivascular macrophages during oncolytic herpes virotherapy. J Immunother Cancer 2025; 13:e011322. [PMID: 40187755 PMCID: PMC11973798 DOI: 10.1136/jitc-2024-011322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The autonomic nervous system (ANS) plays a key role in regulating tumor development and therapy resistance in various solid tumors. Within the ANS, the sympathetic nervous system (SNS) is typically associated with protumor effects. However, whether the SNS influences the antitumor efficacy of intratumoral injections of oncolytic herpes simplex virus (oHSV) in solid tumors remains unknown. METHODS In this study, we examined SNS innervation and its interaction with immune cell infiltration in both human and murine triple-negative breast cancer models during intratumoral oHSV injections and SNS blockade on oHSV's antitumor activity. RESULTS Intratumor oHSV injection promotes SNS innervation accompanied by CD45+cell infiltration in both the human MDA-MB-468 orthotopic model and the murine 4T1 mammary tumor model. Mechanistically, tumor-secreted factors vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and transforming growth factor beta (TGF-β) and transcription factors (CREB, AP-1, MeCP2, and REST), which promote SNS innervation, were found to be upregulated in oHSV-treated tumors. Combining the SNS antagonist, a β-blocker, with oHSV significantly increased immune cell infiltration, particularly CD8+T cells in oHSV-treated 4T1 tumors. Single-cell messenger RNA sequencing revealed that oHSV injection upregulated a specific population of perivascular macrophages (pvMacs) expressing high levels of VEGFA, CD206, CCL3, and CCL4, which suppress T-cell activation. The use of a β-blocker reduced the infiltration of oHSV-induced pvMacs, transition to inflammatory macrophages expressing Hexb, enhancing the diversity of T-cell receptor clonotypes. Further analysis suggested that TGF-β signaling within the tumor partially mediates SNS activation in the 4T1 model. CONCLUSION Our findings demonstrate that combining a β-blocker with oHSV significantly enhances the antitumor efficacy of oHSV in breast cancer by targeting TGF-β-mediated SNS innervation and immunosuppression.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Eugene Douglass
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Miao Yu
- Genomics core, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Hui Fang
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Balveen Kaur
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Qin Wang
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Department of Pediatrics, Pediatric Immunotherapy Program, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Bangxing Hong
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Rastogi S, Shekher Mishra S, Singh L, Kumar N. Identification of Potential Inhibitors of TGFβR1 for the Treatment of Cancer through Structure-Based Virtual Screening and Molecular Dynamics Simulations. Chem Biodivers 2025; 22:e202401981. [PMID: 39429127 DOI: 10.1002/cbdv.202401981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Globally, cancer is one of the leading causes of death. Resistance to conventional medications, such as chemotherapy and radiation, continues to be a significant challenge in the treatment of cancer despite the availability of numerous medicines. Therefore, the highest priority is to hunt for new therapeutic agents. Transforming growth factor-beta is a pivotal regulatory cytokine that exerts significant influence over cellular processes, particularly emphasizing its role in facilitating and modulating cell proliferation. TGF-β receptor 1, identified as the most promising active site of the TGF-β signaling, is a potent drug target site that has garnered wide attention for developing new anticancer agents. The present investigation investigates the potential natural products as TGFβR1 inhibitors. The SB431542 complexed TGFβR1 protein model was used to screen the natural product database to obtain a compound with high binding potential. NPC247629 has emerged as the best-scored compound among all the screened compounds, demonstrating the highest affinity towards the TGFβR1 regarding docking score -17.54 kcal/mol. The all-atoms MD simulation study indicated that all proposed hits are retained inside the receptor in dynamic states. Additionally, principal component and free energy landscape analysis were performed to explore the binding mechanism of top-hit natural products. The best-screened hits, NPC247629 and NPC60735, have excellent binding affinity and hold a massive potential for TGFβR1 inhibition, paving the way for promising future investigations in cancer treatment.
Collapse
Affiliation(s)
- Saumya Rastogi
- School of Pharmaceutical & Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248001
| | - Shashank Shekher Mishra
- School of Pharmaceutical & Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248001
| | - Lakhveer Singh
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, Haryana, 122003, India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan, 313001
| |
Collapse
|
4
|
Sun J, Luo J, Liu J, Wu H, Li Y, Xu Y, Liu L, Liu X, Zhang Q. Cancer-secreted exosomal miR-1825 induces angiogenesis to promote colorectal cancer metastasis. Cancer Cell Int 2025; 25:63. [PMID: 39987450 PMCID: PMC11847347 DOI: 10.1186/s12935-025-03674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Angiogenesis is one of the important factors related to tumorigenesis, invasion, and metastasis. Cancer-secreted exosomes are essential mediators of intercellular cross-talk and participate in angiogenesis and metastasis. Unveiling the mechanism of angiogenesis is an important way to develop anti-angiogenesis therapeutic strategies to against cancer progression. METHODS miR-1825 expression and relationship with microvascular density were validated in colorectal cancer (CRC) by in situ hybridization (ISH) staining and immunohistochemistry (IHC). Sequential differential centrifugation, transmission electron microscopy, and western blotting analysis were used to extract and characterize exosomes. The effort of exosomal miR-1825 on endothelial cells was examined by transwell assay, wound healing assay, tube formation assay, and aortic ring assay. The relationship of miR-1825, ING1 and the downstream pathway were analyzed by western blot, RT-PCR, Immunofluorescence, and dual-luciferase reporter system analysis. RESULTS Exosomal miR-1825 is associated with angiogenesis in CRC and is enriched in exosomes extracted from the serum of CRC patients. The CRC-secreted exosomal miR-1825 can be transferred into vascular endothelial cells, promoting endothelial cell migration and tube formation in vitro, and facilitating angiogenesis and tumor metastasis in vivo. Mechanistically, exosomal miR-1825 regulates angiogenesis and tumor metastasis by suppressing inhibitor of growth family member 1 (ING1) and activating the TGF-β/Smad2/Smad3 signaling pathway in the recipient HUVECs. CONCLUSIONS Our study demonstrated the CRC-secreted exosomal miR-1825 could be transferred to vascular endothelial cells, subsequently leads to the inhibition of ING1 and the activation of the TGF-β/Smad2/Smad3 signaling pathway, thereby promoting angiogenesis and liver metastasis in CRC. Exosomal miR-1825 is thus a potential diagnostic and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Jingbo Sun
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jialong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yanyan Li
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yangwei Xu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
6
|
Yang C, Yuan W, Liao G, Yu Q, Wang L. Construction of bFGF/heparin and Fe 3O 4 nanoparticles functionalized scaffolds aiming at vascular repair and magnetic resonance imaging monitoring. Int J Biol Macromol 2025; 286:138416. [PMID: 39643199 DOI: 10.1016/j.ijbiomac.2024.138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/17/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This work develops a bioactive basic fibroblast growth factor (bFGF)/heparin and Fe3O4 nanoparticles (NPs) trifunctionalized degradable construct with the potential of using as a vascular tissue engineering scaffold with the aim of improving vascular repair and regeneration therapy. The covalent modification of heparin onto the poly(lactic acid) (PLA)-gelatin (Gel)-Fe3O4 (PGF) scaffold improves the hydrophilicity of the scaffold. Furthermore, the electrostatic adsorption of bFGF on heparin allows for a more consistent and prolonged release of bFGF in situ, hence increasing the stability and effectiveness of bFGF around the surrounding vascular tissues. The sustained release of bFGF promotes the M2 macrophage polarization, and adhesion and migration of macrophages and endothelial cells (ECs), providing a stable and favorable microenvironment for vascular regeneration. Furthermore, the covalently modified heparin minimizes platelet adhesion on the scaffold surface, potentially contributing to the long-term patency of the vascular tissue engineering scaffold. Including Fe3O4 NPs in the scaffold delays degradation and provides an in vivo magnetic resonance imaging (MRI) effect to monitor the scaffold's location and in vivo degradation. Furthermore, the mild photothermal effect of Fe3O4 NPs plays a facilitating role in bFGF release, immune modulation, and ECs manipulation, therefore contributary to the vascular tissue reconstruction.
Collapse
Affiliation(s)
- Congyi Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Weiwen Yuan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Guoxing Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N, Mirzaei H. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res 2024; 29:610. [PMID: 39702532 DOI: 10.1186/s40001-024-02168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps during cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epidermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secretion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regulation of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could provide a comprehensive overview about the underlying mechanisms and could be used for development of further therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
Collapse
Affiliation(s)
- Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Liu S, Ren J, Hu Y, Zhou F, Zhang L. TGFβ family signaling in human stem cell self-renewal and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:26. [PMID: 39604763 PMCID: PMC11602941 DOI: 10.1186/s13619-024-00207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Human stem cells are undifferentiated cells with the capacity for self-renewal and differentiation into distinct cell lineages, playing important role in the development and maintenance of diverse tissues and organs. The microenvironment of stem cell provides crucial factors and components that exert significant influence over the determination of cell fate. Among these factors, cytokines from the transforming growth factor β (TGFβ) superfamily, including TGFβ, bone morphogenic protein (BMP), Activin and Nodal, have been identified as important regulators governing stem cell maintenance and differentiation. In this review, we present a comprehensive overview of the pivotal roles played by TGFβ superfamily signaling in governing human embryonic stem cells, somatic stem cells, induced pluripotent stem cells, and cancer stem cells. Furthermore, we summarize the latest research and advancements of TGFβ family in various cancer stem cells and stem cell-based therapy, discussing their potential clinical applications in cancer therapy and regeneration medicine.
Collapse
Affiliation(s)
- Sijia Liu
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanmei Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Long Zhang
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Tang B, Liu B, Zeng Z. A new TGF-β risk score predicts clinical and immune landscape in colorectal cancer patients. Ann Gastroenterol Surg 2024; 8:927-941. [PMID: 39229560 PMCID: PMC11368510 DOI: 10.1002/ags3.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 09/05/2024] Open
Abstract
Background Aberrant TGF-β signaling pathway can lead to invasive phenotype of colorectal cancer (CRC), resulting in poor prognosis. It is pivotal to develop an effective prognostic factor on the basis of TGF-β-related genes to accurately identify risk of CRC patients. Methods We performed differential analysis of TGF-β-related genes in CRC patients from databases and previous literature to obtain TGF-β-related differentially expressed genes (TRDEGs). LASSO-Cox regression was utilized to build a CRC prognostic feature model based on TRDEGs. The model was validated using two GEO validation sets. Wilcoxon rank-sum test was utilized to test correlation of model with clinical factors. ESTIMATE algorithm and ssGSEA and tumor mutation burden (TMB) analysis were used to analyze immune landscape and mutation burden of high-risk (HR) and low-risk (LR) groups. CellMiner database was utilized to identify therapeutic drugs with high sensitivity to the feature genes. Results We established a six-gene risk prognostic model with good predictive accuracy, which independently predicted CRC patients' prognoses. The HR group was more likely to experience immunotherapy benefits due to higher immune infiltration and TMB. The feature gene TGFB2 could inhibit the efficacy of drugs such as XAV-939, Staurosporine, and Dasatinib, but promote the efficacy of drugs such as CUDC-305 and by-product of CUDC-305. Similarly, RBL1 could inhibit the drug action of Fluphenazine and Imiquimod but promote that of Irofulven. Conclusion A CRC risk prognostic signature was developed on basis of TGF-β-related genes, which provides a reference for risk and further therapeutic selection of CRC patients.
Collapse
Affiliation(s)
- Bing Tang
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| | - Binggang Liu
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| | - Zhiyao Zeng
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| |
Collapse
|
11
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
12
|
Jasim SA, Farber IM, Noraldeen SAM, Bansal P, Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Hamzah HF, Mohammed BA. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment. Microvasc Res 2024; 154:104691. [PMID: 38703993 DOI: 10.1016/j.mvr.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.
Collapse
Affiliation(s)
| | - Irina M Farber
- Department of children's diseases of the F. Filatov clinical institute of children's health, I. M. Sechenov First Moscow State Medical University of Health of Russian Federation (Sechenov University), Moscow, Russia
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan..
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Qadisiyyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
13
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
14
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
15
|
Yu W, Zhang Y, Yao L, Peng J, Tu Y, He B. Research progress on the prevention of tumor by fungal polysaccharides. Trends Food Sci Technol 2024; 147:104422. [DOI: 10.1016/j.tifs.2024.104422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Dutta Gupta S, Ta M. ADAMTS13 regulates angiogenic markers via Ephrin/Eph signaling in human mesenchymal stem cells under serum-deprivation stress. Sci Rep 2024; 14:560. [PMID: 38177376 PMCID: PMC10766954 DOI: 10.1038/s41598-023-51079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.
Collapse
Affiliation(s)
- Srishti Dutta Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India.
| |
Collapse
|
18
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
19
|
Chen Y, Zhang J, Han G, Tang J, Guo F, Li W, Xie L, Xu H, Zhang X, Tian Y, Pan L, Shu Y, Ma L, Chen X. Efficacy and safety of XELOX combined with anlotinib and penpulimab vs XELOX as an adjuvant therapy for ctDNA-positive gastric and gastroesophageal junction adenocarcinoma: a protocol for a randomized, controlled, multicenter phase II clinical trial (EXPLORING study). Front Immunol 2023; 14:1232858. [PMID: 38022553 PMCID: PMC10644233 DOI: 10.3389/fimmu.2023.1232858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background The efficacy of current adjuvant chemotherapy for gastric adenocarcinoma/gastroesophageal junction adenocarcinoma (GA/GEJA) leaves much to be desired. ctDNA could serve as a potential marker to identify patients who are at higher risk of recurrence. Reinforcing standard adjuvant chemotherapy with immunotherapy has already been indicated to significantly improve clinical outcome, albeit such evidence is rare in GA/GEJA. Here, we intend to explore the clinical benefit of the reinforcement of adjuvant immunotherapy and antiangiogenics alongside with chemotherapy in patients who are deemed in high risk of recurrence by ctDNA analysis, which might shed light on further improvements in adjuvant therapy for GA/GEJA. Methods/Design This study is designed as a prospective, multicenter, randomized, controlled phase II study in patients histologically or cytologically diagnosed with GA/GEJA who underwent D2 gastrectomy and achieved R0 or R1 resection. From February 2022, a total of 300 stage III patients will be enrolled and subjected according to ctDNA sequencing results, and those with positive results will subsequently be randomized 1:1 to arm A or B. Patients in arm A will receive anlotinib, penpulimab and XELOX for 6-8 cycles, maintained with anlotinib and penpulimab for up to 1 year, while patients in arm B will receive XELOX alone for 6-8 cycles. ctDNA-negative patients will be assigned to arm C, and patients who are ctDNA positive but failed in randomization will be assigned to arm D. Patients in arms C and D will receive the investigator's choice of therapy. The primary endpoint is the median disease-free survival (DFS) of arm A versus arm B determined via CT/MRI imaging. Secondary endpoints include the DFS of ctDNA positive patients versus ctDNA negative patients, the 2- and 3-year DFS rates, overall survival (OS), the impact of hallmark molecules on the treatment response, adverse events (AEs), and the impact of nutrition status or exercise on recurrence. Discussion We expect that ctDNA would be a strong prognostic factor and ctDNA-positive patients are at higher risk of relapse than ctDNA-negative patients. The addition of anlotinib and penpulimab to XELOX, may contribute to delaying relapse in ctDNA-positive patients. Trial registration https://www.clinicaltrials.gov, identifier NCT05494060.
Collapse
Affiliation(s)
- Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jiaguang Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaohua Han
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Jie Tang
- Department of Oncology, Liyang People's Hospital, Changzhou, China
| | - Fen Guo
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow, Suzhow, China
| | - Li Xie
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Gastric Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yitong Tian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lanlan Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
20
|
Wu XJ, Zhang Z, Wong JP, Rivera-Soto R, White MC, Rai AA, Damania B. Kaposi's sarcoma-associated herpesvirus viral protein kinase augments cell survival. Cell Death Dis 2023; 14:688. [PMID: 37852997 PMCID: PMC10585003 DOI: 10.1038/s41419-023-06193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Oncogenic viruses have developed various strategies to antagonize cell death and maintain lifelong persistence in their host, a relationship that may contribute to cancer development. Understanding how viruses inhibit cell death is essential for understanding viral oncogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with three different cancers in the human population, including Kaposi's sarcoma (KS), the most common cancer in HIV patients. Previous studies have indicated that the KSHV-encoded viral protein kinase (vPK) impacts many processes dysregulated in tumorigenesis. Here, we report that vPK protects cells from apoptosis mediated by Caspase-3. Human umbilical vein endothelial cells (HUVECs) expressing vPK (HUVEC-vPK) have a survival advantage over control HUVEC under conditions of extrinsic- and intrinsic-mediated apoptosis. Abolishing the catalytic activity of vPK attenuated this survival advantage. We found that KSHV vPK-expressing HUVECs exhibited increased activation of cellular AKT kinase, a cell survival kinase, compared to control cells without vPK. In addition, we report that vPK directly binds the pleckstrin homology (PH) domain of AKT1 but not AKT2 or AKT3. Treatment of HUVEC-vPK cells with a pan-AKT inhibitor Miransertib (ARQ 092) reduced the overall phosphorylation of AKT, resulting in the cleavage of Caspase-3 and the induction of apoptosis. Furthermore, vPK expression activated VEGF/VEGFR2 in HUVECs and promoted angiogenesis through the AKT pathway. vPK expression also inhibited the cytotoxicity of cisplatin in vitro and in vivo. Collectively, our findings demonstrate that vPK's ability to augment cell survival and promote angiogenesis is critically dependent on AKT signaling, which is relevant for future therapies for treating KSHV-associated cancers.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhigang Zhang
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason P Wong
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo Rivera-Soto
- Curriculum in Genetics and Molecular Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria C White
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aryan A Rai
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Rastogi S, Mishra SS, Arora MK, Kaithwas G, Banerjee S, Ravichandiran V, Roy S, Singh L. Lactate acidosis and simultaneous recruitment of TGF-β leads to alter plasticity of hypoxic cancer cells in tumor microenvironment. Pharmacol Ther 2023; 250:108519. [PMID: 37625521 DOI: 10.1016/j.pharmthera.2023.108519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Lactate acidosis is often observed in the tumor microenvironment (TME) of solid tumors. This is because glucose breaks down quickly via glycolysis, causing lactate acidity. Lactate is harmful to healthy cells, but is a major oncometabolite for solid cancer cells that do not receive sufficient oxygen. As an oncometabolite, it helps tumor cells perform different functions, which helps solid hypoxic tumor cells spread to other parts of the body. Studies have shown that the acidic TME contains VEGF, Matrix metalloproteinases (MMPs), cathepsins, and transforming growth factor-β (TGF-β), all of which help spread in direct and indirect ways. Although each cytokine is important in its own manner in the TME, TGF-β has received much attention for its role in metastatic transformation. Several studies have shown that lactate acidosis can cause TGF-β expression in solid hypoxic cancers. TGF-β has also been reported to increase the production of fatty acids, making cells more resistant to treatment. TGF-β has also been shown to control the expression of VEGF and MMPs, which helps solid hypoxic tumors become more aggressive by helping them spread and create new blood vessels through an unknown process. The role of TGF-β under physiological conditions has been described previously. In this study, we examined the role of TGF-β, which is induced by lactate acidosis, in the spread of solid hypoxic cancer cells. We also found that TGF-β and lactate work together to boost fatty acid production, which helps angiogenesis and invasiveness.
Collapse
Affiliation(s)
- Saumya Rastogi
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India
| | - Shashank Shekher Mishra
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India
| | - Mandeep Kumar Arora
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A central university), Lucknow, Uttar Pradesh, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Lakhveer Singh
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India.
| |
Collapse
|
22
|
Liu Y, Xiong H, Yan C, Wang Y, Cao W, Qie S. Bioinformatic Analysis of The Prognostic Value of A Panel of Six Amino Acid Transporters in Human Cancers. CELL JOURNAL 2023; 25:613-624. [PMID: 37718764 PMCID: PMC10520983 DOI: 10.22074/cellj.2023.2004011.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE Solid tumor cells utilize amino acid transporters (AATs) to increase amino acid uptake in response to nutrient-insufficiency. The upregulation of AATs is therefore critical for tumor development and progression. This study identifies the upregulated AATs under amino acid deprived conditions, and further determines the clinicopathological importance of these AATs in evaluating the prognosis of patients with cancers. MATERIALS AND METHODS In this experimental study, the Gene Expression Omnibus (GEO) datasets (GSE62673, GSE26370, GSE125782 and GSE150874) were downloaded from the NCBI website and utilized for integrated differential expression and pathway analysis v0.96, Gene Set Enrichment Analysis (GSEA), and REACTOME analyses to identify the AATs upregulated in response to amino acid deprivation. In addition, The Cancer Genome Atlas (TCGA) datasets with prognostic information were assessed and employed to evaluate the association of identified AATs with patients' prognoses using SurvExpress analysis. RESULTS Using analysis of NCBI GEO data, this study shows that amino acid deprivation leads to the upregulation of six AAT genes; SLC3A2, SLC7A5, SLC7A1, SLC1A4, SLC7A11 and SLC1A5. GSEA and REACTOME analyses identified altered signaling in cells exposed to amino acid deprivation, such as pathways related to stress responses, the cell cycle and apoptosis. In addition, Principal Component Analysis showed these six AAT genes to be well divided into two distinct clusters in relation to TCGA tumor tissues versus normal counterparts. Finally, Log-Rank analysis confirmed the upregulation of this panel of six AAT genes is correlated with poor prognosis in patients with colorectal, esophageal, kidney and lung cancers. CONCLUSION The upregulation of a panel of six AATs is common in several human cancers and may provide a valuable diagnostic tool to evaluate the prognosis of patients with colorectal, esophageal, kidney and lung cancers.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haijuan Xiong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenhui Yan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuo Qie
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Ji HZ, Chen L, Ren M, Li S, Liu TY, Chen HJ, Yu HH, Sun Y. CXCL8 Promotes Endothelial-to-Mesenchymal Transition of Endothelial Cells and Protects Cells from Erastin-Induced Ferroptosis via CXCR2-Mediated Activation of the NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1210. [PMID: 37765018 PMCID: PMC10536478 DOI: 10.3390/ph16091210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
CXCL8-CXCR1/CXCR2 signaling pathways might form complex crosstalk among different cell types within the ovarian tumor microenvironment, thereby modulating the behaviors of different cells. This study aimed to investigate the expression pattern of CXCL8 in the ovarian tumor microenvironment and its impact on both endothelial-to-mesenchymal transition (EndMT) and ferroptosis of endothelial cells. The human monocytic cell line THP-1 and the human umbilical vein endothelial cell line PUMC-HUVEC-T1 were used to conduct in vitro studies. Erastin was used to induce ferroptosis. Results showed that tumor-associated macrophages are the major source of CXCL8 in the tumor microenvironment. CXCL8 treatment promoted the nucleus entrance of NF-κB p65 and p65 phosphorylation via CXCR2 in endothelial cells, suggesting activated NF-κB signaling. Via the NF-κB signaling pathway, CXCL8 enhanced TGF-β1-induced EndMT of PUMC-HUVEC-T1 cells and elevated their expression of SLC7A11 and GPX4. These trends were drastically weakened in groups with CXCR2 knockdown or SB225002 treatment. TPCA-1 reversed CXCL8-induced upregulation of SLC7A11 and GPX4. CXCL8 protected endothelial cells from erastin-induced ferroptosis. However, these protective effects were largely canceled when CXCR2 was knocked down. In summary, CXCL8 can activate the NF-κB signaling pathway in endothelial cells in a CXCR2-dependent manner. The CXCL8-CXCR2/NF-κB axis can enhance EndMT and activate SLC7A11 and GPX4 expression, protecting endothelial cells from ferroptosis.
Collapse
Affiliation(s)
- Hai-zhou Ji
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Li Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Mi Ren
- Department of Oncological Nursing, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China;
| | - Sang Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Tong-yu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Hong-ju Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Hui-hui Yu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| |
Collapse
|
24
|
Lv S, Liu Y, Xie C, Xue C, Du S, Yao J. Emerging role of interactions between tumor angiogenesis and cancer stem cells. J Control Release 2023; 360:468-481. [PMID: 37391031 DOI: 10.1016/j.jconrel.2023.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Tumor angiogenesis and cancer stem cells (CSCs) are two major hallmarks of solid tumors. They have long received attention for their critical roles in tumor progression, metastasis and recurrence. Meanwhile, plenty of evidence indicates the close association between CSCs and tumor vasculature. CSCs are proven to promote tumor angiogenesis, and the highly vascularized tumor microenvironment further maintains CSCs growth in return, thereby forming a hard-breaking vicious circle to promote tumor development. Hence, though monotherapy targeting tumor vasculature or CSCs has been extensively studied over the past decades, the poor prognosis has been limiting the clinical application. This review summarizes the crosstalk between tumor vasculature and CSCs with emphasis on small-molecule compounds and the associated biological signaling pathways. We also highlight the importance of linking tumor vessels to CSCs to disrupt the CSCs-angiogenesis vicious circle. More precise treatment regimens targeting tumor vasculature and CSCs are expected to benefit future tumor treatment development.
Collapse
Affiliation(s)
- Shuai Lv
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yufei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Changheng Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chenyang Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
25
|
Liu X, Huangfu Y, Wang J, Kong P, Tian W, Liu P, Fang C, Li S, Nie Y, Feng Z, Huang P, Shi S, Zhang C, Dong A, Wang W. Supramolecular Polymer-Nanomedicine Hydrogel Loaded with Tumor Associated Macrophage-Reprogramming polyTLR7/8a Nanoregulator for Enhanced Anti-Angiogenesis Therapy of Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300637. [PMID: 37229748 PMCID: PMC10401096 DOI: 10.1002/advs.202300637] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/27/2023]
Abstract
Anti-angiogenic therapies targeting inhibition of vascular endothelial growth factor (VEGF) pathway show clinical benefit in hypervascular hepatocellular carcinoma (HCC) tumors. However, HCC expresses massive pro-angiogenic factors in the tumor microenvironment (TME) in response to anti-angiogenic therapy, recruiting tumor-associated macrophages (TAMs), leading to revascularization and tumor progression. To regulate cell types in TME and promote the therapeutic efficiency of anti-angiogenic therapy, a supramolecular hydrogel drug delivery system (PLDX-PMI) co-assembled by anti-angiogenic nanomedicines (PCN-Len nanoparticles (NPs)) and oxidized dextran (DX), and loaded with TAMs-reprogramming polyTLR7/8a nanoregulators (p(Man-IMDQ) NRs) is developed for orthotopic liver cancer therapy. PCN-Len NPs target tyrosine kinases of vascular endothelial cells and blocked VEGFR signaling pathway. p(Man-IMDQ) NRs repolarize pro-angiogenic M2-type TAMs into anti-angiogenic M1-type TAMs via mannose-binding receptors, reducing the secretion of VEGF, which further compromised the migration and proliferation of vascular endothelial cells. On highly malignant orthotopic liver cancer Hepa1-6 model, it is found that a single administration of the hydrogel formulation significantly decreases tumor microvessel density, promotes tumor vascular network maturation, and reduces M2-subtype TAMs, thereby effectively inhibiting tumor progression. Collectively, findings in this work highlight the great significance of TAMs reprogramming in enhancing anti-angiogenesis treatment for orthotopic HCC, and provides an advanced hydrogel delivery system-based synergistic approach for tumor therapy.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Yini Huangfu
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Pengxu Kong
- Department of Structural Heart DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Weijun Tian
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052P. R. China
| | - Peng Liu
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052P. R. China
| | - Chuang Fang
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052P. R. China
| | - Shuangyang Li
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Yu Nie
- Department of Gastrointestinal OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Shengbin Shi
- Department of Gastrointestinal OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Anjie Dong
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Frontiers Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)Tianjin UniversityTianjin300072P. R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
26
|
Zhao S, Zhang Q, Liu M, Du J, Wang T, Li Y, Zeng W. Application of stem cells in engineered vascular graft and vascularized organs. Semin Cell Dev Biol 2023; 144:31-40. [PMID: 36411157 DOI: 10.1016/j.semcdb.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Recent studies report that stem cell therapies have been applied successfully to patients, This has increased anticipations that this regeneration strategy could be a potential method to treat a wide range of intractable diseases some day. Stem cells offer new prospects for the treatment of incurable diseases and for tissue regeneration and repairation because of their unique biological properties. Angiogenesis a key process in tissue regeneration and repairation. Vascularization of organs is one of the main challenges hindering the clinical application of engineered tissues. Efficient production of engineered vascular grafts and vascularized organs is of critical importance for regenerative medicine. In this review, we focus on the types of stem cells that are widely used in tissue engineering and regeneration, as well as their application of these stem cells in the construction of tissue-engineered vascular grafts and vascularization of tissue-engineered organs.
Collapse
Affiliation(s)
- Shanlan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Qiao Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, China; Department of Pain and Rehabilitation, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
| | - Min Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Jiahui Du
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Tingting Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yanzhao Li
- Department of Anatomy, Third Military Medical University, Chongqing, China.
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China; Jinfeng Laboratory, Chongqing 401329, People's Republic China; State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.
| |
Collapse
|
27
|
Moshe DL, Baghaie L, Leroy F, Skapinker E, Szewczuk MR. Metamorphic Effect of Angiogenic Switch in Tumor Development: Conundrum of Tumor Angiogenesis Toward Progression and Metastatic Potential. Biomedicines 2023; 11:2142. [PMID: 37626639 PMCID: PMC10452636 DOI: 10.3390/biomedicines11082142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of angiogenesis has significantly expanded over the past five decades. More recently, research has focused on this process at a more molecular level, looking at it through the signaling pathways that activate it and its non-direct downstream effects. This review discusses current findings in molecular angiogenesis, focusing on its impact on the immune system. Moreover, the impairment of this process in cancer progression and metastasis is highlighted, and current anti-angiogenic treatments and their effects on tumor growth are discussed.
Collapse
Affiliation(s)
- Daniel Leon Moshe
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Fleur Leroy
- Faculté de médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Myron R. Szewczuk
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| |
Collapse
|
28
|
Virmani T, Kumar G, Sharma A, Pathak K, Akhtar MS, Afzal O, Altamimi ASA. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023; 15:2928. [PMID: 37447573 DOI: 10.3390/polym15132928] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The limitations associated with the conventional treatment of cancer have necessitated the design and development of novel drug delivery systems based mainly on nanotechnology. These novel drug delivery systems include various kinds of nanoparticles, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, hydrogels, and polymeric micelles. Among the various kinds of novel drug delivery systems, chitosan-based nanoparticles have attracted the attention of researchers to treat cancer. Chitosan is a polycationic polymer generated from chitin with various characteristics such as biocompatibility, biodegradability, non-toxicity, and mucoadhesiveness, making it an ideal polymer to fabricate drug delivery systems. However, chitosan is poorly soluble in water and soluble in acidic aqueous solutions. Furthermore, owing to the presence of reactive amino groups, chitosan can be chemically modified to improve its physiochemical properties. Chitosan and its modified derivatives can be employed to fabricate nanoparticles, which are used most frequently in the pharmaceutical sector due to their possession of various characteristics such as nanosize, appropriate pharmacokinetic and pharmacodynamic properties, non-immunogenicity, improved stability, and improved drug loading capacity. Furthermore, it is capable of delivering nucleic acids, chemotherapeutic medicines, and bioactives using modified chitosan. Chitosan and its modified derivative-based nanoparticles can be targeted to specific cancer sites via active and passive mechanisms. Based on chitosan drug delivery systems, many anticancer drugs now have better effectiveness, potency, cytotoxicity, or biocompatibility. The characteristics of chitosan and its chemically tailored derivatives, as well as their use in cancer therapy, will be examined in this review.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
29
|
Li H, Zhou S, Wu M, Qu R, Wang X, Chen W, Jiang Y, Jiang X, Zhen X. Light-Driven Self-Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210920. [PMID: 36938865 DOI: 10.1002/adma.202210920] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/27/2023] [Indexed: 06/16/2023]
Abstract
Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off-target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA-free biomimetic semiconducting polymer nanoparticle (SPNP ) is herein reported for precise tumor vascular disruption through two-stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid-derived suppressor cells. Therefore, this study not only illustrates a light-driven self-recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies.
Collapse
Affiliation(s)
- Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuyan Jiang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
30
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
31
|
Naipauer J, Mesri EA. The Kaposi's sarcoma progenitor enigma: KSHV-induced MEndT-EndMT axis. Trends Mol Med 2023; 29:188-200. [PMID: 36635149 PMCID: PMC9957928 DOI: 10.1016/j.molmed.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Endothelial-to-mesenchymal transition has been described in tumors as a source of mesenchymal stroma, while the reverse process has been proposed in tumor vasculogenesis and angiogenesis. A human oncogenic virus, Kaposi's sarcoma herpes virus (KSHV), can regulate both processes in order to transit through this transition 'boulevard' when infecting KS oncogenic progenitor cells. Endothelial or mesenchymal circulating progenitor cells can serve as KS oncogenic progenitors recruited by inflammatory cytokines because KSHV can reprogram one into the other through endothelial-to-mesenchymal and mesenchymal-to-endothelial transitions. Through these novel insights, the identity of the potential oncogenic progenitor of KS is revealed while gaining knowledge of the biology of the mesenchymal-endothelial differentiation axis and pointing to this axis as a therapeutic target in KS.
Collapse
Affiliation(s)
- Julian Naipauer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Enrique A Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
33
|
Jung E, Ou S, Ahn SS, Yeo H, Lee YH, Shin SY. The JNK-EGR1 signaling axis promotes TNF-α-induced endothelial differentiation of human mesenchymal stem cells via VEGFR2 expression. Cell Death Differ 2023; 30:356-368. [PMID: 36371601 PMCID: PMC9950069 DOI: 10.1038/s41418-022-01088-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into endothelial cells; however, the mechanisms underlying this process in the tumor microenvironment (TME) remain elusive. This study shows that tumor necrosis factor alpha (TNF-α), a key cytokine present in the TME, promotes the endothelial differentiation of MSCs by inducing vascular endothelial growth factor receptor 2 (VEGFR2) gene expression. EGR1 is a member of the zinc-finger transcription factor family induced by TNF-α. Our findings indicate that EGR1 directly binds to the VEGFR2 promoter and transactivates VEGFR2 expression. We also demonstrate that EGR1 forms a complex with c-JUN activated by c-JUN N-terminal kinase (JNK) to promote VEGFR2 transcription and endothelial differentiation in MSCs in response to TNF-α stimulation. The shRNA-mediated silencing of EGR1 or c-JUN abrogates TNF-α-induced VEGFR2 transcription and the endothelial differentiation of MSCs. To further evaluated the role of EGR1 in the endothelial differentiation of BM-MSCs, we used a syngenic tumor implantation model. 4T1 mouse mammary tumor cells were injected subcutaneously into BALB/c mice with primary mBM-MSCs isolated from wild-type (Egr1+/+) or Egr1-null (Egr1-/-) mice. CD31-positive cells were predominantly observed at the border of the tumor in the 4T1 plus wild-type MSC group, while staining less in the 4T1 alone or 4T1 plus Egr1-null MSC group. Collectively, these findings demonstrate that the JNK-EGR1 signaling axis plays a crucial role in the TNF-α-induced endothelial differentiation of MSCs in the TME, which could be a potential therapeutic target for solid tumors vasculatures.
Collapse
Affiliation(s)
- Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sukjin Ou
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
34
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
35
|
Saccu G, Menchise V, Gai C, Bertolin M, Ferrari S, Giordano C, Manco M, Dastrù W, Tolosano E, Bussolati B, Calautti E, Camussi G, Altruda F, Fagoonee S. Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Corneal Wound Repair by Regulating Inflammation and Angiogenesis. Cells 2022; 11:3892. [PMID: 36497151 PMCID: PMC9736484 DOI: 10.3390/cells11233892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Severe corneal damage leads to complete vision loss, thereby affecting life quality and impinging heavily on the healthcare system. Current clinical approaches to manage corneal wounds suffer from severe drawbacks, thus requiring the development of alternative strategies. Of late, mesenchymal stromal/stem cell (MSC)-derived extracellular vesicles (EVs) have become a promising tool in the ophthalmic field. In the present study, we topically delivered bone-marrow-derived MSC-EVs (BMSC-EVs), embedded in methylcellulose, in a murine model of alkali-burn-induced corneal damage in order to evaluate their role in corneal repair through histological and molecular analyses, with the support of magnetic resonance imaging. Our data show that BMSC-EVs, used for the first time in this specific formulation on the damaged cornea, modulate cell death, inflammation and angiogenetic programs in the injured tissue, thus leading to a faster recovery of corneal damage. These results were confirmed on cadaveric donor-derived human corneal epithelial cells in vitro. Thus, BMSC-EVs modulate corneal repair dynamics and are promising as a new cell-free approach for intervening on burn wounds, especially in the avascularized region of the eye.
Collapse
Affiliation(s)
- Gabriele Saccu
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Valeria Menchise
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center “Guido Tarone”, 10126 Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | | | - Cristina Giordano
- Ophthalmology Veterinary Practice, C.so Galileo Ferraris 121, 10126 Turin, Italy
| | - Marta Manco
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Walter Dastrù
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Benedetta Bussolati
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Enzo Calautti
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
36
|
Deletion of TNF in Winnie- APCMin/+ Mice Reveals Its Dual Role in the Onset and Progression of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2022; 23:ijms232315145. [PMID: 36499472 PMCID: PMC9737576 DOI: 10.3390/ijms232315145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Colorectal cancer (CRC) is among the best examples for depicting the relationship between inflammation and cancer. The introduction of new therapeutics targeting inflammatory mediators showed a marked decrease in the overall risk of CRC, although their chemopreventive potential is still debated. Specifically, a monoclonal antibody that blocks tumor necrosis factor (TNF), infliximab, increases CRC risk in inflammatory bowel disease patients. To address the axis between TNF and CRC development and progression, we depleted the Tnf from our previously established murine model of colitis-associated cancer (CAC), the Winnie-ApcMin/+ line. We characterized the new Winnie-APCMin/+-TNF-KO line through macroscopical and microscopical analyses. Surprisingly, the latter demonstrated that the deletion of Tnf in Winnie-ApcMin/+ mice resulted in an initial reduction in dysplastic lesion incidence in 5-week-old mice followed by a faster disease progression at 8 weeks. Histological data were confirmed by the molecular profiling obtained from both the real-time PCR analysis of the whole tissue and the RNA sequencing of the macrodissected tumoral lesions from Winnie-APCMin/+-TNF-KO distal colon at 8 weeks. Our results highlight that TNF could exert a dual role in CAC, supporting the promotion of neoplastic lesions onset in the early stage of the disease while inducing their reduction during disease progression.
Collapse
|
37
|
Li ZX, Chen JX, Zheng ZJ, Cai WJ, Yang XB, Huang YY, Gong Y, Xu F, Chen YS, Lin L. TGF-β1 promotes human breast cancer angiogenesis and malignant behavior by regulating endothelial-mesenchymal transition. Front Oncol 2022; 12:1051148. [PMID: 36465358 PMCID: PMC9709251 DOI: 10.3389/fonc.2022.1051148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndMT) is an important process of angiogenesis, which plays a significant role in in tumor invasion and metastasis, while its regulatory mechanisms in breast cancer remain to be fully elucidated. We previously demonstrated that tumor-associated macrophages (TAMs) can induce EndMT in endothelial cells by secreting CCL18 through the activation of the TGF-β and Notch signaling pathways in breast cancer. This study was designed to study the role of EndMT in breast cancer angiogenesis and progression in order to explore the underlying mechanism. METHODS Immunohistochemistry (IHC) was used to evaluate the expression of microvascular density (MVD) and EndMT markers in breast cancer. TGF-β1 was used to induce EndMT models of differentiated-endothelial breast cancer stem-like cells (BCSLCs). In vitro cell migration, proliferation and matrigel tube-formation assays, as well as in vivo nude mouse tumor-bearing model and nude mouse dorsal skinfold window chamber (DSWC) model, were utilized to investigate the effects in order to explore the mechanism of EndMT induced by TGF-β1 on breast cancer progression. RESULTS In this study, we demonstrated that the EndMT markers were positively associated with MVD indicating unfavorable prognosis of invasive ductal carcinoma (IDC) patients. Functionally, TGF-β1 promoted migration, proliferation and angiogenesis of differentiated-endothelial BCSLCs by inducing EndMT in vitro and promoted tumor growth and angiogenesis in vivo. Mechanically, we revealed TGF-β1 induced EndMT by activation of TGF-β and Notch signaling pathways with increase of p-Smad2/3 and Notch1 expression. Moreover, we found Snail and Slug were key factors of TGF-β and Notch signaling pathways. CONCLUSION Our findings elucidated the mechanism of TGF-β1 in the promotion of angiogenesis and progression by EndMT in breast cancer.
Collapse
Affiliation(s)
- Zi-Xiong Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jie-Xin Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Jun Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wang-Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiong-Bin Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuan-Yuan Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yao Gong
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| | - Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Song Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| |
Collapse
|
38
|
SOD3 Expression in Tumor Stroma Provides the Tumor Vessel Maturity in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10112729. [DOI: 10.3390/biomedicines10112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.
Collapse
|
39
|
Breast Tumor Cell-Stimulated Bone Marrow-Derived Mesenchymal Stem Cells Promote the Sprouting Capacity of Endothelial Cells by Promoting VEGF Expression, Mediated in Part through HIF-1α Increase. Cancers (Basel) 2022; 14:cancers14194711. [PMID: 36230633 PMCID: PMC9562024 DOI: 10.3390/cancers14194711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary ROS and JAK/Stat3 cooperatively upregulate the expression of HIF-1α in bone marrow-derived mesenchymal stem cells under normoxic conditions in response to breast tumor cells. The upregulation of HIF-1α contributes in part to the increase in VEGF expression in the bone marrow-derived mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells improve the angiogenic sprouting capacity of mature endothelial cells in a VEGF-dependent manner. Abstract Breast tumor cells recruit bone marrow-derived mesenchymal stem cells (BM-MSCs) and alter their cellular characteristics to establish a tumor microenvironment. BM-MSCs enhance tumor angiogenesis through various mechanisms. We investigated the mechanisms by which BM-MSCs promote angiogenesis in response to breast tumor. Conditioned media from MDA-MB-231 (MDA CM) and MCF7 (MCF7 CM) breast tumor cells were used to mimic breast tumor conditions. An in vitro spheroid sprouting assay using human umbilical vein endothelial cells (HUVECs) was conducted to assess the angiogenesis-stimulating potential of BM-MSCs in response to breast tumors. The ROS inhibitor N-acetylcysteine (NAC) and JAK inhibitor ruxolitinib attenuated increased HIF-1α in BM-MSCs in response to MDA CM and MCF7 CM. HIF-1α knockdown or HIF-1β only partially downregulated VEGF expression and, therefore, the sprouting capacity of HUVECs in response to conditioned media from BM-MSCs treated with MDA CM or MCF7 CM. Inactivation of the VEGF receptor using sorafenib completely inhibited the HUVECs’ sprouting. Our results suggest that increased HIF-1α expression under normoxia in BM-MSCs in response to breast tumor cells is mediated by ROS and JAK/Stat3, and that both HIF-1α-dependent and -independent mechanisms increase VEGF expression in BM-MSCs to promote the angiogenic sprouting capacity of endothelial cells in a VEGF-dependent manner.
Collapse
|
40
|
Oct4 cooperates with c-Myc to improve mesenchymal-to-endothelial transition and myocardial repair of cardiac-resident mesenchymal stem cells. Stem Cell Res Ther 2022; 13:445. [PMID: 36056383 PMCID: PMC9438134 DOI: 10.1186/s13287-022-03120-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac-resident mesenchymal stem cells (cMSCs) can exhibit fibrotic, proinflammatory, and proangiogenic phenotype in response to myocardial ischemia (Isch). How their phenotypic fate decisions are determined remains poorly understood. Here, we demonstrate that the cooperation of Oct4 and c-Myc in cMSCs creates a preferable mesenchymal-to-endothelial transition (MEndoT) to promote angiogenesis and consequent myocardial repair. METHODS We collected MSCs from cardiac and peripheral blood of rat with left ventricular Isch (LV Isch) 30 days after myocardial infarction (MI) or sham operation. After a comparison of characterization between cMSCs and peripheral blood MSCs (pbMSCs), we conducted transcriptome analysis and RNA sequencing of cMSCs. Using loss/gain-of-function approaches to understand the cooperation of c-Myc and Oct4 on MEndoT of cMSCs under hypoxic condition, we explored the mechanisms through transcriptome and functional experiment, and chromatin immunoprecipitation. Next, we transplanted male cMSCs with overexpression or inhibition of c-Myc/Oct4 into the infarcted myocardium of female rats and evaluated infarct size, cell retention, inflammation, remodeling, and function after 30 days. RESULTS LV Isch switched cMSCs toward both inflammatory and proangiogenic phenotypes, with increased secretion of inflammatory cytokines as well as decreased expression of proangiogenic factors. The effect of LV Isch on pbMSCs was less remarkable. Gene expression heatmap showed imbalance in expression of Oct4 and c-Myc regulating genes associated with remodeling of cMSCs. We provided evidence that cMSCs-specific c-Myc- versus Oct4-overexpression showed divergent genomic signatures, and their corresponding target genes play an important role in regulating cMSCs phenotypic changes. In particular, Oct4 accelerated angiogenesis induced by c-Myc overexpression in cMSCs and inhibited their phenotypic transition into inflammatory cells and fibroblast. Mechanistically, exogenous Oct4 caused c-Myc to translocate from the nucleus to the cytoplasm and activated some of its target signalings including VEGF signaling. Although transplantation of cMSCs alone did not improve LV remodeling and function, cMSCs co-transfected with c-Myc and Oct4 promoted a more positive effect in their survival and reparative properties, increased animal survival, reduced infarct size, decreased scar thickness, inhibited LV remodeling, and improved heart function 30 days after MI. Significantly, Oct4 promoted MEndoT ("Rescue me" signal) of cMSCs after both c-Myc stimulation in vitro and transplantation into the infarcted heart. CONCLUSIONS Myocardial Isch drives resident cMSCs toward multiple phenotypes. Oct4 interacts with c-Myc to promote MEndoT capacity of cMSCs and improve their survival and reparative effects through upregulation of angiogenesis-related signaling pathways. These findings may identify novel targets for stem cell therapy.
Collapse
|
41
|
Wang P, Deng Z, Li A, Li R, Huang W, Cui J, Chen S, Li B, Zhang S. β-Catenin promotes long-term survival and angiogenesis of peripheral blood mesenchymal stem cells via the Oct4 signaling pathway. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1434-1449. [PMID: 36050404 PMCID: PMC9535028 DOI: 10.1038/s12276-022-00839-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has been extensively studied to improve heart function following myocardial infarction; however, its therapeutic potency is limited by low rates of engraftment, survival, and differentiation. Here, we aimed to determine the roles of the β-catenin/Oct4 signaling axis in the regulation of long-term survival and angiogenesis of peripheral blood mesenchymal stem cells (PBMSCs). These cells were obtained from rat abdominal aortic blood. We showed that β-catenin promotes the self-renewal, antiapoptotic effects, and long-term survival of PBMSCs by activating the Oct4 pathway through upregulation of the expression of the antiapoptotic factors Bcl2 and survivin and the proangiogenic cytokine bFGF and suppression of the levels of the proapoptotic factors Bax and cleaved caspase-3. β-Catenin overexpression increased Oct4 expression. β-Catenin knockdown suppressed Oct4 expression in PBMSCs. However, β-catenin levels were not affected by Oct4 overexpression or knockdown. Chromatin immunoprecipitation assays proved that β-catenin directly regulates Oct4 transcription in PBMSCs. In vivo, PBMSCs overexpressing β-catenin showed high survival in infarcted hearts and resulted in better myocardial repair. Further functional analysis identified Oct4 as the direct upstream regulator of Ang1, bFGF, HGF, VEGF, Bcl2, and survivin, which cooperatively drive antiapoptosis and angiogenesis of engrafted PBMSCs. These findings revealed the regulation of β-catenin in PBMSCs by the Oct4-mediated antiapoptotic/proangiogenic signaling axis and provide a breakthrough point for improving the long-term survival and therapeutic effects of PBMSCs. Boosting expression of a specific gene has allowed researchers to generate stem cells with increased capacity for tissue repair after a heart attack. Several studies have shown that treatment with a population of circulating cells known as ‘peripheral blood mesenchymal stem cells’ (PBMSCs) can regenerate cardiac tissue. These cells generally have a short lifespan when used therapeutically, but researchers led by Shaoheng Zhang at Jinan University in Guangzhou China have increased long-term survival and performance by boosting expression of the gene encoding β-catenin, a protein that promotes cell survival and proliferation. PBMSCs expressing increased levels of β-catenin preserved heart function in a rat model of heart attack, stimulating blood vessel growth and improving animal survival. This study also reveals proteins regulated by β-catenin, which could potentially be exploited for finer control of PBMSC function.
Collapse
Affiliation(s)
- Pengzhen Wang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China.,Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Zhanyu Deng
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Aiguo Li
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Rongsen Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Weiguang Huang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Jin Cui
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Songsheng Chen
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Biao Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China
| | - Shaoheng Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, P.R. China.
| |
Collapse
|
42
|
VEGF Pathway Gene Expression Profile of Proliferating versus Involuting Infantile Hemangiomas: Preliminary Evidence and Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9060908. [PMID: 35740845 PMCID: PMC9221806 DOI: 10.3390/children9060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/23/2023]
Abstract
Background. Infantile hemangiomas may have unexpected behavior. Initial regression (spontaneously or drug-induced) may be followed by unexplained recurrences. At this moment, there are no well-established criteria to predict infantile hemangioma reccurrences. Methods. We compared the VEGF pathway gene expression profile for one case of involuting infantile hemangioma versus one case of recurrent proliferative infantile hemangioma using TaqMan Array. Results. We found ten genes upregulated for both involuting and recurrent proliferative hemangiomas: ACTB, KRAS, MAP2K1, HRAS, NOS3, BAD, HSPB1, HPRT1, GUSB, and CASP9. Thirteen genes were downregulated for both involuting and proliferative hemangiomas: FIGF, ACTG1, GRB2, MAPKAPK2, ACTG2, MAP2K2, MAPK3, HSP90AA1, MAP2K6, NRAS, ACTA1, KDR, and MAPK1. Three genes showed divergent expression between proliferating and involuting hemangiomas. Proliferating hemangioma had MAPK14 and AKT1 gene upregulation and ACTA2 downregulation. Involuting infantile hemangioma was characterized by ACTA2 upregulation and AKT1 and MAPK14 downregulation. Conclusions. Three genes, AKT1, p38/MAPK14, and ACTA2, were found to have divergent expression in proliferating and involuting infantile hemangiomas. Excepting AKT1, which was mentioned in the last ISSVA classification (strictly related to Proteus Syndrome), none of the other genes were reported. An accurate gene expression profile mapping of infantile hemangiomas together with a gene expression-based hemangioma classification is stringently needed.
Collapse
|
43
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
Sohel M, Sultana H, Sultana T, Mamun AA, Amin MN, Hossain MA, Ali MC, Aktar S, Sultana A, Rahim ZB, Mitra S, Dash R. Chemotherapeutics activities of dietary phytoestrogens against prostate cancer: From observational to clinical studies. Curr Pharm Des 2022; 28:1561-1580. [PMID: 35652403 DOI: 10.2174/1381612828666220601153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment was well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka-1230. Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Armin Sultana
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
45
|
Gilazieva Z, Ponomarev A, Rizvanov A, Solovyeva V. The Dual Role of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Carcinogenesis. BIOLOGY 2022; 11:biology11060813. [PMID: 35741334 PMCID: PMC9220333 DOI: 10.3390/biology11060813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane structures that play the role of intermediaries between tumor cells and the tumor microenvironment (TME) because they have the ability to transport lipids, transcription factors, mRNA, and proteins. Mesenchymal stem cells (MSCs) are a major component of the TME and may have different effects on tumor progression using EVs. This review includes information about various studies which have reported that EVs from MSCs can have either antitumor or pro-tumor effects, depending on both the tumor type and developmental stage. It provides an overview of the published data on EV MSCs and their effect on tumor cells. In addition, the use of EV MSCs for the development of new methods for treating oncological diseases is described. Abstract Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment (TME) and play an important role in tumor progression. MSCs remodel the extracellular matrix, participate in the epithelial–mesenchymal transition, promote the spread of metastases, and inhibit antitumor immune responses in the TME; however, there are also data pertaining to the antitumor effects of MSCs. MSCs activate the cell death mechanism by modulating the expression of proteins involved in the regulation of the cell cycle, angiogenesis receptors, and proapoptotic proteins. One of the main ways in which MSCs and TME interact is through the production of extracellular vesicles (EVs) by cells. Currently, data on the effects of both MSCs and their EVs on tumor cells are rather contradictory. Various studies have reported that EVs from MSCs can have either antitumor or pro-tumor effects, depending on both the tumor type and developmental stage. In this review, we discuss published data on EV MSCs and their effect on tumor cells. The molecular composition of vesicles obtained from MSCs is also presented in the review. In addition, the use of EV MSCs for the development of new methods for treating oncological diseases is described.
Collapse
|
46
|
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma Associated Mesenchymal Stem/Stromal Cells - Architects of the Pro-tumorigenic tumor microenvironment. Stem Cells 2022; 40:705-715. [PMID: 35583414 PMCID: PMC9406606 DOI: 10.1093/stmcls/sxac036] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
The interaction between tumor cells and non-malignant hosts cells within the tumor microenvironment (TME) is critical to the pathophysiology of cancer. These non-malignant host cells, consisting of a variety of stromal, immune and endothelial cells, engage in a complex bidirectional crosstalk with the malignant tumor cells. Mesenchymal stem/stromal cells (MSCs) are one of these host cells, and they play a critical role in directing the formation and function of the entire TME. These MSCs are epigenetically reprogrammed by cancer cells to assume a strongly pro-tumorigenic phenotype and are referred to as carcinoma-associated mesenchymal stem/stromal cells (CA-MSCs). Studies over the last decade demonstrate that CA-MSCs not only directly interact with cancer cells to promote tumor growth and metastasis, but also orchestrate the formation of the TME. CA-MSCs can differentiate into virtually all stromal sub-lineages present in the TME, including pro-tumorigenic cancer associated fibroblasts (CAF), myofibroblasts, and adipocytes. CA-MSCs and the CAFs they produce, secrete much of the extracellular matrix in the TME. Furthermore, CA-MSC secreted factors promote angiogenesis, and recruit immunosuppressive myeloid cells effectively driving tumor immune exclusion. Thus CA-MSCs impact nearly every aspect of the TME. Despite their influence on cancer biology, as CA-MSCs represent a heterogenous population without a single definitive marker, significant confusion remains regarding the origin and proper identification CA-MSCs. This review will focus on the impact of CA-MSCs on cancer progression and metastasis and the ongoing work on CA-MSC identification, nomenclature and mechanism of action.
Collapse
Affiliation(s)
- Len Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ronald J Buckanovich
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
47
|
Flores-García LC, Ventura-Gallegos JL, Romero-Córdoba SL, Hernández-Juárez AJ, Naranjo-Meneses MA, García-García E, Méndez JP, Cabrera-Quintero AJ, Ramírez-Ruíz A, Pedraza-Sánchez S, Meraz-Cruz N, Vadillo-Ortega F, Zentella-Dehesa A. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One 2022; 17:e0266073. [PMID: 35413055 PMCID: PMC9004774 DOI: 10.1371/journal.pone.0266073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is associated with an increased incidence and aggressiveness of breast cancer and is estimated to increment the development of this tumor by 50 to 86%. These associations are driven, in part, by changes in the serum molecules. Epidemiological studies have reported that Metformin reduces the incidence of obesity-associated cancer, probably by regulating the metabolic state. In this study, we evaluated in a breast cancer in-vitro model the activation of the IR-β/Akt/p70S6K pathway by exposure to human sera with different metabolic and hormonal characteristics. Furthermore, we evaluated the effect of brief Metformin treatment on sera of obese postmenopausal women and its impact on Akt and NF-κB activation. We demonstrated that MCF-7 cells represent a robust cellular model to differentiate Akt pathway activation influenced by the stimulation with sera from obese women, resulting in increased cell viability rates compared to cells stimulated with sera from normal-weight women. In particular, stimulation with sera from postmenopausal obese women showed an increase in the phosphorylation of IR-β and Akt proteins. These effects were reversed after exposure of MCF-7 cells to sera from postmenopausal obese women with insulin resistance with Metformin treatment. Whereas sera from women without insulin resistance affected NF-κB regulation. We further demonstrated that sera from post-Metformin obese women induced an increase in p38 phosphorylation, independent of insulin resistance. Our results suggest a possible mechanism in which obesity-mediated serum molecules could enhance the development of luminal A-breast cancer by increasing Akt activation. Further, we provided evidence that the phenomenon was reversed by Metformin treatment in a subgroup of women.
Collapse
Affiliation(s)
- Laura C. Flores-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Alfredo J. Hernández-Juárez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - María A. Naranjo-Meneses
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Eduardo García-García
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Antonio Ramírez-Ruíz
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| |
Collapse
|
48
|
AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGFβ signaling pathway. Cell Death Dis 2022; 13:288. [PMID: 35361751 PMCID: PMC8971393 DOI: 10.1038/s41419-022-04744-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Since its first identification in prostate cancers and prostate tissues, transient receptor potential melastatin-subfamily member 8 (TRPM8) is subsequently found to be overexpressed in a wide range of cancers and is shown to be implicated in tumorigenesis and tumor progression. Here, we used N-(3-aminopropyl)-2-[(3-methylphenyl) methoxy] -N-(2-thienylmethyl) benzamide hydrochloride (AMTB), a specific TRPM8 antagonist, to explore its antitumoral effect on osteosarcoma. We find that AMTB suppresses osteosarcoma cell proliferation, metastasis and induces cellular apoptosis. Xenograft model in nude mice experiments also define that AMTB can increase the sensitivity of tumor cells to cisplatin, the cytotoxic chemotherapeutic regimens in treating osteosarcoma. Molecularly, AMTB specifically antagonizes TRPM8 which is upregulated in osteosarcoma and its expression level in osteosarcoma tissues is negatively related to patients’ prognosis. Finally, RNA sequencing analysis was performed to explore the mechanism underlying the antitumoral effect of AMTB on osteosarcoma cells and the results prove that AMTB suppresses the Transforming Growth Factor β (TGFβ) signaling pathway. Our study provides evidence that TRPM8 could be a potential therapeutic target and AMTB can suppress growth and metastasis of osteosarcoma cells through repressing the TGFβ signaling pathway and increase the sensitivity of tumor cells to cisplatin.
Collapse
|
49
|
Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, Yang L, Li H. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis 2022; 8:131. [PMID: 35338118 PMCID: PMC8956600 DOI: 10.1038/s41420-022-00930-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
Abstract
A high intratumoral nerve density is correlated with poor survival, high metastasis, and high recurrence across multiple solid tumor types. Recent research has revealed that cancer cells release diverse neurotrophic factors and exosomes to promote tumor innervation, in addition, infiltrating nerves can also mediate multiple tumor biological processes via exosomes and neurotransmitters. In this review, through seminal studies establishing tumor innervation, we discuss the communication between peripheral nerves and tumor cells in the tumor microenvironment (TME), and revealed the nerve-tumor regulation mechanisms on oncogenic process, angiogenesis, lymphangiogenesis, and immunity. Finally, we discussed the promising directions of ‘old drugs newly used’ to target TME communication and clarified a new line to prevent tumor malignant capacity.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
50
|
Gan D, Cheng W, Ke L, Sun AR, Jia Q, Chen J, Xu Z, Xu J, Zhang P. Biphasic Effect of Pirfenidone on Angiogenesis. Front Pharmacol 2022; 12:804327. [PMID: 35069215 PMCID: PMC8766764 DOI: 10.3389/fphar.2021.804327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Pirfenidone (PFD), a synthetic arsenic compound, has been found to inhibit angiogenesis at high concentrations. However, the biphasic effects of different PFD concentrations on angiogenesis have not yet been elucidated, and the present study used an in vitro model to explore the mechanisms underlying this biphasic response. The effect of PFD on the initial angiogenesis of vascular endothelial cells was investigated through a Matrigel tube formation assay, and the impact of PFD on endothelial cell migration was evaluated through scratch and transwell migration experiments. Moreover, the expression of key migration cytokines, matrix metalloproteinase (MMP)-2 and MMP-9, was examined. Finally, the biphasic mechanism of PFD on angiogenesis was explored through cell signaling and apoptosis analyses. The results showed that 10–100 μM PFD has a significant and dose-dependent inhibitory effect on tube formation and migration, while 10 nM–1 μM PFD significantly promoted tube formation and migration, with 100 nM PFD having the strongest effect. Additionally, we found that a high concentration of PFD could significantly inhibit MMP-2 and MMP-9 expression, while low concentrations of PFD significantly promoted their expression. Finally, we found that high concentrations of PFD inhibited EA.hy926 cell tube formation by promoting apoptosis, while low concentrations of PFD promoted tube formation by increasing MMP-2 and MMP-9 protein expression predominantly via the EGFR/p-p38 pathway. Overall, PFD elicits a biphasic effect on angiogenesis through different mechanisms, could be used as a new potential drug for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Donghao Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, The Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liqing Ke
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antonia RuJia Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Jianhai Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Xu
- Department of Stomatology, SijingHospital, Shanghai, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|