1
|
Park S, Min CH, Choi E, Choi JS, Park K, Han S, Choi W, Jang HJ, Cho KO, Kim M. Long-term tracking of neural and oligodendroglial development in large-scale human cerebral organoids by noninvasive volumetric imaging. Sci Rep 2025; 15:2536. [PMID: 39833280 PMCID: PMC11747076 DOI: 10.1038/s41598-025-85455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing. This ensemble has empowered us to monitor the intricate dynamics of neuron and oligodendrocyte development within cerebral organoids across a trajectory of approximately two months. Line-shaped illumination mitigates photodamage and, alongside refined spatial gating, maximizes signal collection through integrating with computational processing. The integration of deconvolution and compressive sensing has improved image contrast by 6-fold, elucidating fine features of the neurites. Thus, noninvasive imaging enabled us to perform long-term tracking of neural and oligodendroglial development in the large-scale human cerebral organoid. Furthermore, our sophisticated volumetric segmentation algorithm has yielded a robust four-dimensional quantitative analysis, encapsulating both neuronal and oligodendroglial maturation. Collectively, these advances mark a significant advancement in the field of neurodevelopment, providing a powerful tool for in-depth study of complex brain organoid systems.
Collapse
Affiliation(s)
- Sangjun Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Cheol Hong Min
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eunjin Choi
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jeong-Sun Choi
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyungjin Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Korea
| | - Seokyoung Han
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA
| | - Wonjun Choi
- Park Systems Corp, Suwon, 16229, Gyeonggi-do, Korea
| | - Hyun-Jong Jang
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung-Ok Cho
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Catholic Neuroscience Institute, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, 06591, Korea.
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
2
|
Li H, Yu Z, Zhong T, Lai P. Performance enhancement in wavefront shaping of multiply scattered light: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11512. [PMID: 38125718 PMCID: PMC10732255 DOI: 10.1117/1.jbo.29.s1.s11512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Significance In nonballistic regime, optical scattering impedes high-resolution imaging through/inside complex media, such as milky liquid, fog, multimode fiber, and biological tissues, where confocal and multiphoton modalities fail. The significant tissue inhomogeneity-induced distortions need to be overcome and a technique referred as optical wavefront shaping (WFS), first proposed in 2007, has been becoming a promising solution, allowing for flexible and powerful light control. Understanding the principle and development of WFS may inspire exciting innovations for effective optical manipulation, imaging, stimulation, and therapy at depths in tissue or tissue-like complex media. Aim We aim to provide insights about what limits the WFS towards biomedical applications, and how recent efforts advance the performance of WFS among different trade-offs. Approach By differentiating the two implementation directions in the field, i.e., precompensation WFS and optical phase conjugation (OPC), improvement strategies are summarized and discussed. Results For biomedical applications, improving the speed of WFS is most essential in both directions, and a system-compatible wavefront modulator driven by fast apparatus is desired. In addition to that, algorithm efficiency and adaptability to perturbations/noise is of concern in precompensation WFS, while for OPC significant improvements rely heavily on integrating physical mechanisms and delicate system design for faster response and higher energy gain. Conclusions Substantial improvements in WFS implementations, from the aspects of physics, engineering, and computing, have inspired many novel and exciting optical applications that used to be optically inaccessible. It is envisioned that continuous efforts in the field can further advance WFS towards biomedical applications and guide our vision into deep biological tissues.
Collapse
Affiliation(s)
- Huanhao Li
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | - Zhipeng Yu
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | - Tianting Zhong
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | - Puxiang Lai
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
- Hong Kong Polytechnic University, Photonics Research Institute, Hong Kong, China
| |
Collapse
|
3
|
Kang S, Zhou R, Brelen M, Mak HK, Lin Y, So PTC, Yaqoob Z. Mapping nanoscale topographic features in thick tissues with speckle diffraction tomography. LIGHT, SCIENCE & APPLICATIONS 2023; 12:200. [PMID: 37607903 PMCID: PMC10444882 DOI: 10.1038/s41377-023-01240-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Resolving three-dimensional morphological features in thick specimens remains a significant challenge for label-free imaging. We report a new speckle diffraction tomography (SDT) approach that can image thick biological specimens with ~500 nm lateral resolution and ~1 μm axial resolution in a reflection geometry. In SDT, multiple-scattering background is rejected through spatiotemporal gating provided by dynamic speckle-field interferometry, while depth-resolved refractive index maps are reconstructed by developing a comprehensive inverse-scattering model that also considers specimen-induced aberrations. Benefiting from the high-resolution and full-field quantitative imaging capabilities of SDT, we successfully imaged red blood cells and quantified their membrane fluctuations behind a turbid medium with a thickness of 2.8 scattering mean-free paths. Most importantly, we performed volumetric imaging of cornea inside an ex vivo rat eye and quantified its optical properties, including the mapping of nanoscale topographic features of Dua's and Descemet's membranes that had not been previously visualized.
Collapse
Affiliation(s)
- Sungsam Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Marten Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuechuan Lin
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Park S, Jo Y, Kang M, Hong JH, Ko S, Kim S, Park S, Park HC, Shim SH, Choi W. Label-free adaptive optics single-molecule localization microscopy for whole zebrafish. Nat Commun 2023; 14:4185. [PMID: 37443177 PMCID: PMC10344925 DOI: 10.1038/s41467-023-39896-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Specimen-induced aberration has been a major factor limiting the imaging depth of single-molecule localization microscopy (SMLM). Here, we report the application of label-free wavefront sensing adaptive optics to SMLM for deep-tissue super-resolution imaging. The proposed system measures complex tissue aberrations from intrinsic reflectance rather than fluorescence emission and physically corrects the wavefront distortion more than three-fold stronger than the previous limit. This enables us to resolve sub-diffraction morphologies of cilia and oligodendrocytes in whole zebrafish as well as dendritic spines in thick mouse brain tissues at the depth of up to 102 μm with localization number enhancement by up to 37 times and localization precision comparable to aberration-free samples. The proposed approach can expand the application range of SMLM to whole zebrafish that cause the loss of localization number owing to severe tissue aberrations.
Collapse
Affiliation(s)
- Sanghyeon Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea
- Department of Physics, Korea University, Seoul, Republic of Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea
- Department of Physics, Korea University, Seoul, Republic of Korea
| | - Minsu Kang
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea
| | - Sangyoon Ko
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University, Ansan, Republic of Korea
| | - Sangjun Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Republic of Korea
| | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul, Republic of Korea.
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea.
- Department of Physics, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Li B, Zhu L, Li B, Feng W, Lian X, Ji X. Efficient framework of solving time-gated reflection matrix for imaging through turbid medium. OPTICS EXPRESS 2023; 31:15461-15473. [PMID: 37157647 DOI: 10.1364/oe.488257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Imaging through turbid medium is a long pursuit in many research fields, such as biomedicine, astronomy and automatic vehicle, in which the reflection matrix-based method is a promising solution. However, the epi-detection geometry suffers from round-trip distortion and it is challenging to isolate the input and output aberrations in non-ideal cases due to system imperfections and measurement noises. Here, we present an efficient framework based on single scattering accumulation together with phase unwrapping that can accurately separate input and output aberrations from the noise-affected reflection matrix. We propose to only correct the output aberration while suppressing the input aberration by incoherent averaging. The proposed method is faster in convergence and more robust against noise, avoiding precise and tedious system adjustments. In both simulations and experiments, we demonstrate the diffraction-limited resolution capability under optical thickness beyond 10 scattering mean free paths, showing the potential of applications in neuroscience and dermatology.
Collapse
|
6
|
Lee YR, Kim DY, Jo Y, Kim M, Choi W. Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium. Nat Commun 2023; 14:1878. [PMID: 37015941 PMCID: PMC10073116 DOI: 10.1038/s41467-023-37467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/16/2023] [Indexed: 04/06/2023] Open
Abstract
Imaging an object embedded within a scattering medium requires the correction of complex sample-induced wave distortions. Existing approaches have been designed to resolve them by optimizing signal waves recorded in each 2D image. Here, we present a volumetric image reconstruction framework that merges two fundamental degrees of freedom, the wavelength and propagation angles of light waves, based on the object momentum conservation principle. On this basis, we propose methods for exploiting the correlation of signal waves from volumetric images to better cope with multiple scattering. By constructing experimental systems scanning both wavelength and illumination angle of the light source, we demonstrated a 32-fold increase in the use of signal waves compared with that of existing 2D-based approaches and achieved ultrahigh volumetric resolution (lateral resolution: 0.41 [Formula: see text], axial resolution: 0.60 [Formula: see text]) even within complex scattering medium owing to the optimal coherent use of the broad spectral bandwidth (225 nm).
Collapse
Affiliation(s)
- Ye-Ryoung Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
- Institute of Basic Science, Korea University, Seoul, 02841, Korea
- Department of Physics, Konkuk University, Seoul, 05029, Korea
| | - Dong-Young Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.
- Department of Physics, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
7
|
Kang M, Choi W, Choi W, Choi Y. Fourier holographic endoscopy for imaging continuously moving objects. OPTICS EXPRESS 2023; 31:11705-11716. [PMID: 37155799 DOI: 10.1364/oe.482923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Coherent fiber bundles are widely used for endoscopy, but conventional approaches require distal optics to form an object image and acquire pixelated information owing to the geometry of the fiber cores. Recently, holographic recording of a reflection matrix enables a bare fiber bundle to perform pixelation-free microscopic imaging as well as allows a flexible mode operation, because the random core-to-core phase retardations due to any fiber bending and twisting could be removed in situ from the recorded matrix. Despite its flexibility, the method is not suitable for a moving object because the fiber probe should remain stationary during the matrix recording to avoid the alteration of the phase retardations. Here, we acquire a reflection matrix of a Fourier holographic endoscope equipped with a fiber bundle and explore the effect of fiber bending on the recorded matrix. By removing the motion effect, we develop a method that can resolve the perturbation of the reflection matrix caused by a continuously moving fiber bundle. Thus, we demonstrate high-resolution endoscopic imaging through a fiber bundle, even when the fiber probe changes its shape along with the moving objects. The proposed method can be used for minimally invasive monitoring of behaving animals.
Collapse
|
8
|
Kwon Y, Hong JH, Kang S, Lee H, Jo Y, Kim KH, Yoon S, Choi W. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat Commun 2023; 14:105. [PMID: 36609405 PMCID: PMC9823103 DOI: 10.1038/s41467-022-35738-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Myelination processes are closely related to higher brain functions such as learning and memory. While their longitudinal observation has been crucial to understanding myelin-related physiology and various brain disorders, skull opening or thinning has been required to secure clear optical access. Here we present a high-speed reflection matrix microscope using a light source with a wavelength of 1.3 μm to reduce tissue scattering and aberration. Furthermore, we develop a computational conjugate adaptive optics algorithm designed for the recorded reflection matrix to optimally compensate for the skull aberrations. These developments allow us to realize label-free longitudinal imaging of cortical myelin through an intact mouse skull. The myelination processes of the same mice were observed from 3 to 10 postnatal weeks to the depth of cortical layer 4 with a spatial resolution of 0.79 μm. Our system will expedite the investigations on the role of myelination in learning, memory, and brain disorders.
Collapse
Affiliation(s)
- Yongwoo Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Sungsam Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Hojun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seokchan Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02855, Korea. .,School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 50612, Korea.
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02855, Korea.
| |
Collapse
|
9
|
Yoon S, Cheon SY, Park S, Lee D, Lee Y, Han S, Kim M, Koo H. Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomater Res 2022; 26:57. [PMID: 36273205 PMCID: PMC9587606 DOI: 10.1186/s40824-022-00303-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Optical imaging has been essential for scientific observations to date, however its biomedical applications has been restricted due to its poor penetration through tissues. In living tissue, signal attenuation and limited imaging depth caused by the wave distortion occur because of scattering and absorption of light by various molecules including hemoglobin, pigments, and water. To overcome this, methodologies have been proposed in the various fields, which can be mainly categorized into two stategies: developing new imaging probes and optical techniques. For example, imaging probes with long wavelength like NIR-II region are advantageous in tissue penetration. Bioluminescence and chemiluminescence can generate light without excitation, minimizing background signals. Afterglow imaging also has high a signal-to-background ratio because excitation light is off during imaging. Methodologies of adaptive optics (AO) and studies of complex media have been established and have produced various techniques such as direct wavefront sensing to rapidly measure and correct the wave distortion and indirect wavefront sensing involving modal and zonal methods to correct complex aberrations. Matrix-based approaches have been used to correct the high-order optical modes by numerical post-processing without any hardware feedback. These newly developed imaging probes and optical techniques enable successful optical imaging through deep tissue. In this review, we discuss recent advances for multi-scale optical imaging within deep tissue, which can provide reseachers multi-disciplinary understanding and broad perspectives in diverse fields including biophotonics for the purpose of translational medicine and convergence science.
Collapse
Affiliation(s)
- Seokchan Yoon
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seo Young Cheon
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sangjun Park
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeeun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seokyoung Han
- Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA
| | - Moonseok Kim
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Heebeom Koo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
10
|
Choi W, Kang M, Hong JH, Katz O, Lee B, Kim GH, Choi Y, Choi W. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues. Nat Commun 2022; 13:4469. [PMID: 35918348 PMCID: PMC9345988 DOI: 10.1038/s41467-022-32114-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
Ultrathin lensless fibre endoscopes offer minimally invasive investigation, but they mostly operate as a rigid type due to the need for prior calibration of a fibre probe. Furthermore, most implementations work in fluorescence mode rather than label-free imaging mode, making them unsuitable for general medical diagnosis. Herein, we report a fully flexible ultrathin fibre endoscope taking 3D holographic images of unstained tissues with 0.85-μm spatial resolution. Using a bare fibre bundle as thin as 200-μm diameter, we design a lensless Fourier holographic imaging configuration to selectively detect weak reflections from biological tissues, a critical step for label-free endoscopic reflectance imaging. A unique algorithm is developed for calibration-free holographic image reconstruction, allowing us to image through a narrow and curved passage regardless of fibre bending. We demonstrate endoscopic reflectance imaging of unstained rat intestine tissues that are completely invisible to conventional endoscopes. The proposed endoscope will expedite a more accurate and earlier diagnosis than before with minimal complications.
Collapse
Affiliation(s)
- Wonjun Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea.,Department of Physics, Korea University, Seoul, Republic of Korea
| | - Munkyu Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea.,Department of Physics, Korea University, Seoul, Republic of Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea.,Department of Physics, Korea University, Seoul, Republic of Korea
| | - Ori Katz
- Department of Applied Physics, The Selim and Rachel Benin School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Byunghak Lee
- Korea Electrotechnology Research Institute, Ansan, Korea.,B2LAB co., ltd, Pohang-si, Gyeongsangbuk, Korea
| | - Guang Hoon Kim
- Korea Electrotechnology Research Institute, Ansan, Korea
| | - Youngwoon Choi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea. .,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea. .,Department of Physics, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Jo Y, Lee YR, Hong JH, Kim DY, Kwon J, Choi M, Kim M, Choi W. Through-skull brain imaging in vivo at visible wavelengths via dimensionality reduction adaptive-optical microscopy. SCIENCE ADVANCES 2022; 8:eabo4366. [PMID: 35895824 PMCID: PMC9328682 DOI: 10.1126/sciadv.abo4366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 05/25/2023]
Abstract
Compensation of sample-induced optical aberrations is crucial for visualizing microscopic structures deep within biological tissues. However, strong multiple scattering poses a fundamental limitation for identifying and correcting the tissue-induced aberrations. Here, we introduce a label-free deep-tissue imaging technique termed dimensionality reduction adaptive-optical microscopy (DReAM) to selectively attenuate multiple scattering. We established a theoretical framework in which dimensionality reduction of a time-gated reflection matrix can attenuate uncorrelated multiple scattering while retaining a single-scattering signal with a strong wave correlation, irrespective of sample-induced aberrations. We performed mouse brain imaging in vivo through the intact skull with the probe beam at visible wavelengths. Despite the strong scattering and aberrations, DReAM offered a 17-fold enhancement of single scattering-to-multiple scattering ratio and provided high-contrast images of neural fibers in the brain cortex with the diffraction-limited spatial resolution of 412 nanometers and a 33-fold enhanced Strehl ratio.
Collapse
Affiliation(s)
- Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Ye-Ryoung Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
- Institute of Basic Science, Korea University, Seoul 02841, Republic of Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Dong-Young Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Junhwan Kwon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Bio & Medical Health Division, Korea Testing Laboratory, 10, Chungui-ro, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| |
Collapse
|
12
|
Lee H, Yoon S, Loohuis P, Hong JH, Kang S, Choi W. High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix. LIGHT, SCIENCE & APPLICATIONS 2022; 11:16. [PMID: 35027538 PMCID: PMC8758712 DOI: 10.1038/s41377-021-00705-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/10/2021] [Accepted: 12/26/2021] [Indexed: 05/02/2023]
Abstract
Deep-tissue optical imaging suffers from the reduction of resolving power due to tissue-induced optical aberrations and multiple scattering noise. Reflection matrix approaches recording the maps of backscattered waves for all the possible orthogonal input channels have provided formidable solutions for removing severe aberrations and recovering the ideal diffraction-limited spatial resolution without relying on fluorescence labeling and guide stars. However, measuring the full input-output response of the tissue specimen is time-consuming, making the real-time image acquisition difficult. Here, we present the use of a time-reversal matrix, instead of the reflection matrix, for fast high-resolution volumetric imaging of a mouse brain. The time-reversal matrix reduces two-way problem to one-way problem, which effectively relieves the requirement for the coverage of input channels. Using a newly developed aberration correction algorithm designed for the time-reversal matrix, we demonstrated the correction of complex aberrations using as small as 2% of the complete basis while maintaining the image reconstruction fidelity comparable to the fully sampled reflection matrix. Due to nearly 100-fold reduction in the matrix recording time, we could achieve real-time aberration-correction imaging for a field of view of 40 × 40 µm2 (176 × 176 pixels) at a frame rate of 80 Hz. Furthermore, we demonstrated high-throughput volumetric adaptive optical imaging of a mouse brain by recording a volume of 128 × 128 × 125 µm3 (568 × 568 × 125 voxels) in 3.58 s, correcting tissue aberrations at each and every 1 µm depth section, and visualizing myelinated axons with a lateral resolution of 0.45 µm and an axial resolution of 2 µm.
Collapse
Affiliation(s)
- Hojun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Seokchan Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Pascal Loohuis
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
- Achmea Holding BV, Handelsweg 2, 3707 NH, Zeist, Netherlands
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
| | - Sungsam Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.
- Department of Physics, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
13
|
Park J, Park B, Kim TY, Jung S, Choi WJ, Ahn J, Yoon DH, Kim J, Jeon S, Lee D, Yong U, Jang J, Kim WJ, Kim HK, Jeong U, Kim HH, Kim C. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc Natl Acad Sci U S A 2021; 118:e1920879118. [PMID: 33836558 PMCID: PMC7980418 DOI: 10.1073/pnas.1920879118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.
Collapse
Affiliation(s)
- Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Byullee Park
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Dong Hee Yoon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Seungwan Jeon
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Donghyun Lee
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Uijung Yong
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| |
Collapse
|
14
|
Kang P, Kang S, Jo Y, Ko H, Kim G, Lee YR, Choi W. Optical transfer function of time-gated coherent imaging in the presence of a scattering medium. OPTICS EXPRESS 2021; 29:3395-3405. [PMID: 33770938 DOI: 10.1364/oe.412988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Optical imaging of objects embedded within scattering media such as biological tissues suffers from the loss of resolving power. In our previous work, we proposed an approach called collective accumulation of single scattering (CASS) microscopy that attenuates this detrimental effect of multiple light scattering by combining the time-gated detection and spatial input-output correlation. In the present work, we perform a rigorous theoretical analysis on the effect of multiple light scattering to the optical transfer function of CASS microscopy. In particular, the spatial frequency-dependent signal to noise ratio (SNR) is derived depending on the intensity ratio of the single- and multiple-scattered waves. This allows us to determine the depth-dependent resolving power. We conducted experiments using a Siemens star-like target having various spatial frequency components and supported the theoretical derived SNR spectra. Our study provides a theoretical framework for understanding the effect of multiple light scattering in high-resolution and deep-tissue optical imaging.
Collapse
|
15
|
Yoon S, Lee H, Hong JH, Lim YS, Choi W. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat Commun 2020; 11:5721. [PMID: 33184297 PMCID: PMC7665219 DOI: 10.1038/s41467-020-19550-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
A mouse skull is a barrier for high-resolution optical imaging because its thick and inhomogeneous internal structures induce complex aberrations varying drastically from position to position. Invasive procedures creating either thinned-skull or open-skull windows are often required for the microscopic imaging of brain tissues underneath. Here, we propose a label-free imaging modality termed laser scanning reflection-matrix microscopy for recording the amplitude and phase maps of reflected waves at non-confocal points as well as confocal points. The proposed method enables us to find and computationally correct up to 10,000 angular modes of aberrations varying at every 10 × 10 µm2 patch in the sample plane. We realized reflectance imaging of myelinated axons in vivo underneath an intact mouse skull, with an ideal diffraction-limited spatial resolution of 450 nm. Furthermore, we demonstrated through-skull two-photon fluorescence imaging of neuronal dendrites and their spines by physically correcting the aberrations identified from the reflection matrix.
Collapse
Affiliation(s)
- Seokchan Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Hojun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Yong-Sik Lim
- Department of Nano Science and Mechanical Engineering and Nanotechnology Research Center, Konkuk University, Chungbuk, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02855, Korea.
| |
Collapse
|
16
|
Badon A, Barolle V, Irsch K, Boccara AC, Fink M, Aubry A. Distortion matrix concept for deep optical imaging in scattering media. SCIENCE ADVANCES 2020; 6:eaay7170. [PMID: 32923603 PMCID: PMC7455485 DOI: 10.1126/sciadv.aay7170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/05/2020] [Indexed: 05/03/2023]
Abstract
In optical imaging, light propagation is affected by the inhomogeneities of the medium. Sample-induced aberrations and multiple scattering can strongly degrade the image resolution and contrast. On the basis of a dynamic correction of the incident and/or reflected wavefronts, adaptive optics has been used to compensate for those aberrations. However, it only applies to spatially invariant aberrations or to thin aberrating layers. Here, we propose a global and noninvasive approach based on the distortion matrix concept. This matrix basically connects any focusing point of the image with the distorted part of its wavefront in reflection. A singular value decomposition of the distortion matrix allows to correct for high-order aberrations and forward multiple scattering over multiple isoplanatic modes. Proof-of-concept experiments are performed through biological tissues including a turbid cornea. We demonstrate a Strehl ratio enhancement up to 2500 and recover a diffraction-limited resolution until a depth of 10 scattering mean free paths.
Collapse
Affiliation(s)
- Amaury Badon
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Victor Barolle
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Kristina Irsch
- Vision Institute/Quinze-Vingts National Eye Hospital, Sorbonne University, CNRS UMR 7210, INSERM U 068, 17 rue Moreau, 75012 Paris, France
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A. Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
- Corresponding author.
| |
Collapse
|
17
|
Rasedujjaman M, Affannoukoué K, Garcia-Seyda N, Robert P, Giovannini H, Chaumet PC, Theodoly O, Valignat MP, Belkebir K, Sentenac A, Maire G. Three-dimensional imaging with reflection synthetic confocal microscopy. OPTICS LETTERS 2020; 45:3721-3724. [PMID: 32630938 DOI: 10.1364/ol.397364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Biomedical imaging lacks label-free microscopy techniques able to reconstruct the contour of biological cells in solution, in 3D and with high resolution, as required for the fast diagnosis of numerous diseases. Inspired by computational optical coherence tomography techniques, we present a tomographic diffractive microscope in reflection geometry used as a synthetic confocal microscope, compatible with this goal and validated with the 3D reconstruction of a human effector T lymphocyte.
Collapse
|
18
|
Lambert W, Cobus LA, Frappart T, Fink M, Aubry A. Distortion matrix approach for ultrasound imaging of random scattering media. Proc Natl Acad Sci U S A 2020; 117:14645-14656. [PMID: 32522873 PMCID: PMC7334504 DOI: 10.1073/pnas.1921533117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Focusing waves inside inhomogeneous media is a fundamental problem for imaging. Spatial variations of wave velocity can strongly distort propagating wave fronts and degrade image quality. Adaptive focusing can compensate for such aberration but is only effective over a restricted field of view. Here, we introduce a full-field approach to wave imaging based on the concept of the distortion matrix. This operator essentially connects any focal point inside the medium with the distortion that a wave front, emitted from that point, experiences due to heterogeneities. A time-reversal analysis of the distortion matrix enables the estimation of the transmission matrix that links each sensor and image voxel. Phase aberrations can then be unscrambled for any point, providing a full-field image of the medium with diffraction-limited resolution. Importantly, this process is particularly efficient in random scattering media, where traditional approaches such as adaptive focusing fail. Here, we first present an experimental proof of concept on a tissue-mimicking phantom and then, apply the method to in vivo imaging of human soft tissues. While introduced here in the context of acoustics, this approach can also be extended to optical microscopy, radar, or seismic imaging.
Collapse
Affiliation(s)
- William Lambert
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
- SuperSonic Imagine, 13857 Aix-en-Provence, France
| | - Laura A Cobus
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | | | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France;
| |
Collapse
|
19
|
Kim DY, Jeong S, Jang M, Lee YR, Choi W. Time-gated iterative phase conjugation for efficient light energy delivery in scattering media. OPTICS EXPRESS 2020; 28:7382-7391. [PMID: 32225968 DOI: 10.1364/oe.385557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Light waves propagating through complex biological tissues are spatially spread by multiple light scattering, and this spread limits the working depth in optical bioimaging, phototherapy, and optogenetics. Here, we propose the iterative phase conjugation of time-gated backscattered waves for enhancing the light energy delivered to a target object embedded in a scattering medium. We demonstrate the enhancement of light energy delivered to a target object hidden behind a 200-µm-thick mouse skull by more than ten times in comparison with the initial random input. The maximum enhancement was reached in only 10 iterations, more than a hundred times smaller than existing methods based on either a time-gated reflection matrix or iterative feedback optimization of the time-gated reflection intensity. Consequently, the proposed method is less sensitive to sample perturbations. Furthermore, the number of images required for optimization remained almost unchanged with an increase in the illumination area, unlike existing methods, where the convergence time scales with the illumination area. The proposed method provides high operation speed over a wide illumination area, which can facilitate the use of wavefront shaping in practical applications.
Collapse
|