1
|
Zhang X, Cao Y, Wang M, Li Y, Yin H, Ni H, Yang S, Yu F, Yang J, Peng L, Hu M, Li D, Liu D. Primary Cilia Regulate the Homeostasis and Regeneration of the Stem Cell Niche in the Tooth. J Cell Physiol 2025; 240:e31517. [PMID: 39734274 DOI: 10.1002/jcp.31517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation. Using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis leads to abnormal tooth morphology, stunted growth and notably impaired tooth repair. RNA sequencing reveals a dysregulation in genes associated with various biological processes such as cell proliferation, differentiation, and cycle regulation. Furthermore, we show that cilium-deficient mice display reduced cell proliferation. Our findings highlight a critical function for primary cilia in the regulation of tooth homeostasis and regeneration and have important implications for the development of tooth regeneration therapies.
Collapse
Affiliation(s)
- Xinming Zhang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yuxin Cao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mengge Wang
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Yujia Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fan Yu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lisu Peng
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
- School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
2
|
Tian Q, Gao S, Li S, Wan M, Zhou X, Du W, Zhou X, Zheng L, Zhou Y. Glutamine-αKG axis affects dentin regeneration and regulates osteo/odontogenic differentiation of mesenchymal adult stem cells via IGF2 m6A modification. Stem Cell Res Ther 2024; 15:479. [PMID: 39695862 DOI: 10.1186/s13287-024-04092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Multi-lineage differentiation of mesenchymal adult stem cells (m-ASCs) is crucial for tissue regeneration and accompanied with metabolism reprogramming, among which dental-pulp-derived m-ASCs has obvious advantage of easy accessibility. Stem cell fate determination and differentiation are closely related to metabolism status in cell microenvironment, which could actively interact with epigenetic modification. In recent years, glutamine-α-ketoglutarate (αKG) axis was proved to be related to aging, tumorigenesis, osteogenesis etc., while its role in m-ASCs still lack adequate research evidence. METHODS We employed metabolomic analysis to explore the change pattern of metabolites during dental-pulp-derived m-ASCs differentiation. A murine incisor clipping model was established to investigate the influence of αKG on dental tissue repairment. shRNA technique was used to knockdown the expression of related key enzyme-dehydrogenase 1(GLUD1). RNA-seq, m6A evaluation and MeRIP-qPCR were used to dig into the underlying epigenetic mechanism. RESULTS Here we found that the glutamine-αKG axis displayed an increased tendency along with the osteo/odontogenic differentiation of dental-pulp-derived m-ASCs, same as expression pattern of GLUD1. Further, the key metabolite αKG was found able to accelerate the repairment of clipped mice incisor and promote dentin formation. Exogenous DM-αKG was proved able to promote osteo/odontogenic differentiation of dental-pulp-derived m-ASCs, while the inhibition of glutamine-derived αKG level via GLUD1 knockdown had the opposite effect. Under the circumstance of GLUD1 knockdown, extracellular matrix (ECM) function and PI3k-Akt signaling pathway was screened out to be widely involved in the process with insulin-like growth factor 2 (IGF2) participation via RNA-seq. Inhibition of glutamine-αKG axis may affect IGF2 translation efficiency via m6A methylation and can be significantly rescued by αKG supplementation. CONCLUSION Our findings indicate that glutamine-αKG axis may epigenetically promote osteo/odontogenic differentiation of dental-pulp-derived m-ASCs and dentin regeneration, which provide a new research vision of potential dental tissue repairment therapy method or metabolite-based drug research.
Collapse
Affiliation(s)
- Qinglu Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiqi Gao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Xu R, Zhang X, Lin W, Wang Y, Zhang D, Jiang S, Liu L, Wang J, Luo X, Zhang X, Jing J, Yuan Q, Zhou C. Cathepsin K-Positive Cell Lineage Promotes In Situ Dentin Formation Controlled by Nociceptive Sonic Hedgehog. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310048. [PMID: 39474995 DOI: 10.1002/advs.202310048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/23/2024] [Indexed: 12/19/2024]
Abstract
Oral diseases affect nearly half of the global population throughout their lifetime causing pain, as estimated by the World Health Organization. Preservation of vital pulp is the therapeutic core as well as a challenge to protect natural teeth. Current bottleneck lies in that the regenerative capacity of injured pulp is undetermined. In this study, we identified a lifelong lineage that is labelled by cathepsin K (Ctsk) contributing to the physiological, reactionary and reparative odontogenesis of mouse molars. Ctsk+ cell-mediated dentin formation is regulated by nociceptive nerve-derived Sonic Hedgehog (Shh), especially rapidly responsive to acute injury. Notably, exogenous Shh protein to the injury pulp can preserve Ctsk+ cell capacity of odontogenesis for the nearby crown pulp and even remote root apex growth, alleviating conventionally developmental arrest in youth pulpitis. Exposed to chronical attrition, aged pulp Ctsk+ cells still hold the capacity to respond to acute stimuli and promote reparative odontogenesis, also enhanced by exogenous Shh capping. Therefore, Ctsk+ cells may be one of the lineages for accelerating precision medicine for efficient pulp treatment across ages. Shh application can be a candidate for vital pulp preservation and pulp injury repair by promoting regenerative odontogenesis to a certain extent from young adults to older individuals.
Collapse
Affiliation(s)
- Ruoshi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaohan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yushun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xutao Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Guo T, Pei F, Zhang M, Yamada T, Feng J, Jing J, Ho TV, Chai Y. Vascular architecture regulates mesenchymal stromal cell heterogeneity via P53-PDGF signaling in the mouse incisor. Cell Stem Cell 2024; 31:904-920.e6. [PMID: 38703771 PMCID: PMC11162319 DOI: 10.1016/j.stem.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.
Collapse
Affiliation(s)
- Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Takahiko Yamada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Hu J, Ou-Yang ZY, Zhao YQ, Zhao J, Tan L, Liu Q, Wang MY, Ye Q, Feng Y, Zhong MM, Chen NX, Su XL, Zhang Q, Feng YZ, Guo Y. Evaluation of the Efficacy of Stem Cells Therapy in the Periodontal Regeneration: A Meta-Analysis and Mendelian Randomization Study. Stem Cell Rev Rep 2024; 20:980-995. [PMID: 38388709 DOI: 10.1007/s12015-024-10690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Stem cell therapy for periodontal defects has shown good promise in preclinical studies. The purpose of this study was to evaluate the impact of stem cell support on the regeneration of both soft and hard tissues in periodontal treatment. PubMed, Cochrane Library, Embase, and Web of Science were searched and patients with periodontal defects who received stem cell therapy were included in this study. The quality of the included articles was assessed using Cochrane's tool for evaluating bias, and heterogeneity was analyzed using the I2 method. An Mendelian randomization investigation was conducted using abstract data from the IEU public databases obtained through GWAS. Nine articles were included for the meta-analysis. Stem cell therapy effectively rebuilds periodontal tissues in patients with periodontal defects, as evidenced by a reduction in probing depth, clinical attachment level and bone defect depth . And delta-like homolog 1 is a protective factor against periodontal defects alternative indicator of tooth loosening. The findings of this research endorse the utilization of stem cell treatment for repairing periodontal defects in individuals suffering from periodontitis. It is recommended that additional extensive clinical investigations be carried out to validate the efficacy of stem cell therapy and encourage its widespread adoption.
Collapse
Affiliation(s)
- Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min-Yuan Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Huang H, Hu X, Wu J, Song C, Tian Z, Jiang B. Hyaluronan degradation by HYAL2 is essential for odontoblastic differentiation and migration of mouse dental papilla cells. Matrix Biol 2024; 129:1-14. [PMID: 38490466 DOI: 10.1016/j.matbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.
Collapse
Affiliation(s)
- Haiyan Huang
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoyu Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Jiayan Wu
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chenyu Song
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhixin Tian
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
7
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
8
|
Yang D, Solidum JGN, Park D. Dental Pulp Stem Cells and Current in vivo Approaches to Study Dental Pulp Stem Cells in Pulp Injury and Regeneration. J Bone Metab 2023; 30:231-244. [PMID: 37718901 PMCID: PMC10509030 DOI: 10.11005/jbm.2023.30.3.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have garnered significant interest in dental research for their unique characteristics and potential in tooth development and regeneration. While there were many studies to define their stem cell-like characteristics and osteogenic differentiation functions that are considered ideal candidates for regenerating damaged dental pulp tissue, how endogenous DPSCs respond to dental pulp injury and supply new dentin-forming cells has not been extensively investigated in vivo. Here, we review the recent progress in identity, function, and regulation of endogenous DPSCs and their clinical potential for pulp injury and regeneration. In addition, we discuss current advances in new mouse models, imaging techniques, and its practical uses and limitations in the analysis of DPSCs in pulp injury and regeneration in vivo.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX,
USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX,
USA
| | - Jea Giezl Niedo Solidum
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX,
USA
- Department of Biochemistry & Molecular Biology, College of Medicine, University of the Philippines Manila, Manila,
Philippines
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX,
USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX,
USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX,
USA
| |
Collapse
|
9
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Yu H, Habibi M, Motamedi K, Semirumi DT, Ghorbani A. Utilizing stem cells in reconstructive treatments for sports injuries: An innovative approach. Tissue Cell 2023; 83:102152. [PMID: 37451009 DOI: 10.1016/j.tice.2023.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Orthopedic tissue engineering is a rapidly evolving field that holds great promise for the reconstruction and natural repair of bone and joint tissues. Bone loss, fractures, and joint degeneration are common problems that can result from a variety of pathological conditions, and their restoration and replacement are essential not only for functional purposes but also for improving the quality of life for patients. However, current methods rely heavily on artificial materials that can potentially lead to further tissue damage, making tissue engineering a highly attractive alternative. This innovative approach involves the utilization of stem cells (SCs), which are seeded onto a scaffold to form a biological complex. Among these SCs, mesenchymal stem cells (MSCs) extracted from bone marrow and adipose tissue have shown immense potential for bone and joint tissue regeneration. The success of orthopedic tissue engineering is contingent on the careful selection of appropriate scaffolds and inducing molecules, which play a critical role in carrying and supporting cells and inducing their differentiation. This review article comprehensively analyzes the three vital aspects of orthopedic tissue engineering - SCs, scaffolds, and inducing molecules - in order to provide a deeper understanding of this emerging field and its potential for the future of orthopedic medicine.
Collapse
Affiliation(s)
- Hongying Yu
- Physical Education Department, Jingchu University of Technology, Jingmen 448000, Hubei, China.
| | - M Habibi
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - K Motamedi
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - D T Semirumi
- Department of Biomaterials, Islamic Azad University, Isfahan, Iran.
| | - A Ghorbani
- Biotechnology Department, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
11
|
Watanabe M, Okamoto M, Komichi S, Huang H, Matsumoto S, Moriyama K, Ohshima J, Abe S, Morita M, Ali M, Takebe K, Kozaki I, Fujimoto A, Kanie K, Kato R, Uto K, Ebara M, Yamawaki-Ogata A, Narita Y, Takahashi Y, Hayashi M. Novel Functional Peptide for Next-Generation Vital Pulp Therapy. J Dent Res 2023; 102:322-330. [PMID: 36415061 PMCID: PMC9989233 DOI: 10.1177/00220345221135766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although vital pulp therapy should be performed by promoting the wound-healing capacity of dental pulp, existing pulp-capping materials were not developed with a focus on the pulpal repair process. In previous investigations of wound healing in dental pulp, we found that organic dentin matrix components (DMCs) were degraded by matrix metalloproteinase-20, and DMC degradation products containing protein S100A7 (S100A7) and protein S100A8 (S100A8) promoted the pulpal wound-healing process. However, the direct use of recombinant proteins as pulp-capping materials may cause clinical problems or lead to high medical costs. Thus, we hypothesized that functional peptides derived from recombinant proteins could solve the problems associated with direct use of such proteins. In this study, we identified functional peptides derived from the protein S100 family and investigated their effects on dental pulp tissue. We first performed amino acid sequence alignments of protein S100 family members from several mammalian sources, then identified candidate peptides. Next, we used a peptide array method that involved human dental pulp stem cells (hDPSCs) to evaluate the mineralization-inducing ability of each peptide. Our results supported the selection of 4 candidate functional peptides derived from proteins S100A8 and S100A9. Direct pulp-capping experiments in a rat model demonstrated that 1 S100A8-derived peptide induced greater tertiary dentin formation compared with the other peptides. To investigate the mechanism underlying this induction effect, we performed liquid chromatography-tandem mass spectrometry analysis using hDPSCs and the S100A8-derived peptide; the results suggested that this peptide promotes tertiary dentin formation by inhibiting inflammatory responses. In addition, this peptide was located in a hairpin region on the surface of S100A8 and could function by direct interaction with other molecules. In summary, this study demonstrated that a S100A8-derived functional peptide promoted wound healing in dental pulp; our findings provide insights for the development of next-generation biological vital pulp therapies.
Collapse
Affiliation(s)
- M Watanabe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Komichi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Matsumoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - K Moriyama
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J Ohshima
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Abe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Morita
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Ali
- Department of Restorative Dentistry, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| | - K Takebe
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - I Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Aichi, Japan
| | - A Fujimoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - K Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan.,Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - R Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - K Uto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - M Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - A Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
12
|
Gao Y, Walker JV, Tredwin C, Hu B. Deletion of RBP-Jkappa gene in mesenchymal cells causes rickets like symptoms in the mouse. CURRENT MEDICINE 2022; 1:7. [PMID: 35694720 PMCID: PMC9177048 DOI: 10.1007/s44194-022-00007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Crosstalk between different signalling pathways provide deep insights for how molecules play synergistic roles in developmental and pathological conditions. RBP-Jkappa is the key effector of the canonical Notch pathway. Previously we have identified that Wnt5a, a conventional non-canonical Wnt pathway member, was under the direct transcriptional control of RBP-Jkappa in dermal papilla cells. In this study we further extended this regulation axis to the other two kind of skeletal cells: chondrocytes and osteoblasts. Mice with conditional mesenchymal deletion of RBP-Jkappa developed Rickets like symptoms. Molecular analysis suggested local defects of Wnt5a expression in chondrocytes and osteoblasts at both mRNA and protein levels, which impeded chondrocyte and osteoblast differentiation. The defects existing in the RBP-Jkappa deficient mutants could be rescued by recombinant Wnt5a treatment at both cellular level and tissue/organ level. Our results therefore provide a model of studying the connection of Notch and Wnt5a pathways with Rickets.
Collapse
Affiliation(s)
- Yan Gao
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Health, University of Plymouth, 16 Research Way, Plymouth, PL6 8BU UK
| | - Jemma Victoria Walker
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Health, University of Plymouth, 16 Research Way, Plymouth, PL6 8BU UK
| | - Christopher Tredwin
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Health, University of Plymouth, 16 Research Way, Plymouth, PL6 8BU UK
| | - Bing Hu
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Health, University of Plymouth, 16 Research Way, Plymouth, PL6 8BU UK
| |
Collapse
|
13
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
14
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
15
|
Liang J, Wang J, Ji Y, Zhao Q, Han L, Miron R, Zhang Y. Identification of Dental Stem Cells Similar to Skeletal Stem Cells. J Dent Res 2022; 101:1092-1100. [DOI: 10.1177/00220345221084199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem and progenitor cells play important roles in the development and maintenance of teeth and bone. Surface markers expressed in bone marrow–derived mesenchymal stem cells are also expressed in dental tissue–derived stem cells. Mouse skeletal stem cells (mSSCs, CD45−Ter119−Tie2−CD51+Thy−6C3−CD105−CD200+) and human skeletal stem cells (hSSCs, CD45−CD235a−TIE2−CD31−CD146−PDPN+CD73+CD164+) have been identified in bone and shown to play important roles in skeletal development and regeneration. However, it is unclear whether dental tissues also harbor mSSC or hSSC populations. Here, we employed rainbow tracers and found that clonal expansion occurred in mouse dental tissues similar to that in bone. We sorted the mSSC population from mouse periodontal ligament (mPDL) tissue and mouse dental pulp (mDP) tissue in the lower incisors by fluorescence-activated cell sorting (FACS). In addition, we demonstrated that mPDL-derived skeletal stem cells (mPDL-SSCs) and mDP-derived skeletal stem cells (mDP-SSCs) have similar clonogenic capacity, as well as cementogenic and odontogenic potential, but not adipogenic potential, similar to the characteristics of mSSCs. Moreover, we found that the dental tissue–derived mSSC population plays an important role in repairing clipped incisors. Importantly, we sorted the hSSC population from human periodontal ligament (hPDL) and human dental pulp (hDP) tissue in molars and identified its stem cell characteristics. Finally, hPDL-like and hDP-like structures were generated after transplanting hPDL-SSCs and hDP-SSCs beneath the renal capsules. In conclusion, we demonstrated that mouse and human PDL and DP tissues harbor dental stem cells similar to mSSCs and hSSCs, respectively, providing a precise stem cell population for the exploration of dental diseases.
Collapse
Affiliation(s)
- J.F. Liang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J. Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y.T. Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q. Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L.T. Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - R.J. Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Y.F. Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Abstract
The kidney maintains electrolyte, water, and acid-base balance, eliminates foreign and waste compounds, regulates blood pressure, and secretes hormones. There are at least 16 different highly specialized epithelial cell types in the mammalian kidney. The number of specialized endothelial cells, immune cells, and interstitial cell types might even be larger. The concerted interplay between different cell types is critical for kidney function. Traditionally, cells were defined by their function or microscopical morphological appearance. With the advent of new single-cell modalities such as transcriptomics, epigenetics, metabolomics, and proteomics we are entering into a new era of cell type definition. This new technological revolution provides new opportunities to classify cells in the kidney and understand their functions.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, USA
| |
Collapse
|
17
|
Dental Pulp Stem Cell Heterogeneity: Finding Superior Quality "Needles" in a Dental Pulpal "Haystack" for Regenerative Medicine-Based Applications. Stem Cells Int 2022; 2022:9127074. [PMID: 35027930 PMCID: PMC8752304 DOI: 10.1155/2022/9127074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations, coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening, isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of hDPSC-based therapies in the future.
Collapse
|
18
|
Shin YK, Cheon S, Kim SD, Moon JS, Kim JY, Kim SH, Park C, Kim MS. Identification of novel candidate genes implicated in odontogenic potential in the developing mouse tooth germ using transcriptome analysis. Genes Genomics 2021; 43:1087-1094. [PMID: 34302633 DOI: 10.1007/s13258-021-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND In tooth bioengineering for replacement therapy of missing teeth, the utilized cells must possess an inductive signal-forming ability to initiate odontogenesis. This ability is called odontogenic potential. In mice, the odontogenic potential signal is known to be translocated from the epithelium to the mesenchyme at the early bud stage in the developing molar tooth germ. However, the identity of the molecular constituents of this process remains unclear. OBJECTIVE The purpose of this study is to determine the molecular identity of odontogenic potential and to provide a new perspective in the field of tooth development research. METHODS In this study, whole transcriptome profiles of the mouse molar tooth germ epithelium and mesenchyme were investigated using the RNA sequencing (RNA-seq) technique. The analyzed transcriptomes corresponded to two developmental stages, embryonic day 11.5 (E11.5) and 14.5 (E14.5), which represent the odontogenic potential shifts. RESULTS We identified differentially expressed genes (DEGs), which were specifically overexpressed in both the E11.5 epithelium and E14.5 mesenchyme, but not expressed in their respective counterparts. Of the 55 DEGs identified, the top three most expressed transcription factor genes (transcription factor AP-2 beta isoform 3 [TFAP2B], developing brain homeobox protein 2 [DBX2], and insulin gene enhancer protein ISL-1 [ISL1]) and three tooth development-related genes (transcription factor HES-5 [HES5], platelet-derived growth factor D precursor [PDGFD], semaphrin-3 A precursor [SEMA3A]) were selected and validated by quantitative RT-PCR. Using immunofluorescence staining, the TFAP2B protein expression was found to be localized only at the E11.5 epithelium and E14.5 mesenchyme. CONCLUSIONS Thus, our empirical findings in the present study may provide a new perspective into the characterization of the molecules responsible for the odontogenic potential and may have an implication in the cell-based whole tooth regeneration strategy.
Collapse
Affiliation(s)
- Yeo-Kyeong Shin
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Sung-Duk Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea.
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea.
| |
Collapse
|
19
|
Liu M, Li W, Xia X, Wang F, MacDougall M, Chen S. Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration. Eur Cell Mater 2021; 42:43-62. [PMID: 34275129 PMCID: PMC9019922 DOI: 10.22203/ecm.v042a04] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades. DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.
Collapse
Affiliation(s)
- M.M. Liu
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Endodontics, School of Stomatology, Tongji University, Shanghai, 200072, China
| | - W.T. Li
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - X.M. Xia
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Obstetrics and Gynaecology, Second Xiangya Hospital, Central South University Changsha, 410011, China
| | - F. Wang
- Department of Anatomy, Fujian Medical University, Fuzhou, 350122, China
| | - M. MacDougall
- UBC Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - S. Chen
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
20
|
Sivaraj KK, Jeong HW, Dharmalingam B, Zeuschner D, Adams S, Potente M, Adams RH. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep 2021; 36:109352. [PMID: 34260921 PMCID: PMC8293626 DOI: 10.1016/j.celrep.2021.109352] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/30/2020] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Bone stroma contributes to the regulation of osteogenesis and hematopoiesis but also to fracture healing and disease processes. Mesenchymal stromal cells from bone (BMSCs) represent a heterogenous mixture of different subpopulations with distinct molecular and functional properties. The lineage relationship between BMSC subsets and their regulation by intrinsic and extrinsic factors are not well understood. Here, we show with mouse genetics, ex vivo cell differentiation assays, and transcriptional profiling that BMSCs from metaphysis (mpMSCs) and diaphysis (dpMSCs) are fundamentally distinct. Fate-tracking experiments and single-cell RNA sequencing indicate that bone-forming osteoblast lineage cells and dpMSCs, including leptin receptor-positive (LepR+) reticular cells in bone marrow, emerge from mpMSCs in the postnatal metaphysis. Finally, we show that BMSC fate is controlled by platelet-derived growth factor receptor β (PDGFRβ) signaling and the transcription factor Jun-B. The sum of our findings improves our understanding of BMSC development, lineage relationships, and differentiation.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Backialakshmi Dharmalingam
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Susanne Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Michael Potente
- Max Planck Institute for Heart and Lung Research, Angiogenesis and Metabolism Laboratory, 61231 Bad Nauheim, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany.
| |
Collapse
|
21
|
Shah J, Manton DJ, McCullough MJ, Rajan S. Odontoblast markers and dentine reactions in carious primary molars with and without hypomineralised enamel defects. Int J Paediatr Dent 2021; 31:451-458. [PMID: 33222333 DOI: 10.1111/ipd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wnt/β-Catenin signalling and DMP1 have key roles in tertiary dentinogenesis. AIM To compare the relationship between remaining dentine thickness (RDT), tertiary dentine thickness (TDT), β-catenin and dentine matrix protein 1 (DMP1) in carious second primary molar teeth with normal (SPM) and hypomineralised enamel (HSPM). DESIGN Extracted carious SPM and HSPM were fixed, sectioned (5 μm) and stained with haematoxylin and eosin or with indirect immunofluorescence for β-catenin and DMP1. Image analysis was performed to determine RDT, TDT, β-catenin and DMP1 intensity in the odontoblast layer and dentine-pulp complex. RESULTS Carious SPM (n = 11; mean RDT = 1536.1 μm) and HSPM (n = 12; mean RDT = 1179.9 μm) had mean TDT 248.6 μm and 518.1 μm, respectively (P = .02). There were no significant differences in intensity values in the odontoblast layer and dentine-pulp complex for β-catenin and DMP1 for both groups. CONCLUSION There was no observable variation in Wnt/β-catenin and DMP1 expression between HSPM and SPM despite a statistically significant twofold increased TDT in HSPM compared with SPM that had similar RDT. Thus, the observed increased TDT in HSPM is more likely due to an earlier onset of repair processes rather than an amplified response to caries.
Collapse
Affiliation(s)
- Janita Shah
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia.,Oral Health Services, Health Care Agency, Mahé, Republic of Seychelles
| | - David J Manton
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia.,Centrum voor Tandheelkunde en Mondzorgkunde, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Michael J McCullough
- Oral Anatomy, Medicine and Surgery, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| | - Sadna Rajan
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
22
|
Abstract
ZFP57 is a master regulator of genomic imprinting. It has both maternal and zygotic functions that are partially redundant in maintaining DNA methylation at some imprinting control regions (ICRs). In this study, we found that DNA methylation was lost at most known ICRs in Zfp57 mutant embryos. Furthermore, loss of ZFP57 caused loss of parent-of-origin-dependent monoallelic expression of the target imprinted genes. The allelic expression switch occurred in the ZFP57 target imprinted genes upon loss of differential DNA methylation at the ICRs in Zfp57 mutant embryos. Specifically, upon loss of ZFP57, the alleles of the imprinted genes located on the same chromosome with the originally methylated ICR switched their expression to mimic their counterparts on the other chromosome with unmethylated ICR. Consistent with our previous study, ZFP57 could regulate the NOTCH signaling pathway in mouse embryos by impacting allelic expression of a few regulators in the NOTCH pathway. In addition, the imprinted Dlk1 gene that has been implicated in the NOTCH pathway was significantly down-regulated in Zfp57 mutant embryos. Our allelic expression switch models apply to the examined target imprinted genes controlled by either maternally or paternally methylated ICRs. Our results support the view that ZFP57 controls imprinted expression of its target imprinted genes primarily through maintaining differential DNA methylation at the ICRs.
Collapse
|
23
|
desJardins-Park HE, Mascharak S, Longaker MT, Wan DC. Endogenous Mechanisms of Craniomaxillofacial Repair: Toward Novel Regenerative Therapies. FRONTIERS IN ORAL HEALTH 2021; 2:676258. [PMID: 35048022 PMCID: PMC8757793 DOI: 10.3389/froh.2021.676258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
In the fields of oral and craniomaxillofacial surgery, regeneration of multiple tissue types-including bone, skin, teeth, and mucosal soft tissue-is often a desired outcome. However, limited endogenous capacity for regeneration, as well as predisposition of many tissues to fibrotic healing, may prevent recovery of normal form and function for patients. Recent basic science research has advanced our understanding of molecular and cellular pathways of repair in the oral/craniofacial region and how these are influenced by local microenvironment and embryonic origin. Here, we review the current state of knowledge in oral and craniomaxillofacial tissue repair/regeneration in four key areas: bone (in the context of calvarial defects and mandibular regeneration during distraction osteogenesis); skin (in the context of cleft lip/palate surgery); oral mucosa (in the context of minimally scarring repair of mucosal injuries); and teeth (in the context of dental disease/decay). These represent four distinct healing processes and outcomes. We will discuss both divergent and conserved pathways of repair in these contexts, with an eye toward fundamental mechanisms of regeneration vs. fibrosis as well as translational research directions. Ultimately, this knowledge can be leveraged to develop new cell-based and molecular treatment strategies to encourage bone and soft tissue regeneration in oral and craniomaxillofacial surgery.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
| |
Collapse
|
24
|
林 云. [Tetrahedral Framework Nucleic Acids and Human Health]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:345-349. [PMID: 34018349 PMCID: PMC10409210 DOI: 10.12182/20210560301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 02/05/2023]
Abstract
In recent years, tetrahedral framework nucleic acids (tFNAs) have become a hot topic in the field of DNA nanomaterials due to their excellent mechanical, chemical and biological properties. By taking advantage of these merits, tFNAs of varied sizes and modification methods have been designed and applied in diverse fields such as regenerative medicine, biosensors, and tumor treatment to promote human health. This paper reviews the current research progress of tFNAs in human health-related fields, and the future challenges in the clinical applications of tFNAs.
Collapse
Affiliation(s)
- 云锋 林
- 口腔疾病研究国家重点实验室国家口腔疾病临床医学研究中心 四川大学华西口腔医院 口腔颌面外科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- 四川大学生物医学工程学院 (成都 610041)College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Du J, Jing J, Chen S, Yuan Y, Feng J, Ho TV, Sehgal P, Xu J, Jiang X, Chai Y. Arid1a regulates cell cycle exit of transit-amplifying cells by inhibiting the Aurka-Cdk1 axis in mouse incisor. Development 2021; 148:dev198838. [PMID: 33766930 PMCID: PMC8077510 DOI: 10.1242/dev.198838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
26
|
Chen Q, Zheng L, Zhang Y, Huang X, Wang F, Li S, Yang Z, Liang F, Hu J, Jiang Y, Li Y, Zhou P, Luo W, Zhang H. Special AT-rich sequence-binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell Prolif 2021; 54:e13016. [PMID: 33660290 PMCID: PMC8016638 DOI: 10.1111/cpr.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.
Collapse
Affiliation(s)
- Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Fang Liang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yucan Jiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yeming Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
27
|
Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo 2021; 12:4. [PMID: 33766133 PMCID: PMC7995769 DOI: 10.1186/s13227-021-00172-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Emma J Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| |
Collapse
|
28
|
Fresia R, Marangoni P, Burstyn-Cohen T, Sharir A. From Bite to Byte: Dental Structures Resolved at a Single-Cell Resolution. J Dent Res 2021; 100:897-905. [PMID: 33764175 PMCID: PMC8293759 DOI: 10.1177/00220345211001848] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The systematic classification of the cells that compose a tissue or an organ is key to understanding how these cells cooperate and interact as a functional unit. Our capacity to detect features that define cell identity has evolved from morphological and chemical analyses, through the use of predefined genetic markers, to unbiased transcriptomic and epigenetic profiling. The innovative technology of single-cell RNA sequencing (scRNA-seq) enables transcriptional profiling of thousands of individual cells. Since its development, scRNA-seq has been extensively applied to numerous organs and tissues in a wide range of animal models and human samples, thereby providing a plethora of fundamental biological insights into their development, homeostasis, and pathology. In this review, we present the findings of 3 recent studies that employed scRNA-seq to unravel the complexity of cellular composition in mammalian teeth. These findings offer an unprecedented catalogue of cell types in the mouse incisor, which is a convenient model system for studying continuous tooth growth. These studies identified novel cell types in the tooth epithelium and mesenchyme, as well as new markers for known cell types. Computational analyses of the data also uncovered the lineage and dynamics of cell states during ameloblast and odontoblast differentiation during both normal homeostasis and injury repair. The transcriptional differences between the mouse incisor and mouse and human molars uncover species-specific as well as shared features in tooth cell composition. Here, we highlight these findings and discuss important similarities and differences between these studies. We also discuss potential future applications of scRNA-seq in dental research and dentistry. Together, these studies demonstrate how the rapidly evolving technology of scRNA-seq can advance the study of tooth development and function and provide putative targets for regenerative approaches.
Collapse
Affiliation(s)
- R Fresia
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - P Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - T Burstyn-Cohen
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - A Sharir
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
29
|
Sweat M, Sweat Y, Yu W, Su D, Leonard RJ, Eliason SL, Amendt BA. The miR-200 family is required for ectodermal organ development through the regulation of the epithelial stem cell niche. STEM CELLS (DAYTON, OHIO) 2021; 39:761-775. [PMID: 33529466 PMCID: PMC8247948 DOI: 10.1002/stem.3342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The murine lower incisor ectodermal organ contains a single epithelial stem cell (SC) niche that provides epithelial progenitor cells to the continuously growing rodent incisor. The dental stem cell niche gives rise to several cell types and we demonstrate that the miR‐200 family regulates these cell fates. The miR‐200 family is highly enriched in the differentiated dental epithelium and absent in the stem cell niche. In this study, we inhibited the miR‐200 family in developing murine embryos using new technology, resulting in an expanded epithelial stem cell niche and lack of cell differentiation. Inhibition of individual miRs within the miR‐200 cluster resulted in differential developmental and cell morphology defects. miR‐200 inhibition increased the expression of dental epithelial stem cell markers, expanded the stem cell niche and decreased progenitor cell differentiation. RNA‐seq. identified miR‐200 regulatory pathways involved in cell differentiation and compartmentalization of the stem cell niche. The miR‐200 family regulates signaling pathways required for cell differentiation and cell cycle progression. The inhibition of miR‐200 decreased the size of the lower incisor due to increased autophagy and cell death. New miR‐200 targets demonstrate gene networks and pathways controlling cell differentiation and maintenance of the stem cell niche. This is the first report demonstrating how the miR‐200 family is required for in vivo progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Mason Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Yan Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Dan Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Riley J Leonard
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Steven L Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Exploiting teeth as a model to study basic features of signaling pathways. Biochem Soc Trans 2020; 48:2729-2742. [DOI: 10.1042/bst20200514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization.
Collapse
|
31
|
Zambon AC, Hsu T, Kim SE, Klinck M, Stowe J, Henderson LM, Singer D, Patam L, Lim C, McCulloch AD, Hu B, Hickerson AI. Methods and sensors for functional genomic studies of cell-cycle transitions in single cells. Physiol Genomics 2020; 52:468-477. [PMID: 32866086 DOI: 10.1152/physiolgenomics.00065.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G0) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1-5% of cells can exhibit G0 and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67p-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67p-FUCCI over time. To enable the further study G0 and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G1 and G2 phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.
Collapse
Affiliation(s)
- Alexander C Zambon
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California
| | - Tom Hsu
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California
| | - Seunghee Erin Kim
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California
| | - Miranda Klinck
- Keck Science Department, Pitzer College, Claremont, California
| | - Jennifer Stowe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Lindsay M Henderson
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Donald Singer
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, University of Plymouth, Plymouth, United Kingdom
| | - Leomar Patam
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California
| | - Curtis Lim
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Department of Medicine, University of California San Diego, La Jolla, California
| | - Bing Hu
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, University of Plymouth, Plymouth, United Kingdom
| | - Anna I Hickerson
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California
| |
Collapse
|
32
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Yang Y, Wang T, Zhang S, Jia S, Chen H, Duan Y, Wang S, Chen G, Tian W. Vitamin C alleviates the senescence of periodontal ligament stem cells through inhibition of Notch3 during long-term culture. J Cell Physiol 2020; 236:1237-1251. [PMID: 32662081 DOI: 10.1002/jcp.29930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 02/05/2023]
Abstract
Periodontal ligament stem cells (PDLSCs), as potential "seed cells" for periodontal tissue repair and regeneration, require to be expanded in vitro for a large scale. Senescence of PDLSCs occurred during long-term culture may compromise the therapeutic effects of PDLSCs. Medium supplements may be useful in antisenescence. However, the effects and mechanisms of vitamin C (Vc) treatment on PDLSCs during long-term culture are still unclear. In this study, we identified that Vc-treated PDLSCs cells maintained a slender morphology, higher growth rate and migration capacity, stemness, and osteogenic differentiation capability during a long-term culture. Moreover, we also identified that Notch3 was significantly upregulated during the cell senescence, and Vc treatment alleviated the senescence of PDLSCs through inhibition of Notch3 during long-term culture. In summary, Vc treatment suppressed PDLSCs senescence by reducing the expression of Notch3 and might be a simple and useful strategy to inhibit cellular senescence during the cell long-term culture.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sixun Jia
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufeng Duan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shikai Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Adams CL, Ercolano E, Ferluga S, Sofela A, Dave F, Negroni C, Kurian KM, Hilton DA, Hanemann CO. A Rapid Robust Method for Subgrouping Non-NF2 Meningiomas According to Genotype and Detection of Lower Levels of M2 Macrophages in AKT1 E17K Mutated Tumours. Int J Mol Sci 2020; 21:E1273. [PMID: 32070062 PMCID: PMC7073007 DOI: 10.3390/ijms21041273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of meningiomas are grade I, but some grade I tumours are clinically more aggressive. Recent advances in the genetic study of meningiomas has allowed investigation into the influence of genetics on the tumour microenvironment, which is important for tumorigenesis. We have established that the endpoint genotyping method Kompetitive Allele Specific PCR (KASP™) is a fast, reliable method for the screening of meningioma samples into different non-NF2 mutational groups using a standard real-time PCR instrument. This genotyping method and four-colour flow cytometry has enabled us to assess the variability in the largest immune cell infiltrate population, M2 macrophages (CD45+HLA-DR+CD14+CD163+) in 42 meningioma samples, and to suggest that underlying genetics is relevant. Further immunohistochemistry analysis comparing AKT1 E17K mutants to WHO grade I NF2-negative samples showed significantly lower levels of CD163-positive activated M2 macrophages in meningiomas with mutated AKT1 E17K, signifying a more immunosuppressive tumour microenvironment in NF2 meningiomas. Our data suggested that underlying tumour genetics play a part in the development of the immune composition of the tumour microenvironment. Stratifying meningiomas by mutational status and correlating this with their cellular composition will aid in the development of new immunotherapies for patients.
Collapse
Affiliation(s)
- Claire L. Adams
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
| | - Emanuela Ercolano
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
| | - Sara Ferluga
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
| | - Agbolahan Sofela
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
- Department of Neurosurgery, University Hospitals Plymouth NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - Foram Dave
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
| | - Caterina Negroni
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
| | - Kathreena M. Kurian
- Institute of Clinical Neuroscience, University of Bristol and Southmead Hospital, North Bristol Trust, Bristol BS8 1QU, UK
| | - David A. Hilton
- Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - C. Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK (C.N.)
| |
Collapse
|
36
|
Denes BJ, Bolton C, Illsley CS, Kok WL, Walker JV, Poetsch A, Tredwin C, Kiliaridis S, Hu B. Notch Coordinates Periodontal Ligament Maturation through Regulating Lamin A. J Dent Res 2019; 98:1357-1366. [PMID: 31461625 DOI: 10.1177/0022034519871448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tooth eruption is a continuous biological process with dynamic changes at cellular and tissue levels, particularly within the periodontal ligament (PDL). Occlusion completion is a significant physiological landmark of dentition establishment. However, the importance of the involvement of molecular networks engaging in occlusion establishment on the final PDL maturation is still largely unknown. In this study, using rat and mouse molar teeth and a human PDL cell line for RNAseq and proteomic analysis, we systematically screened the key molecular links in regulating PDL maturation before and after occlusion establishment. We discovered Notch, a key molecular pathway in regulating stem cell fate and differentiation, is a major player in the event. Intercepting the Notch pathway by deleting its key canonical transcriptional factor, RBP-Jkappa, using a conditional knockout strategy in the mice delayed PDL maturation. We also identified that Lamin A, a cell nuclear lamina member, is a unique marker of PDL maturation, and its expression is under the control of Notch signaling. Our study therefore provides a deep insight of how PDL maturation is regulated at the molecular level, and we expect the outcomes to be applied for a better understanding of the molecular regulation networks in physiological conditions such as tooth eruption and movement and also for periodontal diseases.
Collapse
Affiliation(s)
- B J Denes
- Department of Orthodontics, University Clinic of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - C Bolton
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - C S Illsley
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - W L Kok
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - J V Walker
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - A Poetsch
- School of Biomedicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - C Tredwin
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - S Kiliaridis
- Department of Orthodontics, University Clinic of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - B Hu
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| |
Collapse
|