1
|
Taylor LJ, Steed G, Pingarron‐Cardenas G, Wittern L, Hannah MA, Webb AAR. GIGANTEA Is Required for Robust Circadian Rhythms in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:4492-4504. [PMID: 40007327 PMCID: PMC12050397 DOI: 10.1111/pce.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
GIGANTEA (GI) is a plant-specific protein that functions in many physiological processes and signalling networks. In Arabidopsis, GI has a central role in circadian oscillators regulating the abundance of ZEITLUPE and TIMING OF CAB EXPRESSION 1 proteins and is essential for photoperiodic regulation of flowering. We have investigated how ortholgues of this component of Arabidopsis circadian oscillators contribute to circadian rhythms and yield traits, including heading (flowering) in wheat. We find that GI is a core component of wheat circadian oscillators that is necessary to maintain robust oscillations in chlorophyll fluorescence and circadian oscillator transcript abundance. The predicted lack of functional GI results in later flowering of wheat in both long days and short days in controlled environment conditions. Our results support and extend previous work, which suggests that the pathways by which photoperiodism regulates flowering are not fully conserved between Arabidopsis and wheat. Understanding the molecular basis for photoperiodism in wheat is important for breeders looking to manipulate flowering time and develop new elite, high-yielding cultivars.
Collapse
Affiliation(s)
- Laura J. Taylor
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gareth Steed
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Lukas Wittern
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Alex A. R. Webb
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
2
|
Chen Z, Huang J, Li J, Menke FLH, Jones JDG, Guo H. Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity. Nat Commun 2025; 16:1984. [PMID: 40011440 PMCID: PMC11865428 DOI: 10.1038/s41467-025-57231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Plant intracellular NLR immune receptors can function individually or in pairs to detect pathogen effectors and activate immune responses. NLR homeostasis has to be tightly regulated to ensure proper defense without triggering autoimmunity. However, in contrast to singleton NLRs, the mechanisms controlling the paired NLRs complex homeostasis are less understood. The paired Arabidopsis RRS1/RPS4 immune receptor complex confers disease resistance through effector recognition mediated by the integrated WRKY domain of RRS1. Here, through proximity labeling, we reveal a ubiquitination-deubiquitination cycle that controls the homeostasis of the RRS1/RPS4 complex. E3 ligase RARE directly binds and ubiquitinates RRS1's WRKY domain to promote its proteasomal degradation, thereby destabilizing RPS4 indirectly and compromising the stability and function of the RRS1/RPS4 complex. Conversely, the deubiquitinating enzymes UBP12/UBP13 deubiquitinate RRS1's WRKY domain, counteracting RARE's effects. Interestingly, the abundance of WRKY transcription factors WRKY70 and WRKY41 is also regulated by RARE and UBP12/UBP13. Phylogenetic analysis suggests this regulation likely transferred from WRKY70/WRKY41 to RRS1 upon WRKY domain integration. Our findings improve our understanding of homeostatic regulation of paired NLR complex and uncover a paradigm whereby domain integration can co-opt preexisting post-translational modification to regulate novel protein functions.
Collapse
Affiliation(s)
- Zhiyi Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jianyu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Hailong Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Zhu W, Li G, Shi H, Ruan Y, Liu C. Transcriptome and Metabolome Analyses Reveal the Regulatory Mechanism of TC1a in the Sucrose and Starch Synthesis Pathways in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3402. [PMID: 39683196 DOI: 10.3390/plants13233402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins, originally identified in mammals, have since been found in most plants. TRAF proteins in plants have been shown to be involved in cellular autophagy, immunity, drought resistance, and ABA induction. However, the role in regulating sucrose and starch metabolism has not been reported. In this study, we confirmed that TC1a can regulate sucrose and starch metabolism through gene editing, phenotypic observation, transcriptomics and metabolomics analyses. Initially, 200 and 81 TRAF proteins were identified in rapeseed (Brassica napus L.) and Arabidopsis thaliana, respectively, and divided into five classes. We found that overexpression of TC1a inhibited root length, plant height, flowering, and leaf development in A. thaliana. Additionally, 12 differentially expressed genes (DEGs) related to sucrose and starch metabolism pathways were identified in overexpressing and knockout plants, respectively. Six differentially accumulated metabolites (DAMs)-fructose, sucrose, glucose, trehalose, maltose, and 6-phosphate fructose-were identified using widely targeted metabolomics analysis. The results show that TC1a affects the growth and development of Arabidopsis, and induces the expression of sucrose and starch synthase and hydrolases, providing a foundation for further research into its molecular mechanisms.
Collapse
Affiliation(s)
- Wenjun Zhu
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Guangze Li
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Han Shi
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Liu
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Freidinger AG, Woodward LA, Bùi JT, Doty G, Ruiz S, Conant E, Hicks KA. Cycling DOF factor mediated seasonal regulation of sexual reproduction and cold response is not conserved in Physcomitrium patens. PLANT DIRECT 2024; 8:e70020. [PMID: 39600727 PMCID: PMC11588431 DOI: 10.1002/pld3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Many land plants have evolved such that the transition from vegetative to reproductive development is synchronized with environmental cues. Examples of reproduction in response to seasonal cues can be found in both vascular and nonvascular species; however, most of our understanding of the molecular events controlling this timing has been worked out in angiosperm model systems. While the organism-level mechanisms of sexual reproduction vary dramatically between vascular and nonvascular plants, phylogenetic and transcriptomic evidence suggest paralogs in nonvascular plants may have conserved function with their vascular counterparts. Given that Physcomitrium patens undergoes sexual reproductive development in response to photoperiodic and cold temperature cues, it is well-suited for studying evolutionarily conserved mechanisms of seasonal control of reproduction. Thus, we used publicly available microarray data to identify genes differentially expressed in response to temperature cues. We identified two CDF-like (CDL) genes in the P. patens genome that are the most like the angiosperm Arabidopsis thaliana CDFs based on conservation of protein motifs and diurnal expression patterns. In angiosperms, DNA-One Finger Transcription Factors (DOFs) play an important role in regulating photoperiodic flowering, regulating physiological changes in response to seasonal temperature changes, and mediating the cold stress response. We created knockout mutations and tested their impact on sexual reproduction and response to cold stress. Unexpectedly, the timing of sexual reproduction in the ppcdl-double mutants did not differ significantly from wild type, suggesting that the PpCDLs are not necessary for seasonal regulation of this developmental transition. We also found that there was no change in expression of downstream cold-regulated genes in response to cold stress and no change in freezing tolerance in the knockout mutant plants. Finally, we observed no interaction between PpCDLs and the partial homologs of FKF1, an A. thaliana repressor of CDFs. This is different from what is observed in angiosperms, which suggests that the functions of CDF proteins in angiosperms are not conserved in P. patens.
Collapse
Affiliation(s)
| | | | | | | | - Shawn Ruiz
- Biology DepartmentKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
5
|
Hajdu A, Nyári DV, Ádám É, Kim YJ, Somers DE, Silhavy D, Nagy F, Kozma-Bognár L. Forward genetic approach identifies a phylogenetically conserved serine residue critical for the catalytic activity of UBIQUITIN-SPECIFIC PROTEASE 12 in Arabidopsis. Sci Rep 2024; 14:25273. [PMID: 39455703 PMCID: PMC11511944 DOI: 10.1038/s41598-024-77232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian clocks rely on transcriptional/translational feedback loops involving clock genes and their corresponding proteins. While the primary oscillations originate from gene expression, the precise control of clock protein stability plays a pivotal role in establishing the 24-hour circadian rhythms. Most clock proteins are degraded through the ubiquitin/26S proteasome pathway, yet the enzymes responsible for ubiquitination and deubiquitination remain poorly characterised. We identified a missense allele (ubp12-3, S327F) of the UBP12 gene/protein in Arabidopsis. Despite ubp12-3 exhibited a short period phenotype similar to that of a loss-of-function allele, molecular analysis indicated elevated protease activity in ubp12-3. We demonstrated that early flowering of ubp12 mutants is a result of the shortened circadian period rather than a direct alteration of UBP12 function. Analysis of protease activity of non-phosphorylatable (S327A, S327F) and phosphomimetic (S327D) derivatives in bacteria suggested that phosphorylation of serine 327 inhibits UBP12 enzymatic activity, which could explain the over-functioning of S327F in vivo. We showed that phosphomimetic mutations of the conserved serine in the Neurospora and human orthologues reduced ubiquitin cleavage activity suggesting that not only the primary structures of UBP12-like enzymes are phylogenetically conserved across a wide range of species, but also the molecular mechanisms governing their enzymatic activity.
Collapse
Affiliation(s)
- Anita Hajdu
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H- 6726, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary
| | - Dóra Vivien Nyári
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H- 6726, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary
| | - Yeon Jeong Kim
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - David E Somers
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Dániel Silhavy
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - László Kozma-Bognár
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H- 6726, Hungary.
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary.
| |
Collapse
|
6
|
Hajdu A, Nyári D, Terecskei K, Gyula P, Ádám É, Dobos O, Mérai Z, Kozma-Bognár L. LIP1 Regulates the Plant Circadian Oscillator by Modulating the Function of the Clock Component GIGANTEA. Cells 2024; 13:1503. [PMID: 39273073 PMCID: PMC11394198 DOI: 10.3390/cells13171503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycles. The function of the oscillator relies on negative transcriptional/translational feedback loops operated by the so-called clock genes and the encoded clock proteins. Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 (LIP1) as a circadian-clock-associated protein that regulates light input to the clock in the model plant Arabidopsis thaliana. We showed that LIP1 is also required for suppressing red and blue light-mediated photomorphogenesis, pavement cell shape determination and tolerance to salt stress. Here, we demonstrate that LIP1 is present in a complex of clock proteins GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB 1 (TOC1). LIP1 participates in this complex via GUANINE EX-CHANGE FACTOR 7. Analysis of genetic interactions proved that LIP1 affects the oscillator via modulating the function of GI. We show that LIP1 and GI independently and additively regulate photomorphogenesis and salt stress responses, whereas controlling cell shape and photoperiodic flowering are not shared functions of LIP1 and GI. Collectively, our results suggest that LIP1 affects a specific function of GI, possibly by altering binding of GI to downstream signalling components.
Collapse
Affiliation(s)
- Anita Hajdu
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Nyári
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Kata Terecskei
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| | - Péter Gyula
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Éva Ádám
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Orsolya Dobos
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology GmbH, 1030 Vienna, Austria;
| | - László Kozma-Bognár
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| |
Collapse
|
7
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
8
|
Liu W, Lowrey H, Xu A, Leung CC, Adamchek C, He J, Du J, Chen M, Gendron JM. A circadian clock output functions independently of phyB to sustain daytime PIF3 degradation. Proc Natl Acad Sci U S A 2024; 121:e2408322121. [PMID: 39163340 PMCID: PMC11363348 DOI: 10.1073/pnas.2408322121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Harper Lowrey
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Anxu Xu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Christopher Adamchek
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Jiangman He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| |
Collapse
|
9
|
Boix M, Garcia-Rodriguez A, Castillo L, Miró B, Hamilton F, Tolak S, Pérez A, Monte-Bello C, Caldana C, Henriques R. 40S Ribosomal protein S6 kinase integrates daylength perception and growth regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:3039-3052. [PMID: 38701056 PMCID: PMC11288760 DOI: 10.1093/plphys/kiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Plant growth occurs via the interconnection of cell growth and proliferation in each organ following specific developmental and environmental cues. Therefore, different photoperiods result in distinct growth patterns due to the integration of light and circadian perception with specific Carbon (C) partitioning strategies. In addition, the TARGET OF RAPAMYCIN (TOR) kinase pathway is an ancestral signaling pathway that integrates nutrient information with translational control and growth regulation. Recent findings in Arabidopsis (Arabidopsis thaliana) have shown a mutual connection between the TOR pathway and the circadian clock. However, the mechanistical network underlying this interaction is mostly unknown. Here, we show that the conserved TOR target, the 40S ribosomal protein S6 kinase (S6K) is under circadian and photoperiod regulation both at the transcriptional and post-translational level. Total S6K (S6K1 and S6K2) and TOR-dependent phosphorylated-S6K protein levels were higher during the light period and decreased at dusk especially under short day conditions. Using chemical and genetic approaches, we found that the diel pattern of S6K accumulation results from 26S proteasome-dependent degradation and is altered in mutants lacking the circadian F-box protein ZEITLUPE (ZTL), further strengthening our hypothesis that S6K could incorporate metabolic signals via TOR, which are also under circadian regulation. Moreover, under short days when C/energy levels are limiting, changes in S6K1 protein levels affected starch, sucrose and glucose accumulation and consequently impacted root and rosette growth responses. In summary, we propose that S6K1 constitutes a missing molecular link where day-length perception, nutrient availability and TOR pathway activity converge to coordinate growth responses with environmental conditions.
Collapse
Affiliation(s)
- Marc Boix
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Alba Garcia-Rodriguez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Bernat Miró
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Ferga Hamilton
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sanata Tolak
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Adrián Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
10
|
Miao F, Chen W, Zhao Y, Zhao P, Sang X, Lu J, Wang H. The RING-Type E3 Ubiquitin Ligase Gene GhDIRP1 Negatively Regulates Verticillium dahliae Resistance in Cotton ( Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:2047. [PMID: 39124165 PMCID: PMC11314081 DOI: 10.3390/plants13152047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Cotton is one of the world's most important economic crops. Verticillium wilt is a devastating cotton disease caused by Verticillium dahliae, significantly impacting cotton yield and quality. E3 ubiquitin ligases are essential components of the ubiquitin-mediated 26S proteasome system, responsible for recognizing ubiquitinated target proteins and promoting their degradation, which play a crucial regulatory role in plant immune responses. In this study, on the basis of the confirmation of differential expression of GhDIRP1, a RING-type E3 ubiquitin ligase encoding gene, in two cotton varieties resistant (Zhongzhimian 2) or susceptible (Jimian 11) to V. dahliae, we demonstrated that GhDIRP1 is a negative regulator of V. dahliae resistance because silencing GhDIRP1 in cotton and heterogeneously overexpressing the gene in Arabidopsis enhanced and compromised resistance to V. dahliae, respectively. The GhDIRP1-mediated immune response seemed to be realized through multiple physiological pathways, including hormone signaling, reactive oxygen species, and lignin biosynthesis. Based on the sequences of GhDIRP1 isolated from Zhongzhimian 2 and Jimian 11, we found that GhDIRP1 had identical coding but different promoter sequences in the two varieties, with the promoter of Zhongzhimian 2 being more active than that of Jimian 11 because the former drove a stronger expression of GUS and LUC reporter genes. The results link the ubiquitination pathway to multiple physiological pathways acting in the cotton immune response and provide a candidate gene for breeding cotton varieties resistant to V. dahliae.
Collapse
Affiliation(s)
- Fenglin Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Wei Chen
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Yunlei Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Pei Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Xiaohui Sang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
11
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Zhang S, Hu N, Yu F. Insights into a functional model of key deubiquitinases UBP12/13 in plants. THE NEW PHYTOLOGIST 2024; 242:424-430. [PMID: 38406992 DOI: 10.1111/nph.19639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Understanding the complexities of protein ubiquitination is crucial, as it plays a multifaceted role in controlling protein stability, activity, subcellular localization, and interaction, which are central to diverse biological processes. Deubiquitinases (DUBs) serve to reverse ubiquitination, but research progress in plant DUBs is noticeably limited. Among existing studies, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13 have garnered attention for their extensive role in diverse biological processes in plants. This review systematically summarizes the recent advancements in UBP12/13 studies, emphasizing their function, and their substrate specificity, their relationship with E3 ubiquitin ligases, and the similarities and differences with their mammalian orthologue, USP7. By unraveling the molecular mechanisms of UBP12/13, this review offers in-depth insights into the ubiquitin-proteasome system (UPS) in plants and aims to catalyze further explorations and comprehensive understanding in this field.
Collapse
Affiliation(s)
- Shiqi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Ningning Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
13
|
Chen Y, Vermeersch M, Van Leene J, De Jaeger G, Li Y, Vanhaeren H. A dynamic ubiquitination balance of cell proliferation and endoreduplication regulators determines plant organ size. SCIENCE ADVANCES 2024; 10:eadj2570. [PMID: 38478622 PMCID: PMC10936951 DOI: 10.1126/sciadv.adj2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Ubiquitination plays a crucial role throughout plant growth and development. The E3 ligase DA2 has been reported to activate the peptidase DA1 by ubiquitination, hereby limiting cell proliferation. However, the molecular mechanisms that regulate DA2 remain elusive. Here, we demonstrate that DA2 has a very high turnover and auto-ubiquitinates with K48-linkage polyubiquitin chains, which is counteracted by two deubiquitinating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13. Unexpectedly, we found that auto-ubiquitination of DA2 does not influence its stability but determines its E3 ligase activity. We also demonstrate that impairing the protease activity of DA1 abolishes the growth-reducing effect of DA2. Last, we show that synthetic, constitutively activated DA1-ubiquitin fusion proteins overrule this complex balance of ubiquitination and deubiquitination and strongly restrict growth and promote endoreduplication. Our findings highlight a nonproteolytic function of K48-linked polyubiquitination and reveal a mechanism by which DA2 auto-ubiquitination levels, in concert with UBP12 and UBP13, precisely monitor the activity of DA1 and fine-tune plant organ size.
Collapse
Affiliation(s)
- Ying Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Jelle Van Leene
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hannes Vanhaeren
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
Feng H, Tan J, Deng Z. Decoding plant adaptation: deubiquitinating enzymes UBP12 and UBP13 in hormone signaling, light response, and developmental processes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:721-732. [PMID: 37904584 DOI: 10.1093/jxb/erad429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023]
Abstract
Ubiquitination, a vital post-translational modification in plants, plays a significant role in regulating protein activity, localization, and stability. This process occurs through a complex enzyme cascade that involves E1, E2, and E3 enzymes, leading to the covalent attachment of ubiquitin molecules to substrate proteins. Conversely, deubiquitinating enzymes (DUBs) work in opposition to this process by removing ubiquitin moieties. Despite extensive research on ubiquitination in plants, our understanding of the function of DUBs is still emerging. UBP12 and UBP13, two plant DUBs, have received much attention recently and are shown to play pivotal roles in hormone signaling, light perception, photoperiod responses, leaf development, senescence, and epigenetic transcriptional regulation. This review summarizes current knowledge of these two enzymes, highlighting the central role of deubiquitination in regulating the abundance and activity of critical regulators such as receptor kinases and transcription factors during phytohormone and developmental signaling.
Collapse
Affiliation(s)
- Hanqian Feng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
16
|
Liu L, Xie Y, Yahaya BS, Wu F. GIGANTEA Unveiled: Exploring Its Diverse Roles and Mechanisms. Genes (Basel) 2024; 15:94. [PMID: 38254983 PMCID: PMC10815842 DOI: 10.3390/genes15010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian rhythm resetting and overseeing floral initiation. Beyond circadian functions, GI influences various aspects of plant development (chlorophyll accumulation, hypocotyl elongation, stomatal opening, and anthocyanin metabolism). GI has also been implicated to play a pivotal role in response to stresses such as freezing, thermomorphogenic stresses, salinity, drought, and osmotic stresses. Positioned at the hub of complex genetic networks, GI interacts with hormonal signaling pathways like abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), and brassinosteroids (BRs) at multiple regulatory levels. This intricate interplay enables GI to balance stress responses, promoting growth and flowering, and optimize plant productivity. This review delves into the multifaceted roles of GI, supported by genetic and molecular evidence, and recent insights into the dynamic interplay between flowering and stress responses, which enhance plants' adaptability to environmental challenges.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China;
| | - Yuxin Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
17
|
Zheng SY, Guan BB, Yuan DY, Zhao QQ, Ge W, Tan LM, Chen SS, Li L, Chen S, Xu RM, He XJ. Dual roles of the Arabidopsis PEAT complex in histone H2A deubiquitination and H4K5 acetylation. MOLECULAR PLANT 2023; 16:1847-1865. [PMID: 37822080 DOI: 10.1016/j.molp.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.
Collapse
Affiliation(s)
- Si-Yao Zheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bin-Bin Guan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Sakeef N, Scandola S, Kennedy C, Lummer C, Chang J, Uhrig RG, Lin G. Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data. Comput Struct Biotechnol J 2023; 21:3183-3195. [PMID: 37333861 PMCID: PMC10275741 DOI: 10.1016/j.csbj.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
In order to mitigate the effects of a changing climate, agriculture requires more effective evaluation, selection, and production of crop cultivars in order to accelerate genotype-to-phenotype connections and the selection of beneficial traits. Critically, plant growth and development are highly dependent on sunlight, with light energy providing plants with the energy required to photosynthesize as well as a means to directly intersect with the environment in order to develop. In plant analyses, machine learning and deep learning techniques have a proven ability to learn plant growth patterns, including detection of disease, plant stress, and growth using a variety of image data. To date, however, studies have not assessed machine learning and deep learning algorithms for their ability to differentiate a large cohort of genotypes grown under several growth conditions using time-series data automatically acquired across multiple scales (daily and developmentally). Here, we extensively evaluate a wide range of machine learning and deep learning algorithms for their ability to differentiate 17 well-characterized photoreceptor deficient genotypes differing in their light detection capabilities grown under several different light conditions. Using algorithm performance measurements of precision, recall, F1-Score, and accuracy, we find that Suport Vector Machine (SVM) maintains the greatest classification accuracy, while a combined ConvLSTM2D deep learning model produces the best genotype classification results across the different growth conditions. Our successful integration of time-series growth data across multiple scales, genotypes and growth conditions sets a new foundational baseline from which more complex plant science traits can be assessed for genotype-to-phenotype connections.
Collapse
Affiliation(s)
- Nazmus Sakeef
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jiameng Chang
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guohui Lin
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Dai Y, Ma S, Guo Y, Zhang X, Liu D, Gao Y, Zhai C, Chen Q, Xiao S, Zhang Z, Yu L. Evolution and Expression of the Meprin and TRAF Homology Domain-Containing Gene Family in Solanaceae. Int J Mol Sci 2023; 24:ijms24108782. [PMID: 37240124 DOI: 10.3390/ijms24108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Meprin and TRAF homology (MATH)-domain-containing proteins are pivotal in modulating plant development and environmental stress responses. To date, members of the MATH gene family have been identified only in a few plant species, including Arabidopsis thaliana, Brassica rapa, maize, and rice, and the functions of this gene family in other economically important crops, especially the Solanaceae family, remain unclear. The present study identified and analyzed 58 MATH genes from three Solanaceae species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum), and pepper (Capsicum annuum). Phylogenetic analysis and domain organization classified these MATH genes into four groups, consistent with those based on motif organization and gene structure. Synteny analysis found that segmental and tandem duplication might have contributed to MATH gene expansion in the tomato and the potato, respectively. Collinearity analysis revealed high conservation among Solanaceae MATH genes. Further cis-regulatory element prediction and gene expression analysis showed that Solanaceae MATH genes play essential roles during development and stress response. These findings provide a theoretical basis for other functional studies on Solanaceae MATH genes.
Collapse
Affiliation(s)
- Yangshuo Dai
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Sirui Ma
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yixian Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chendong Zhai
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfei Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lujun Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Chen P, De Winne N, De Jaeger G, Ito M, Heese M, Schnittger A. KNO1‐mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes homologous recombination. EMBO J 2023; 42:e111980. [PMID: 36970874 PMCID: PMC10183828 DOI: 10.15252/embj.2022111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
Homologous recombination (HR) is a key DNA damage repair pathway that is tightly adjusted to the state of a cell. A central regulator of homologous recombination is the conserved helicase-containing Bloom syndrome complex, renowned for its crucial role in maintaining genome integrity. Here, we show that in Arabidopsis thaliana, Bloom complex activity is controlled by selective autophagy. We find that the recently identified DNA damage regulator KNO1 facilitates K63-linked ubiquitination of RMI1, a structural component of the complex, thereby triggering RMI1 autophagic degradation and resulting in increased homologous recombination. Conversely, reduced autophagic activity makes plants hypersensitive to DNA damage. KNO1 itself is also controlled at the level of proteolysis, in this case mediated by the ubiquitin-proteasome system, becoming stabilized upon DNA damage via two redundantly acting deubiquitinases, UBP12 and UBP13. These findings uncover a regulatory cascade of selective and interconnected protein degradation steps resulting in a fine-tuned HR response upon DNA damage.
Collapse
|
21
|
Fang YZ, Jiang L, He Q, Cao J, Yang B. Commentary: Deubiquitination complex platform: a plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Acta Pharm Sin B 2023. [PMID: 37521861 PMCID: PMC10372820 DOI: 10.1016/j.apsb.2023.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) or deubiquitinases facilitate the escape of multiple proteins from ubiquitin‒proteasome degradation and are critical for regulating protein expression levels in vivo. Therefore, dissecting the underlying mechanism of DUB recognition is needed to advance the development of drugs related to DUB signaling pathways. To data, extensive studies on the ubiquitin chain specificity of DUBs have been reported, but substrate protein recognition is still not clearly understood. As a breakthrough, the scaffolding role may be significant to substrate protein selectivity. From this perspective, we systematically characterized the scaffolding proteins and complexes contributing to DUB substrate selectivity. Furthermore, we proposed a deubiquitination complex platform (DCP) as a potentially generic mechanism for DUB substrate recognition based on known examples, which might fill the gaps in the understanding of DUB substrate specificity.
Collapse
|
22
|
Zhou Y, Park SH, Chua NH. UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. MOLECULAR PLANT 2023; 16:232-244. [PMID: 36415131 DOI: 10.1016/j.molp.2022.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Salicylic acid (SA), a defense hormone produced after pathogen challenge, is critical for plant immunity. Arabidopsis NONEXPRESSER OF PR GENES 1 (NPR1) and its paralogs NPR3 and NPR4 can bind SA and mediate SA signal transduction. NPR1 functions as a transcriptional co-activator to promote defense gene expression, whereas NPR3 and NPR4 have been shown to function as negative regulators in the SA signaling pathway. Although the mechanism about NPR1 regulation has been well studied, how NPR3/NPR4 proteins are regulated in immune responses remains largely unknown. Here, we show that the stability of NPR3/NPR4 is enhanced by SA. In the absence of pathogen challenge, NPR3/NPR4 are unstable and degraded by the 26S proteasome, whereas the increase in cellular SA levels upon pathogen infection suppresses NPR3/NPR4 degradation. We found that UBP12 and UBP13, two homologous deubiquitinases from a ubiquitin-specific protease subfamily, negatively regulate plant immunity by promoting NPR3/NPR4 stability. Our genetic results further showed that UBP12/UBP13-mediated immunity suppression is partially dependent on NPR3/NPR4 functions. By interacting with NPR3 in the nucleus in an SA-dependent manner, UBP12 and UBP13 remove ubiquitin from polyubiquitinated NPR3 to protect it from being degraded. The stabilization of NPR3/NPR4 promoted by UBP12/UBP13 is essential for negative regulation of basal and SA-induced immunity.
Collapse
Affiliation(s)
- Yu Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore.
| |
Collapse
|
23
|
Wang S, Steed G, Webb AAR. Circadian entrainment in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:981-993. [PMID: 35512209 PMCID: PMC9516740 DOI: 10.1093/plphys/kiac204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Circadian clocks coordinate physiology and development as an adaption to the oscillating day/night cycle caused by the rotation of Earth on its axis and the changing length of day and night away from the equator caused by orbiting the sun. Circadian clocks confer advantages by entraining to rhythmic environmental cycles to ensure that internal events within the plant occur at the correct time with respect to the cyclic external environment. Advances in determining the structure of circadian oscillators and the pathways that allow them to respond to light, temperature, and metabolic signals have begun to provide a mechanistic insight to the process of entrainment in Arabidopsis (Arabidopsis thaliana). We describe the concepts of entrainment and how it occurs. It is likely that a thorough mechanistic understanding of the genetic and physiological basis of circadian entrainment will provide opportunities for crop improvement.
Collapse
Affiliation(s)
- Shouming Wang
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- School of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
24
|
Park SH, Jeong JS, Zhou Y, Binte Mustafa NF, Chua NH. Deubiquitination of BES1 by UBP12/UBP13 promotes brassinosteroid signaling and plant growth. PLANT COMMUNICATIONS 2022; 3:100348. [PMID: 35706355 PMCID: PMC9483116 DOI: 10.1016/j.xplc.2022.100348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 05/26/2023]
Abstract
As a key transcription factor in the brassinosteroid (BR) signaling pathway, the activity and expression of BES1 (BRI1-EMS-SUPPRESSOR 1) are stringently regulated. BES1 degradation is mediated by ubiquitin-related 26S proteasomal and autophagy pathways, which attenuate and terminate BR signaling; however, the opposing deubiquitinases (DUBs) are still unknown. Here, we showed that the ubp12-2w/13-3 double mutant phenocopies the BR-deficient dwarf mutant, suggesting that the two DUBs UBP12/UBP13 antagonize ubiquitin-mediated degradation to stabilize BES1. These two DUBs can trim tetraubiquitin with K46 and K63 linkages in vitro. UBP12/BES1 and UBP13/BES1 complexes are localized in both cytosol and nuclei. UBP12/13 can deubiquitinate polyubiquitinated BES1 in vitro and in planta, and UBP12 interacts with and deubiquitinates both inactive, phosphorylated BES1 and active, dephosphorylated BES1 in vivo. UBP12 overexpression in BES1OE plants significantly enhances cell elongation in hypocotyls and petioles and increases the ratio of leaf length to width compared with BES1OE or UBP12OE plants. Hypocotyl elongation and etiolation result from elevated BES1 levels because BES1 degradation is retarded by UBP12 in darkness or in light with BR. Protein degradation inhibitor experiments show that the majority of BES1 can be degraded by either the proteasomal or the autophagy pathway, but a minor BES1 fraction remains pathway specific. In conclusion, UBP12/UBP13 deubiquitinate BES1 to stabilize the latter as a positive regulator for BR responses.
Collapse
Affiliation(s)
- Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Jin Seo Jeong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nur Fatimah Binte Mustafa
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
25
|
Lindbäck LN, Hu Y, Ackermann A, Artz O, Pedmale UV. UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth. Curr Biol 2022; 32:3221-3231.e6. [PMID: 35700731 PMCID: PMC9378456 DOI: 10.1016/j.cub.2022.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Light is a crucial exogenous signal sensed by cryptochrome (CRY) blue light receptors to modulate growth and the circadian clock in plants and animals. However, how CRYs interpret light quantity to regulate growth in plants remains poorly understood. Furthermore, CRY2 protein levels and activity are tightly regulated in light to fine-tune hypocotyl growth; however, details of the mechanisms that explain precise control of CRY2 levels are not fully understood. We show that in Arabidopsis, UBP12 and UBP13 deubiquitinases physically interact with CRY2 in light. UBP12/13 negatively regulates CRY2 by promoting its ubiquitination and turnover to modulate hypocotyl growth. Growth and development were explicitly affected in blue light when UBP12/13 were disrupted or overexpressed, indicating their role alongside CRY2. UBP12/13 also interacted with and stabilized COP1, which is partially required for CRY2 turnover. Our combined genetic and molecular data support a mechanistic model in which UBP12/13 interact with CRY2 and COP1, leading to the stabilization of COP1. Stabilized COP1 then promotes the ubiquitination and degradation of CRY2 under blue light. Despite decades of studies on deubiquitinases, the knowledge of how their activity is regulated is limited. Our study provides insight into how exogenous signals and ligands, along with their receptors, regulate deubiquitinase activity by protein-protein interaction. Collectively, our results provide a framework of cryptochromes and deubiquitinases to detect and interpret light signals to control plant growth at the most appropriate time.
Collapse
Affiliation(s)
- Louise N Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Oliver Artz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
26
|
Skelly MJ. The emerging roles of deubiquitinases in plant proteostasis. Essays Biochem 2022; 66:147-154. [PMID: 35678302 PMCID: PMC9400064 DOI: 10.1042/ebc20210060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/22/2023]
Abstract
Proper regulation of protein homeostasis (proteostasis) is essential for all organisms to survive. A diverse range of post-translational modifications (PTMs) allow precise control of protein abundance, function and cellular localisation. In eukaryotic cells, ubiquitination is a widespread, essential PTM that regulates most, if not all cellular processes. Ubiquitin is added to target proteins via a well-defined enzymatic cascade involving a range of conjugating enzymes and ligases, while its removal is catalysed by a class of enzymes known as deubiquitinases (DUBs). Many human diseases have now been linked to DUB dysfunction, demonstrating the importance of these enzymes in maintaining cellular function. These findings have led to a recent explosion in studying the structure, molecular mechanisms and physiology of DUBs in mammalian systems. Plant DUBs have however remained relatively understudied, with many DUBs identified but their substrates, binding partners and the cellular pathways they regulate only now beginning to emerge. This review focuses on the most recent findings in plant DUB biology, particularly on newly identified DUB substrates and how these offer clues to the wide-ranging roles that DUBs play in the cell. Furthermore, the future outlook on how new technologies in mammalian systems can accelerate the plant DUB field forward is discussed.
Collapse
Affiliation(s)
- Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
27
|
Lan W, Ma W, Zheng S, Qiu Y, Zhang H, Lu H, Zhang Y, Miao Y. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Sci Alliance 2022; 5:e202201492. [PMID: 35926874 PMCID: PMC9354775 DOI: 10.26508/lsa.202201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The HECT-type UPL3 ligase plays critical roles in plant development and stress protection, but understanding of its regulation remains limited. Here, the multi-omics analyses of ubiquitinated proteins in <i>upl3</i> mutants were performed. A landscape of UPL3-dependent ubiquitinated proteins is constructed: Preferential ubiquitination of proteins related to carbon fixation represented the largest set of proteins with increased ubiquitination in the <i>upl3</i> plant, including most of carbohydrate metabolic enzymes, BRM, and variant histone, whereas a small set of proteins with reduced ubiquitination caused by the <i>upl3</i> mutation were linked to cysteine/methionine synthesis, as well as hexokinase 1 (HXK1) and phosphoenolpyruvate carboxylase 2 (PPC2). Notably, ubiquitin hydrolase 12 (UBP12), BRM, HXK1, and PPC2 were identified as the UPL3-interacting partners in vivo and in vitro. Characterization of <i>brm</i>, <i>upl3</i>, <i>ppc2</i>, <i>gin2</i>, and <i>ubp12</i> mutant plants and proteomic and transcriptomic analysis suggested that UPL3 fine-tunes carbohydrate metabolism, mediating cellular senescence by interacting with UBP12, BRM, HXK1, and PPC2. Our results highlight a regulatory pattern of UPL3 with UBP12 as a hub of regulator on proteolysis-independent regulation and proteolysis-dependent degradation.
Collapse
Affiliation(s)
- Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Qiu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haisen Lu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Liu G, Liang J, Lou L, Tian M, Zhang X, Liu L, Zhao Q, Xia R, Wu Y, Xie Q, Yu F. The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. SCIENCE ADVANCES 2022; 8:eabl5765. [PMID: 35385312 PMCID: PMC8986106 DOI: 10.1126/sciadv.abl5765] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 06/01/2023]
Abstract
Ubiquitination-mediated protein degradation in both the 26S proteasome and vacuole is an important process in abscisic acid (ABA) signaling. However, the role of deubiquitination in this process remains elusive. Here, we demonstrate that two deubiquitinating enzymes (DUBs), ubiquitin-specific protease 12 (UBP12) and UBP13, modulate ABA signaling and drought tolerance by deubiquitinating and stabilizing the endosomal sorting complex required for transport-I (ESCRT-I) component vacuolar protein sorting 23A (VPS23A) and thereby affect the stability of ABA receptors in Arabidopsis thaliana. Genetic analysis showed that VPS23A overexpression could rescue the ABA hypersensitive and drought tolerance phenotypes of ubp12-2w or ubp13-1. In addition to the direct regulation of VPS23A, we found that UBP12 and UBP13 also stabilized the E3 ligase XB3 ortholog 5 in A. thaliana (XBAT35.2) in response to ABA treatment. Hence, we demonstrated that UBP12 and UBP13 are previously unidentified rheostatic regulators of ABA signaling and revealed a mechanism by which deubiquitination precisely monitors the XBAT35/VPS23A ubiquitination module in the ABA response.
Collapse
Affiliation(s)
- Guangchao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jiaxuan Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206 Beijing, China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangyun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000 Shandong, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
29
|
Luo Y, Takagi J, Claus LAN, Zhang C, Yasuda S, Hasegawa Y, Yamaguchi J, Shan L, Russinova E, Sato T. Deubiquitinating enzymes UBP12 and UBP13 stabilize the brassinosteroid receptor BRI1. EMBO Rep 2022; 23:e53354. [PMID: 35166439 PMCID: PMC8982535 DOI: 10.15252/embr.202153354] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023] Open
Abstract
Protein ubiquitination is a dynamic and reversible post-translational modification that controls diverse cellular processes in eukaryotes. Ubiquitin-dependent internalization, recycling, and degradation are important mechanisms that regulate the activity and the abundance of plasma membrane (PM)-localized proteins. In plants, although several ubiquitin ligases are implicated in these processes, no deubiquitinating enzymes (DUBs), have been identified that directly remove ubiquitin from membrane proteins and limit their vacuolar degradation. Here, we discover two DUB proteins, UBP12 and UBP13, that directly target the PM-localized brassinosteroid (BR) receptor BR INSENSITIVE1 (BRI1) in Arabidopsis. BRI1 protein abundance is decreased in the ubp12i/ubp13 double mutant that displayed severe growth defects and reduced sensitivity to BRs. UBP13 directly interacts with and effectively removes K63-linked polyubiquitin chains from BRI1, thereby negatively modulating its vacuolar targeting and degradation. Our study reveals that UBP12 and UBP13 play crucial roles in governing BRI1 abundance and BR signaling activity to regulate plant growth.
Collapse
Affiliation(s)
- Yongming Luo
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Junpei Takagi
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Lucas Alves Neubus Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Chao Zhang
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | | | - Yoko Hasegawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | | | - Libo Shan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
31
|
Davarinejad H, Huang YC, Mermaz B, LeBlanc C, Poulet A, Thomson G, Joly V, Muñoz M, Arvanitis-Vigneault A, Valsakumar D, Villarino G, Ross A, Rotstein BH, Alarcon EI, Brunzelle JS, Voigt P, Dong J, Couture JF, Jacob Y. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 2022; 375:1281-1286. [PMID: 35298257 PMCID: PMC9153895 DOI: 10.1126/science.abm5320] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.
Collapse
Affiliation(s)
- Hossein Davarinejad
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Yi-Chun Huang
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Benoit Mermaz
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Marcelo Muñoz
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Alexis Arvanitis-Vigneault
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute; Cambridge, CB22 3AT, United Kingdom
| | - Gonzalo Villarino
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Alex Ross
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
- University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
| | - Emilio I. Alarcon
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
| | - Joseph S. Brunzelle
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University; Chicago, Illinois 60611, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute; Cambridge, CB22 3AT, United Kingdom
| | - Jie Dong
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Institute of Crop Science, Zhejiang University; Hangzhou 310058, China
| | - Jean-François Couture
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| |
Collapse
|
32
|
Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:431-448. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C-terminal region (TRAF-C domain) containing seven to eight anti-parallel β-sheets, also known as the meprin and TRAF-C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain-containing proteins; these plant proteins cluster into five classes: TRAF/MATH-only, MATH-BPM, MATH-UBP (ubiquitin protease), Seven in absentia (SINA), and MATH-Filament and MATH-PEARLI-4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
33
|
Sun J, Song W, Chang Y, Wang Y, Lu T, Zhang Z. OsLMP1, Encoding a Deubiquitinase, Regulates the Immune Response in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:814465. [PMID: 35116051 PMCID: PMC8805587 DOI: 10.3389/fpls.2021.814465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Lesion mimic mutants have become an effective material for understanding plant-microbe interactions and the immune mechanism in plants. Although many mechanisms responsible for the lesion mimic phenotype have been clarified in plants, the mechanism by which lesion mimic is regulated by posttranslational modification remained largely elusive, especially in rice. In this study, a mutant with the lesion mimic phenotype was obtained and named lmp1-1. Physiological measurements and quantitative real-time PCR analysis showed that the defense response was activated in the mutants. Transcriptome analysis showed that the phenylalanine ammonia lyase (PAL) pathway was activated in the mutant, causing the accumulation of salicylic acid (SA). The results of mapping based cloning showed that OsLMP1 encodes a deubiquitinase. OsLMP1 can cleave ubiquitination precursors. Furthermore, OsLMP1 epigenetically modifies SA synthetic pathway genes by deubiquitinating H2B and regulates the immune response in rice. In summary, this study deepens our understanding of the function of OsLMP1 in the plant immune response and provides further insight into the relationship between plants and pathogenic microorganisms.
Collapse
|
34
|
Jurca M, Sjölander J, Ibáñez C, Matrosova A, Johansson M, Kozarewa I, Takata N, Bakó L, Webb AAR, Israelsson-Nordström M, Eriksson ME. ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829121. [PMID: 35310670 PMCID: PMC8924544 DOI: 10.3389/fpls.2022.829121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/22/2023]
Abstract
Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins-which are expressed from dawn to dusk-interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.
Collapse
Affiliation(s)
- Manuela Jurca
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Johan Sjölander
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Cristian Ibáñez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Departamento de Biología Universidad de La Serena, La Serena, Chile
| | - Anastasia Matrosova
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mikael Johansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
| | - Iwanka Kozarewa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Naoki Takata
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Laszlo Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Israelsson-Nordström
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria E. Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Maria E. Eriksson,
| |
Collapse
|
35
|
Lim CW, Baek W, Lee SC. Tobacco ubiquitin-specific protease 12 (NbUBP12) positively modulates drought resistance. PLANT SIGNALING & BEHAVIOR 2021; 16:1974725. [PMID: 34658295 PMCID: PMC9208778 DOI: 10.1080/15592324.2021.1974725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 05/27/2023]
Abstract
Deubiquitination, a type of post-translational modification, cleaves ubiquitin from target proteins, thereby regulating their stability or activity. Deubiquitination enzymes, ubiquitin-specific proteases (UBP/USP), have been reported to be involved in numerous cellular processes in plants, including meristem development, circadian clock regulation, and immunity. In contrast to model plants, however, the functions of UBP in other higher plants remain poorly understood. Here, we isolated a deubiquitination enzyme, ubiquitin-specific protease 12 (NbUBP12), from Nicotiana benthamiana, which shows high sequence homology with the core enzyme regions of UBP12 from other plants. Quantitative reverse-transcription PCR analysis revealed that NbUBP12 gene expression was significantly induced after drought treatment, and its level was higher in seed than in other tissues. Using a virus-induced gene silencing technique, we generated NbUBP12-silenced tobacco plants to analyze NbUBP12 gene function in response to drought stress and found that compared with control plants, NbUBP12-silenced plants exhibited a lower survival rate after exposure to drought stress. In addition, they were characterized by lower leaf surface temperatures and larger stomatal pore size following abscisic acid (ABA) treatment. On the basis of these observations, we suggest that NbUBP12 is involved in modulating drought resistance in N. benthamiana, which is associated with ABA-mediated stomatal closure.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (Bk21 Program), Chung-Ang University, SeoulSouth Korea
| | - Woonhee Baek
- Department of Life Science (Bk21 Program), Chung-Ang University, SeoulSouth Korea
| | - Sung Chul Lee
- Department of Life Science (Bk21 Program), Chung-Ang University, SeoulSouth Korea
| |
Collapse
|
36
|
Ubiquitin-specific proteases UBP12 and UBP13 promote shade avoidance response by enhancing PIF7 stability. Proc Natl Acad Sci U S A 2021; 118:2103633118. [PMID: 34732572 PMCID: PMC8609341 DOI: 10.1073/pnas.2103633118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
For plants grown in a crowded environment, PHYTOCHROME INTERACTING FACTOR 7 (PIF7) plays a critical role by initiating a series of adaptive growth responses. Here, we demonstrate that, in addition to transcription activity and subcellular localization, the PIF7 protein level, which is stringently regulated, is also important for shade avoidance responses. We identified two ubiquitin-specific proteases, UBP12 and UBP13, which positively regulate rapid plant growth in response to shade light. These two ubiquitin proteases directly interact with PIF7 and protect the latter from destruction by 26S proteasomes. The dynamic changes of PIF7 abundance regulated by UBP12 and UBP13 provide insight into the roles of posttranslational modifications of PIF7 in integrating environmental changes with endogenous responses. Changes in light quality caused by the presence of neighbor proximity regulate many growth and development processes of plants. PHYTOCHROME INTERACTING FACTOR 7 (PIF7), whose subcellular localization, DNA-binding properties, and protein abundance are regulated in a photoreversible manner, plays a central role in linking shade light perception and growth responses. How PIF7 activity is regulated during shade avoidance responses has been well studied, and many factors involved in this process have been identified. However, the detailed molecular mechanism by which shade light regulates the PIF7 protein level is still largely unknown. Here, we show that the PIF7 protein level regulation is important for shade-induced growth. Two ubiquitin-specific proteases, UBP12 and UBP13, were identified as positive regulators in shade avoidance responses by increasing the PIF7 protein level. The ubp12-2w/13–3 double mutant displayed significantly impaired sensitivity to shade-induced cell elongation and reproduction acceleration. Our genetic and biochemical analysis showed that UBP12 and UBP13 act downstream of phyB and directly interact with PIF7 to maintain PIF7 stability and abundance through deubiquitination.
Collapse
|
37
|
Wang X, He Y, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. PLANT, CELL & ENVIRONMENT 2021; 44:3283-3301. [PMID: 34402093 DOI: 10.1111/pce.14167] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 05/23/2023]
Abstract
The circadian clock plays multiple roles in plant stress responses and developmental transition phases. Nevertheless, the underlying molecular mechanisms and individual clock components that coordinately regulate important agronomic traits of rice such as salt tolerance and heading date remain to be elucidated. Here, we identify a rice ternary repressive protein complex composed of OsELF4a, OsELF3-1 and OsLUX, which was designated as OsEC1 in analogy to a similar complex in Arabidopsis. OsELF4a physically interacts with OsELF3-1 and OsELF3-2 in nucleus, whilst OsELF3-1 rather than OsELF3-2 strongly interacts with OsLUX, a Myb-domain containing transcriptional factor. Phenotypic analyses show a role for this complex in heading and salt tolerance. The loss-of-function mutants of OsEC1 exhibit lower survival rate under salt stress and late heading date. Transcriptomic profiling together with biochemical assays identified the GIGANTEA homologue OsGI as a direct transcriptional target of OsEC1. Notably, the osgi-101 mutant, generated by CRISPR/Cas9, is salt tolerant and exhibits early heading date in long day conditions. Together, our findings characterized a transcriptional module in rice composed by the OsEC1 repressing OsGI, which links the circadian clock with salt tolerance and control of heading date.
Collapse
Affiliation(s)
- Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Liu W, Feke A, Leung CC, Tarté DA, Yuan W, Vanderwall M, Sager G, Wu X, Schear A, Clark DA, Thines BC, Gendron JM. A metabolic daylength measurement system mediates winter photoperiodism in plants. Dev Cell 2021; 56:2501-2515.e5. [PMID: 34407427 DOI: 10.1016/j.devcel.2021.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Plants have served as a preeminent study system for photoperiodism due to their propensity to flower in concordance with the seasons. A nearly singular focus on understanding photoperiodic flowering has prevented the discovery of other photoperiod measuring systems necessary for vegetative health. Here, we use bioinformatics to identify photoperiod-induced genes in Arabidopsis. We show that one, PP2-A13, is expressed exclusively in, and required for, plant fitness in short, winter-like photoperiods. We create a real-time photoperiod reporter, using the PP2-A13 promoter driving luciferase, and show that photoperiodic regulation is independent of the canonical CO/FT mechanism for photoperiodic flowering. We then reveal that photosynthesis combines with circadian-clock-controlled starch production to regulate cellular sucrose levels to control photoperiodic expression of PP2-A13. This work demonstrates the existence of a photoperiod measuring system housed in the metabolic network of plants that functions to control seasonal cellular health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Daniel A Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Garrett Sager
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Xing Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ariela Schear
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA
| | - Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
39
|
Mehta D, Krahmer J, Uhrig RG. Closing the protein gap in plant chronobiology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1509-1522. [PMID: 33783885 DOI: 10.1111/tpj.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Our modern understanding of diel cell regulation in plants stems from foundational work in the late 1990s that analysed the dynamics of selected genes and mutants in Arabidopsis thaliana. The subsequent rise of transcriptomics technologies such as microarrays and RNA sequencing has substantially increased our understanding of anticipatory (circadian) and reactive (light- or dark-triggered) diel events in plants. However, it is also becoming clear that gene expression data fail to capture critical events in diel regulation that can only be explained by studying protein-level dynamics. Over the past decade, mass spectrometry technologies and quantitative proteomic workflows have significantly advanced, finally allowing scientists to characterise diel protein regulation at high throughput. Initial proteomic investigations suggest that the diel transcriptome and proteome generally lack synchrony and that the timing of daily regulatory events in plants is impacted by multiple levels of protein regulation (e.g., post-translational modifications [PTMs] and protein-protein interactions [PPIs]). Here, we highlight and summarise how the use of quantitative proteomics to elucidate diel plant cell regulation has advanced our understanding of these processes. We argue that this new understanding, coupled with the extraordinary developments in mass spectrometry technologies, demands greater focus on protein-level regulation of, and by, the circadian clock. This includes hitherto unexplored diel dynamics of protein turnover, PTMs, protein subcellular localisation and PPIs that can be masked by simple transcript- and protein-level changes. Finally, we propose new directions for how the latest advancements in quantitative proteomics can be utilised to answer outstanding questions in plant chronobiology.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Johanna Krahmer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
40
|
Coordinative regulation of plants growth and development by light and circadian clock. ABIOTECH 2021; 2:176-189. [PMID: 36304756 PMCID: PMC9590570 DOI: 10.1007/s42994-021-00041-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
The circadian clock, known as an endogenous timekeeping system, can integrate various cues to regulate plant physiological functions for adapting to the changing environment and thus ensure optimal plant growth. The synchronization of internal clock with external environmental information needs a process termed entrainment, and light is one of the predominant entraining signals for the plant circadian clock. Photoreceptors can detect and transmit light information to the clock core oscillator through transcriptional or post-transcriptional interactions with core-clock components to sustain circadian rhythms and regulate a myriad of downstream responses, including photomorphogenesis and photoperiodic flowering which are key links in the process of growth and development. Here we summarize the current understanding of the molecular network of the circadian clock and how light information is integrated into the circadian system, especially focus on how the circadian clock and light signals coordinately regulate the common downstream outputs. We discuss the functions of the clock and light signals in regulating photoperiodic flowering among various crop species.
Collapse
|
41
|
Feke A, Vanderwall M, Liu W, Gendron JM. Functional domain studies uncover novel roles for the ZTL Kelch repeat domain in clock function. PLoS One 2021; 16:e0235938. [PMID: 33730063 PMCID: PMC7968664 DOI: 10.1371/journal.pone.0235938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
The small LOV/F-box/Kelch family of E3 ubiquitin ligases plays an essential role in the regulation of plant circadian clocks and flowering time by sensing dusk. The family consists of three members, ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1), which share a unique protein domain architecture allowing them to act as photoreceptors that transduce light signals via altering stability of target proteins. Despite intensive study of this protein family we still lack important knowledge about the biochemical and functional roles of the protein domains that comprise these unique photoreceptors. Here, we perform comparative analyses of transgenic lines constitutively expressing the photoreceptor LOV domain or the Kelch repeat protein-protein interaction domains of ZTL, FKF1, and LKP2. Expression of each domain alone is sufficient to disrupt circadian rhythms and flowering time, but each domain differs in the magnitude of effect. Immunoprecipitation followed by mass spectrometry with the ZTL Kelch repeat domain identified a suite of potential interacting partners. Furthermore, the ZTL Kelch repeat domain can interact with the ZTL homologs, LKP2 and FKF1, and the LOV domain of ZTL itself. This suggests a hypothesis that the Kelch repeat domain of ZTL may mediate inter- and intra-molecular interactions of the three LOV/F-box/Kelch proteins and provides added insight into the composition of the protein complexes and an additional role for the Kelch repeat domain.
Collapse
Affiliation(s)
- Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
42
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
43
|
Li MW, Lam HM. The Modification of Circadian Clock Components in Soybean During Domestication and Improvement. Front Genet 2020; 11:571188. [PMID: 33193673 PMCID: PMC7554537 DOI: 10.3389/fgene.2020.571188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Agricultural production is greatly dependent on daylength, which is determined by latitude. Living organisms align their physiology to daylength through the circadian clock, which is made up of input sensors, core and peripheral clock components, and output. The light/dark cycle is the major input signal, moderated by temperature fluctuations and metabolic changes. The core clock in plants functions mainly through a number of transcription feedback loops. It is known that the circadian clock is not essential for survival. However, alterations in the clock components can lead to substantial changes in physiology. Thus, these clock components have become the de facto targets of artificial selection for crop improvement during domestication. Soybean was domesticated around 5,000 years ago. Although the circadian clock itself is not of particular interest to soybean breeders, specific alleles of the circadian clock components that affect agronomic traits, such as plant architecture, sensitivity to light/dark cycle, flowering time, maturation time, and yield, are. Consequently, compared to their wild relatives, cultivated soybeans have been bred to be more adaptive and productive at different latitudes and habitats for acreage expansion, even though the selection processes were made without any prior knowledge of the circadian clock. Now with the advances in comparative genomics, known modifications in the circadian clock component genes in cultivated soybean have been found, supporting the hypothesis that modifications of the clock are important for crop improvement. In this review, we will summarize the known modifications in soybean circadian clock components as a result of domestication and improvement. In addition to the well-studied effects on developmental timing, we will also discuss the potential of circadian clock modifications for improving other aspects of soybean productivity.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
44
|
A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 2020; 215:699-712. [PMID: 32434795 DOI: 10.1534/genetics.120.303199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
Targeted degradation of proteins is mediated by E3 ubiquitin ligases and is important for the execution of many biological processes. Redundancy has prevented the genetic characterization of many E3 ubiquitin ligases in plants. Here, we performed a reverse genetic screen in Arabidopsis using a library of dominant-negative U-box-type E3 ubiquitin ligases to identify their roles in flowering time and reproductive development. We identified five U-box decoy transgenic populations that have defects in flowering time or the floral development program. We used additional genetic and biochemical studies to validate PLANT U-BOX 14 (PUB14), MOS4-ASSOCIATED COMPLEX 3A (MAC3A), and MAC3B as bona fide regulators of flowering time. This work demonstrates the widespread importance of E3 ubiquitin ligases in floral reproductive development. Furthermore, it reinforces the necessity of dominant-negative strategies for uncovering previously unidentified regulators of developmental transitions in an organism with widespread genetic redundancy, and provides a basis on which to model other similar studies.
Collapse
|
45
|
Vanhaeren H, Chen Y, Vermeersch M, De Milde L, De Vleeschhauwer V, Natran A, Persiau G, Eeckhout D, De Jaeger G, Gevaert K, Inzé D. UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2. eLife 2020; 9:52276. [PMID: 32209225 PMCID: PMC7141810 DOI: 10.7554/elife.52276] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Protein ubiquitination is a very diverse post-translational modification leading to protein degradation or delocalization, or altering protein activity. In Arabidopsis thaliana, two E3 ligases, BIG BROTHER (BB) and DA2, activate the latent peptidases DA1, DAR1 and DAR2 by mono-ubiquitination at multiple sites. Subsequently, these activated peptidases destabilize various positive growth regulators. Here, we show that two ubiquitin-specific proteases, UBP12 and UBP13, deubiquitinate DA1, DAR1 and DAR2, hence reducing their peptidase activity. Overexpression of UBP12 or UBP13 strongly decreased leaf size and cell area, and resulted in lower ploidy levels. Mutants in which UBP12 and UBP13 were downregulated produced smaller leaves that contained fewer and smaller cells. Remarkably, neither UBP12 nor UBP13 were found to be cleavage substrates of the activated DA1. Our results therefore suggest that UBP12 and UBP13 work upstream of DA1, DAR1 and DAR2 to restrict their protease activity and hence fine-tune plant growth and development.
Collapse
Affiliation(s)
- Hannes Vanhaeren
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium.,VIB Center for Medical Biotechnology, Albert Baertsoenkaai, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai, Ghent, Belgium
| | - Ying Chen
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Mattias Vermeersch
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Liesbeth De Milde
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Valerie De Vleeschhauwer
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Annelore Natran
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Geert Persiau
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Dominique Eeckhout
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Geert De Jaeger
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai, Ghent, Belgium
| | - Dirk Inzé
- VIB Center for Plant Systems Biology, Technologiepark, Zwijnaarde, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Zwijnaarde, Belgium
| |
Collapse
|
46
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Park YJ, Kim JY, Lee JH, Lee BD, Paek NC, Park CM. GIGANTEA Shapes the Photoperiodic Rhythms of Thermomorphogenic Growth in Arabidopsis. MOLECULAR PLANT 2020; 13:459-470. [PMID: 31954919 DOI: 10.1016/j.molp.2020.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Plants maintain their internal temperature under environments with fluctuating temperatures by adjusting their morphology and architecture, an adaptive process termed thermomorphogenesis. Notably, the rhythmic patterns of plant thermomorphogenesis are governed by day-length information. However, it remains elusive how thermomorphogenic rhythms are regulated by photoperiod. Here, we show that warm temperatures enhance the accumulation of the chaperone GIGANTEA (GI), which thermostabilizes the DELLA protein, REPRESSOR OF ga1-3 (RGA), under long days, thereby attenuating PHYTOCHROME INTERACTING FACTOR 4 (PIF4)-mediated thermomorphogenesis. In contrast, under short days, when GI accumulation is reduced, RGA is readily degraded through the gibberellic acid-mediated ubiquitination-proteasome pathway, promoting thermomorphogenic growth. These data indicate that the GI-RGA-PIF4 signaling module enables plant thermomorphogenic responses to occur in a day-length-dependent manner. We propose that the GI-mediated integration of photoperiodic and temperature information shapes thermomorphogenic rhythms, which enable plants to adapt to diel fluctuations in day length and temperature during seasonal transitions.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Byoung-Doo Lee
- Department of Plant Science, Seoul National University, Seoul 08826, Korea
| | - Nam-Chon Paek
- Department of Plant Science, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Hearn TJ, Webb AAR. Recent advances in understanding regulation of the Arabidopsis circadian clock by local cellular environment. F1000Res 2020; 9. [PMID: 32047621 PMCID: PMC6993837 DOI: 10.12688/f1000research.21307.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks have evolved to synchronise an organism’s physiology with the environmental rhythms driven by the Earth’s rotation on its axis. Over the past two decades, many of the genetic components of the
Arabidopsis thaliana circadian oscillator have been identified. The interactions between these components have been formulized into mathematical models that describe the transcriptional translational feedback loops of the oscillator. More recently, focus has turned to the regulation and functions of the circadian clock. These studies have shown that the system dynamically responds to environmental signals and small molecules. We describe advances that have been made in discovering the cellular mechanisms by which signals regulate the circadian oscillator of Arabidopsis in the context of tissue-specific regulation.
Collapse
Affiliation(s)
- Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK.,Research Department of Cell and Developmental Biology, Rockefeller Building, University College London, London, WC1E 6DE, UK.,Academic Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK
| |
Collapse
|
49
|
Zhang Y, Bo C, Wang L. Novel Crosstalks between Circadian Clock and Jasmonic Acid Pathway Finely Coordinate the Tradeoff among Plant Growth, Senescence and Defense. Int J Mol Sci 2019; 20:ijms20215254. [PMID: 31652760 PMCID: PMC6862349 DOI: 10.3390/ijms20215254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/31/2023] Open
Abstract
Circadian clock not only functions as a cellular time-keeping mechanism, but also acts as a master regulator to coordinate the tradeoff between plant growth and defense in higher plants by timing a few kinds of phytohormone biosynthesis and signaling, including jasmonic acid (JA). Notably, circadian clock and JA pathway have recently been shown to intertwine with each other to ensure and optimize the plant fitness in an ever-changing environment. It has clearly demonstrated that there are multiple crosstalk pathways between circadian clock and JA at both transcriptional and post-transcriptional levels. In this scenario, circadian clock temporally modulates JA-mediated plant development events, herbivory resistance and susceptibility to pathogen. By contrast, the JA signaling regulates clock activity in a feedback manner. In this review, we summarized the cross networks between circadian clock and JA pathway at both transcriptional and post-transcriptional levels. We proposed that the novel crosstalks between circadian clock and JA pathway not only benefit for the understanding the JA-associated circadian outputs including leaf senescence, biotic, and abiotic defenses, but also put timing as a new key factor to investigate JA pathway in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|