1
|
Bagur A, Ducrot E, Duguet E, Ravaine S. Synthesis and DNA Directed Assembly of Asymmetric Patchy Silica Microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40369833 DOI: 10.1021/acs.langmuir.5c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
We report the synthesis of asymmetric patchy silica microparticles exhibiting two surface areas of different sizes and coated with distinct DNA strands, as well as the coassembly of these particles with polystyrene microspheres into raspberry-like and multimer-like clusters. The multistage synthesis method is based on the fabrication of silica/polystyrene monopods by dispersion polymerization followed by the selective dissolution of the physically entangled polystyrene chains forming the pod. The polystyrene remaining chains at the silica surface, forming a thin polymeric layer, were selectively functionalized with DNA single strands (ssDNA) through the entrapment of an azidated polystyrene-block-poly(ethylene oxide) copolymer followed by a strain promoted alkyne azide cycloaddition (SPAAC) reaction. The later was also used to graft different ssDNA onto the silica side of the patchy particles, which had been prefunctionalized with azide groups via the grafting of an organosilane derivative. Confocal microscopy was exploited to evidence the patchy character of the particles. Finally, these asymmetric patchy particles were used to form colloidal clusters by coassembling them with polystyrene spheres coated with complementary ssDNA, exploiting the selectivity and the specificity of DNA hybridization.
Collapse
Affiliation(s)
- Auriane Bagur
- University of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Etienne Ducrot
- University of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Etienne Duguet
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Serge Ravaine
- University of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
2
|
Yang J, Ding C, He M, Wang X, Chen J, Qi D, Sun Y. Charge-dominated phase separation synthesis method of Janus particles with well-defined separated lobes and patternable surface chemistries. J Colloid Interface Sci 2025; 695:137804. [PMID: 40347652 DOI: 10.1016/j.jcis.2025.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Synthesizing Janus particles (JPs) with well-defined separated lobes and customizable surface chemistries has broad scientific and engineering application prospects but has proven extremely challenging. Here, we report a novel phase-separation-based fabrication method leveraging charge-dominated seeded emulsion polymerization, which enables the synthesis of JPs with multi-scale lobe architectures (ranging from isotropic asymmetric shapes to chemically anisotropic forms such as ellipses, dumbbells, and triblock structures) and customizable surface chemistries (including functional groups like carboxyl, sulfate, and sulfonate). Our method is based on the principles of multicomponent systems' heterogeneous nucleation and growth, where the interfacial energy is meticulously controlled by fine-tuning the surface charges/chemical properties of polystyrene (PS) seeds and methacryloxypropyl trimethoxysilane (MPS) emulsions, while the growth kinetics of polymethacryloxypropyl trimethoxysilane (PMPS) lobes are guided through a synergistic combination of radical polymerization and hydrolysis-condensation reactions. Charge-dominated repulsive forces at the interface play a crucial role in driving the phase separation, enabling the synthesis of well-defined JPs and making this strategy broadly applicable to a variety of negatively charged PS seeds or MPS emulsions for customizable two-lobe surface chemistries. Furthermore, the PMPS hemisphere can be selectively modified, enabling applications in Pickering emulsions. This work offers a scalable method for the controllable fabrication of JPs with programmable architectures and surface chemistries.
Collapse
Affiliation(s)
- Jifu Yang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunyu Ding
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyao He
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinqing Wang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyu Chen
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Ding L, Ma W, Chen X, Wang H, Song H, Fan C, Liu X, Yao G. Prescribing DNA Origami Barrel-Directed Subtractive Patterning of Nanoparticles for Crystalline Superstructure Assembly. Angew Chem Int Ed Engl 2025; 64:e202424230. [PMID: 39887841 DOI: 10.1002/anie.202424230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Long-range ordered lattices formed by the directed arrangement of colloidal particles hold significant promise for applications such as photonic crystals, plasmonic metamaterials, and semiconductor electronics. Harnessing regioselective interactions through DNA-mediated assembly is a promising approach to advancing colloidal assembly. Despite efforts to engineer microscale patchy particles using sequence-specific binding properties of DNA, the control of patch formation on nanoscale isotropic spherical nanoparticles remains challenging. We demonstrate a subtractive patterning strategy using barrel-shaped DNA origami (DNA barrel) to selectively block surfaces of DNA-coated gold nanospheres and create regiospecific patches. By designing binding positions and geometric parameters of DNA barrels, we can achieve controlled accessibility to nanosphere surfaces, forming patchy nanoparticles with tunable patch numbers and sizes. This strategy enables the construction of multidimensional superstructures with well-defined stereo relationships, represented by an unprecedented graphane-like bilayered superlattice. Furthermore, we developed a geometrical model that accounts for anisotropic particle bonding and steric hindrance, elucidating the relationship between architectural outcomes and the structural parameters of DNA-barrel-directed patchy nanoparticles, and enabling reverse engineering designs of potential assembly symmetries. This approach opens new avenues for generating nanoparticle assemblies with distinct symmetries and properties.
Collapse
Affiliation(s)
- Longjiang Ding
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhe Ma
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haozhi Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haitao Song
- The Institute of Artificial Intelligence and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Sun YW, Li ZW. Nanohelix Arrays with Giant Circular Dichroism through Patch-Enthalpy-Driven Self-Confined Self-Assembly of Janus Nanoparticles. NANO LETTERS 2025; 25:4540-4548. [PMID: 40062726 DOI: 10.1021/acs.nanolett.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles. The hexagonal columnar structures, self-assembled from Janus nanoparticles, create a cylindrical self-confined environment within each column, where patch-enthalpy drives the particles to form helical structures. Numerical simulations reveal that patch-enthalpy induces the sequential formation of helical structures within each column, from multiple helices to double helix and finally to single helix. Additionally, optical property calculations demonstrate that these nanohelix arrays exhibit giant circular dichroism and high g-factors at visible frequencies. Our proposed construction strategy offers a promising route for developing optical chiral metamaterials through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
Collapse
Affiliation(s)
- Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Karner C, Bianchi E. Partially Bonded Crystals: A Pathway to Porosity and Polymorphism. ACS NANO 2025; 19:5146-5157. [PMID: 39875319 PMCID: PMC11823632 DOI: 10.1021/acsnano.4c06489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
In recent years, experimental and theoretical investigations have shown that anisotropic colloids can self-organize into ordered porous monolayers, where the interplay of localized bonding sites, so-called patches, with the particle's shape is responsible for driving the systems away from close-packing and toward porosity. Until now it has been assumed that patchy particles have to be fully bonded with their neighboring particles for crystals to form, and that, if full bonding cannot be achieved due to the choice of patch placement, disordered assemblies will form instead. In contrast, we show that by deliberately displacing the patches such that full bonding is disfavored, a different route to porous crystalline monolayers emerges, where geometric frustration and partial bonding are decisive process. The resulting dangling bonds lead to the emergence of effectively chiral units which then act as building blocks for energetically equivalent crystal polymorphs.
Collapse
Affiliation(s)
- Carina Karner
- Institut
für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Emanuela Bianchi
- Institut
für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC,
Uos Sapienza, Piazzale
A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
6
|
Navas SF, Klapp SHL. Discrete state model of a self-aggregating colloidal system with directional interactions. J Chem Phys 2024; 161:234903. [PMID: 39679522 DOI: 10.1063/5.0243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The construction of coarse-grained descriptions of a system's kinetics is well established in biophysics. One prominent example is Markov state models in protein folding dynamics. In this paper, we develop a coarse-grained, discrete state model of a self-aggregating colloidal particle system inspired by the concepts of Markov state modeling. The specific self-aggregating system studied here involves field-responsive colloidal particles in orthogonal electric and magnetic fields. Starting from particle-resolved (Brownian dynamics) simulations, we define the discrete states by categorizing each particle according to its local structure. We then describe the kinetics between these states as a series of stochastic, memoryless jumps. In contrast to other works on colloidal self-assembly, our coarse-grained approach describes the simultaneous formation and evolution of multiple aggregates from single particles. Our discrete model also takes into account the changes in transition dynamics between the discrete states as the size of the largest cluster grows. We validate the coarse-grained model by comparing the predicted population fraction in each of the discrete states with those calculated directly from the particle-resolved simulations as a function of the largest cluster size. We then predict population fractions in the presence of noise-averaging and in a situation where a model parameter is changed instantaneously after a certain time. Finally, we explore the validity of the detailed balance condition in the various stages of aggregation.
Collapse
Affiliation(s)
- Salman Fariz Navas
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
7
|
De Filippo CA, Del Galdo S, Bianchi E, De Michele C, Capone B. Dilute suspensions of Janus rods: the role of bond and shape anisotropy. NANOSCALE 2024; 16:18545-18552. [PMID: 39283717 DOI: 10.1039/d4nr02397h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nanometer-sized clusters are often targeted due to their potential applications as nanoreactors or storage/delivery devices. One route to assemble and stabilize finite structures consists of imparting directional bonding patterns between the nanoparticles. When only a portion of the particle surface is able to form an inter-particle bond, finite-size aggregates such as micelles and vesicles may form. Building on this approach, we combine particle shape anisotropy with the directionality of the bonding patterns and investigate the combined effect of particle elongation and surface patchiness on the low density assembly scenario. To this aim, we study the assembly of tip-functionalised Janus hard spherocylinders by means of Monte Carlo simulations. By exploring the effects of changing the interaction strength and range at different packing fractions, we highlight the role played by shape and bond anisotropy on the emerging aggregates (micelles, vesicles, elongated micelles, and lamellae). We observe that shape anisotropy plays a crucial role in suppressing phases that are typical to spherical Janus nanoparticles and that a careful tuning of the interaction parameters allows promoting the formation of spherical micelles. These finite-size spherical clusters composed of elongated particles might offer more interstitials and larger surface areas than those offered by micelles of spherical or almost-spherical units, thus enhancing their storage and catalytic properties.
Collapse
Affiliation(s)
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Cristiano De Michele
- Physics Department, University of Roma "Sapienza", Piazzale Aldo Moro 2, 00186, Rome, Italy
| | - Barbara Capone
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| |
Collapse
|
8
|
Videbæk TE, Hayakawa D, Grason GM, Hagan MF, Fraden S, Rogers WB. Economical routes to size-specific assembly of self-closing structures. SCIENCE ADVANCES 2024; 10:eado5979. [PMID: 38959303 PMCID: PMC11221488 DOI: 10.1126/sciadv.ado5979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Programmable self-assembly has seen an explosion in the diversity of synthetic crystalline materials, but developing strategies that target "self-limiting" assemblies has remained a challenge. Among these, self-closing structures, in which the local curvature defines the finite global size, are prone to polymorphism due to thermal bending fluctuations, a problem that worsens with increasing target size. Here, we show that assembly complexity can be used to eliminate this source of polymorphism in the assembly of tubules. Using many distinct components, we prune the local density of off-target geometries, increasing the selectivity of the tubule width and helicity to nearly 100%. We further show that by reducing the design constraints to target either the pitch or the width alone, fewer components are needed to reach complete selectivity. Combining experiments with theory, we reveal an economical limit, which determines the minimum number of components required to create arbitrary assembly sizes with full selectivity.
Collapse
Affiliation(s)
- Thomas E. Videbæk
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Daichi Hayakawa
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Gregory M. Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Seth Fraden
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - W. Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
9
|
Melnyk IV, Tomina V, Yankovych H, Kolev H, Dutkova E, Breijaert TC, Kessler VG, Seisenbaeva GA. Insights into emulsion synthesis of self-assembled suprastructures formed by Janus silica particles with -NH 2/-SH surface groups. NANOSCALE ADVANCES 2024; 6:3146-3157. [PMID: 38868832 PMCID: PMC11166104 DOI: 10.1039/d3na00909b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
Spherical particles with tunable anisotropic structures enabled by multiple surface functionalities have garnered interest for their potential applications in adsorption technologies. The presence of diverse functional groups in the surface layer, exhibiting varying acidity and hydrophilicity, can lead to unique characteristics in terms of surface structure and behaviour. In this study, the particles were synthesised using a two-step approach involving surface functionalisation of previously synthesised SiO2 Stöber particles. This was achieved by employing 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) in a toluene-in-water emulsion. The resulting particles were found to be nonporous, with a specific surface area of 8 m2 g-1. Their sizes were determined to be up to 350 nm through photon cross-correlation spectroscopy. Moreover, the particles exhibited a high net content of functional groups (both amino and mercapto) of 2 mmol g-1. The organisation of the particles during synthesis was observed through SEM images, providing insights into their structural characteristics. Additionally, the study of Eu(iii), Au(iii), and Ag(i) ions and fluorescein adsorption demonstrated varying interactions on the surface, highlighting the potential applications and versatility of these functionalised particles.
Collapse
Affiliation(s)
- Inna V Melnyk
- Chuiko Institute of Surface Chemistry of NAS of Ukraine 17, Generala Naumova Str. Kyiv 03164 Ukraine
- Institute of Geotechnics, Slovak Academy of Sciences 45, Watsonova Str. Kosice 04001 Slovak Republic
| | - Veronika Tomina
- Chuiko Institute of Surface Chemistry of NAS of Ukraine 17, Generala Naumova Str. Kyiv 03164 Ukraine
| | - Halyna Yankovych
- Institute of Geotechnics, Slovak Academy of Sciences 45, Watsonova Str. Kosice 04001 Slovak Republic
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences 11, Acad. G. Bonchev Str. Sofia 1113 Bulgaria
| | - Erika Dutkova
- Institute of Geotechnics, Slovak Academy of Sciences 45, Watsonova Str. Kosice 04001 Slovak Republic
| | - Troy C Breijaert
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 5, Almas allé Uppsala 75007 Sweden
| | - Vadim G Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 5, Almas allé Uppsala 75007 Sweden
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 5, Almas allé Uppsala 75007 Sweden
| |
Collapse
|
10
|
Kamp M, Sacanna S, Dullens RPA. Spearheading a new era in complex colloid synthesis with TPM and other silanes. Nat Rev Chem 2024; 8:433-453. [PMID: 38740891 DOI: 10.1038/s41570-024-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.
Collapse
Affiliation(s)
- Marlous Kamp
- Van 't Hoff Laboratory for Physical & Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Mu Y, Duan W, Dai Y, Sullivan PA, Deravi LF, Wang Y, Lee D. Colloidal synthesis of metallodielectric Janus matchsticks. Chem Commun (Camb) 2024; 60:5534-5537. [PMID: 38695749 DOI: 10.1039/d4cc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We present a gram-scale synthesis of metallodielectric Janus matchsticks, which feature a gold-coated silica sphere and a silica rod. SiO2 Janus matchsticks are synthesized in one batch by growing amine-functionalized SiO2 spheres at the end of SiO2 rods. Gold deposition on the spheres produces Au-SiO2 Janus matchsticks with an aspect ratio controlled by the rod length. The metallodielectric Janus matchsticks, produced by scalable colloidal synthesis, hold great potential as functional colloidal materials.
Collapse
Affiliation(s)
- Yijiang Mu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Wendi Duan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuxuan Dai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Patrick A Sullivan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| |
Collapse
|
12
|
Wang L, Liu B. Self-Assembled Ring-Based Complex Colloidal Particles by Lock-And-Key Interaction and Their Self-Assembly into Unusual Colloidal Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9205-9214. [PMID: 38629303 DOI: 10.1021/acs.langmuir.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Creating hierarchical crystalline materials using simple colloids or nanoparticles is very challenging, as it is usually impossible to achieve hierarchical structures without nonhierarchical colloidal interactions. Here, we present a hierarchical self-assembly (SA) route that employs colloidal rings and anisotropic colloidal particles to form complex colloids and uses them as building blocks to form unusual colloidal columnar liquid crystals or crystals. This route is realized by designing hierarchical SA driving forces that is controlled by the colloidal shape and shape-dependent depletion attraction. Depletion-induced lock-and-key interaction is the first driving force, which ensures a high efficiency (>90%) to load colloidal particles of other shapes such as spheres, spherocylinders, and oblate ellipsoids into rings, providing high-quality building blocks. Their SA into ordered superstructures has to require a second driving force such as higher volume fraction and/or stronger depletion attraction. As a result, unusual hierarchical colloidal (liquid) crystals, which have previously been difficult to fabricate by simple binary assembly, can be achieved. This work presents a significant advancement in the field of hierarchical SA, demonstrating a promising strategy for constructing many unprecedented crystalline materials by the SA route.
Collapse
Affiliation(s)
- Linna Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
13
|
Hosaka M, Ichikawa H, Sajiki S, Kawamura T, Kawai T. Uniform, convex structuring of polymeric colloids via site-selected swelling. J Colloid Interface Sci 2024; 659:542-549. [PMID: 38194825 DOI: 10.1016/j.jcis.2023.12.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Non-spherical, polymeric colloids serve as building blocks for advanced functional materials. We propose a novel method to produce morphologically controlled, non-spherical particles by generating site-selected, convex structures on polystyrene (PS) particles. It consists of two simple procedures: a monolayer of PS particles is illuminated with UV light and is subsequently immersed in a fluorinated solvent (HFIP). UV irradiation generates site-selected, oxidized domains on PS particles with a different solvent affinity than unoxidized PS, and HFIP immersion preferentially swells the oxidized domains. Such swelling gives rise to site-selected, convex structures on PS particles. By adjusting UV irradiation conditions, including incident and azimuth angles, the oxidized sites, i.e., the swelled portions, can be accurately situated, allowing us to produce various convex shapes, including chiral shapes at desired positions on PS particles.
Collapse
Affiliation(s)
- Marika Hosaka
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Hiroto Ichikawa
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Shunta Sajiki
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Takumi Kawamura
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan.
| |
Collapse
|
14
|
Liu S, Zhang C, Li L, Deng X, Hu C, Yang F, Liu Q, Tan W. Organization of an Artificial Multicellular System with a Tunable DNA Patch on a Membrane Surface. NANO LETTERS 2024; 24:433-440. [PMID: 38112415 DOI: 10.1021/acs.nanolett.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Coordinating multiple artificial cellular compartments into a well-organized artificial multicellular system (AMS) is of great interest in bottom-up synthetic biology. However, developing a facile strategy for fabricating an AMS with a controlled arrangement remains a challenge. Herein, utilizing in situ DNA hybridization chain reaction on the membrane surface, we developed a DNA patch-based strategy to direct the interconnection of vesicles. By tuning the DNA patch that generates heterotrophic adhesion for the attachment of vesicles, we could produce an AMS with higher-order structures straightforwardly and effectively. Furthermore, a hybrid AMS comprising live cells and vesicles was fabricated, and we found the hybrid AMS with higher-order structures arouses efficient molecular transportation from vesicles to living cells. In brief, our work provides a versatile strategy for modulating the self-assembly of AMSs, which could expand our capability to engineer synthetic biological systems and benefit synthetic cell research in programmable manipulation of intercellular communications.
Collapse
Affiliation(s)
- Shuang Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lexun Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiaodan Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Canqiong Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Fan Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Zhang T, Lyu D, Xu W, Feng X, Ni R, Wang Y. Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters. Nat Commun 2023; 14:8494. [PMID: 38129397 PMCID: PMC10739893 DOI: 10.1038/s41467-023-44154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Janus particles, which have an attractive patch on the otherwise repulsive surface, have been commonly employed for anisotropic colloidal assembly. While current methods of particle synthesis allow for control over the patch size, they are generally limited to producing dome-shaped patches with a high symmetry (C∞). Here, we report on the synthesis of Janus particles with patches of various tunable shapes, having reduced symmetries ranging from C2v to C3v and C4v. The Janus particles are synthesized by partial encapsulation of an octahedral metal-organic framework particle (UiO-66) in a polymer matrix. The extent of encapsulation is precisely regulated by a stepwise, asymmetric dewetting process that exposes selected facets of the UiO-66 particle. With depletion interaction, the Janus particles spontaneously assemble into colloidal clusters reflecting the particles' shapes and patch symmetries. We observe the formation of chiral structures, whereby chirality emerges from achiral building blocks. With the ability to encode symmetry and directional bonding information, our strategy could give access to more complex colloidal superstructures through assembly.
Collapse
Affiliation(s)
- Tianran Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
16
|
Moerman PG, Fang H, Videbæk TE, Rogers WB, Schulman R. A simple method to alter the binding specificity of DNA-coated colloids that crystallize. SOFT MATTER 2023; 19:8779-8789. [PMID: 37942543 DOI: 10.1039/d3sm01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
DNA-coated colloids can crystallize into a multitude of lattices, ranging from face-centered cubic to diamond, opening avenues to producing structures with useful photonic properties. The potential design space of DNA-coated colloids is large, but its exploration is hampered by a reliance on chemically modified DNA that is slow and expensive to commercially synthesize. Here we introduce a method to controllably tailor the sequences of DNA-coated particles by covalently appending new sequence domains onto the DNA grafted to colloidal particles. The tailored particles crystallize as readily and at the same temperature as those produced via direct chemical synthesis, making them suitable for self-assembly. Moreover, we show that particles coated with a single sequence can be converted into a variety of building blocks with differing specificities by appending different DNA sequences to them. This method will make it practical to identify optimal and complex particle sequence designs and paves the way to programming the assembly kinetics of DNA-coated colloids.
Collapse
Affiliation(s)
- Pepijn G Moerman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Huang Fang
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Thomas E Videbæk
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - W Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Dal Compare L, Romano F, Wood JA, Widmer-Cooper A, Giacometti A. Janus helices: From fully attractive to hard helices. J Chem Phys 2023; 159:174905. [PMID: 37921252 DOI: 10.1063/5.0168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
The phase diagram of hard helices differs from its hard rods counterpart by the presence of chiral "screw" phases stemming from the characteristic helical shape, in addition to the conventional liquid crystal phases also found for rod-like particles. Using extensive Monte Carlo and Molecular Dynamics simulations, we study the effect of the addition of a short-range attractive tail representing solvent-induced interactions to a fraction of the sites forming the hard helices, ranging from a single-site attraction to fully attractive helices for a specific helical shape. Different temperature regimes exist for different fractions of the attractive sites, as assessed in terms of the relative Boyle temperatures, that are found to be rather insensitive to the specific shape of the helical particle. The temperature range probed by the present study is well above the corresponding Boyle temperatures, with the phase behaviour still mainly entropically dominated and with the existence and location of the various liquid crystal phases only marginally affected. The pressure in the equation of state is found to decrease upon increasing the fraction of attractive beads and/or on lowering the temperature at fixed volume fraction, as expected on physical grounds. All screw phases are found to be stable within the considered range of temperatures with the smectic phase becoming more stable on lowering the temperature. By contrast, the location of the transition lines do not display a simple dependence on the fraction of attractive beads in the considered range of temperatures.
Collapse
Affiliation(s)
- Laura Dal Compare
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Via Torino 155, 30170 Venezia Mestre, Italy
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - Jared A Wood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| |
Collapse
|
18
|
Feng T, Tang Z, Karges J, Shen J, Jin C, Chen Y, Pan Y, He Y, Ji L, Chao H. Exosome camouflaged coordination-assembled Iridium(III) photosensitizers for apoptosis-autophagy-ferroptosis induced combination therapy against melanoma. Biomaterials 2023; 301:122212. [PMID: 37385136 DOI: 10.1016/j.biomaterials.2023.122212] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Melanoma represents the most fatal form of skin cancer due to its resistance mechanisms and high capacity for the development of metastases. Among other medicinal techniques, photodynamic therapy is receiving increasing attention. Despite promising results, the application of photodynamic therapy is inherently limited due to interference from melanin, poor tissue penetration of photosensitizers, low loading into drug delivery systems, and a lack of tumor selectivity. To overcome these limitations, herein, the coordination-driven assembly of Ir(III) complex photosensitizers with Fe(III) ions into nanopolymers for combined photodynamic therapy and chemodynamic therapy is reported. While remaining stable under physiological conditions, the nanopolymers dissociated in the tumor microenvironment. Upon exposure to light, the Ir(III) complexes produced singlet oxygen and superoxide anion radicals, inducing cell death by apoptosis and autophagy. The Fe(III) ions were reduced to Fe(II) upon depletion of glutathione and reduction of the GPX4 levels, triggering cell death by ferroptosis. To provide tumor selectivity, the nanopolymers were further camouflaged with exosomes. The generated nanoparticles were found to eradicate a melanoma tumor as well as inhibit the formation of metastases inside a mouse model.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yihang Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Yulong He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China; MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, PR China.
| |
Collapse
|
19
|
Wang X, Sprinkle B, Bisoyi HK, Yang T, Chen L, Huang S, Li Q. Colloidal tubular microrobots for cargo transport and compression. Proc Natl Acad Sci U S A 2023; 120:e2304685120. [PMID: 37669384 PMCID: PMC10500282 DOI: 10.1073/pnas.2304685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Microrobot swarms have seen increased interest in recent years due to their potentials for in vivo delivery and imaging with cooperative propulsion modes and enhanced imaging signals. Yet most swarms developed so far are limited to dense particle aggregates, far simpler than complicated three-dimensional assemblies of anisotropic particles. Here, we show via assembly path design that complex hollow tubular structures can be assembled from simple isotropic colloidal spheres and those complicated, metastable, microtubes can be formed from simple, energetically favorable colloidal membranes. The assembled microtubes can remain intact and roll under a precessing magnetic field, with propulsion directions and velocities precisely controlled by field components. The hollow spaces inside enable these tubular microrobots to grab, transport, and release cargos on command. We also demonstrate unique compressing and uncompressing capabilities with our tubular microrobots, making them effective microtweezers. Our work shows that complicated microrobots can be transformed from simple assemblies, providing an insight on building micromachines.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Brennan Sprinkle
- Department of Mathematics, Colorado School of Mines, Golden, CO80401
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH44242
| | - Tao Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Lixiang Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH44242
| |
Collapse
|
20
|
Bolhuis PG, Brotzakis ZF, Keller BG. Optimizing molecular potential models by imposing kinetic constraints with path reweighting. J Chem Phys 2023; 159:074102. [PMID: 37581416 DOI: 10.1063/5.0151166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/19/2023] [Indexed: 08/16/2023] Open
Abstract
Empirical force fields employed in molecular dynamics simulations of complex systems are often optimized to reproduce experimentally determined structural and thermodynamic properties. In contrast, experimental knowledge about the interconversion rates between metastable states in such systems is hardly ever incorporated in a force field due to a lack of an efficient approach. Here, we introduce such a framework based on the relationship between dynamical observables, such as rate constants, and the underlying molecular model parameters using the statistical mechanics of trajectories. Given a prior ensemble of molecular dynamics trajectories produced with imperfect force field parameters, the approach allows for the optimal adaption of these parameters such that the imposed constraint of equally predicted and experimental rate constant is obeyed. To do so, the method combines the continuum path ensemble maximum caliber approach with path reweighting methods for stochastic dynamics. When multiple solutions are found, the method selects automatically the combination that corresponds to the smallest perturbation of the entire path ensemble, as required by the maximum entropy principle. To show the validity of the approach, we illustrate the method on simple test systems undergoing rare event dynamics. Next to simple 2D potentials, we explore particle models representing molecular isomerization reactions and protein-ligand unbinding. Besides optimal interaction parameters, the methodology gives physical insights into what parts of the model are most sensitive to the kinetics. We discuss the generality and broad implications of the methodology.
Collapse
Affiliation(s)
- Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Z Faidon Brotzakis
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|
21
|
Ding L, Chen X, Ma W, Li J, Liu X, Fan C, Yao G. DNA-mediated regioselective encoding of colloids for programmable self-assembly. Chem Soc Rev 2023; 52:5684-5705. [PMID: 37522252 DOI: 10.1039/d2cs00845a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
How far we can push chemical self-assembly is one of the most important scientific questions of the century. Colloidal self-assembly is a bottom-up technique for the rational design of functional materials with desirable collective properties. Due to the programmability of DNA base pairing, surface modification of colloidal particles with DNA has become fundamental for programmable material self-assembly. However, there remains an ever-lasting demand for surface regioselective encoding to realize assemblies that require specific, directional, and orthogonal interactions. Recent advances in surface chemistry have enabled regioselective control over the formation of DNA bonds on the particle surface. In particular, the structural DNA nanotechnology provides a simple yet powerful design strategy with unique regioselective addressability, bringing the complexity of colloidal self-assembly to an unprecedented level. In this review, we summarize the state-of-art advances in DNA-mediated regioselective surface encoding of colloids, with a focus on how the regioselective encoding is introduced and how the regioselective DNA recognition plays a crucial role in the self-assembly of colloidal structures. This review highlights the advantages of DNA-based regioselective modification in improving the complexity of colloidal assembly, and outlines the challenges and opportunities for the construction of more complex architectures with tailored functionalities.
Collapse
Affiliation(s)
- Longjiang Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenhe Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
23
|
Zou H, Ren Y. Synthetic strategies for nonporous organosilica nanoparticles from organosilanes. NANOSCALE 2023. [PMID: 37326150 DOI: 10.1039/d3nr00791j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organosilica nanoparticles refer to silica nanoparticles containing carbon along with organic or functional groups and can be divided into mesoporous organosilica nanoparticles and nonporous organosilica nanoparticles. During the past few decades, considerable efforts have been devoted to the development of organosilica nanoparticles directly from organosilanes. However, most of the reports have focused on mesoporous organosilica nanoparticles, while relatively few are concerned with nonporous organosilica nanoparticles. The synthesis of nonporous organosilica nanoparticles typically involves (i) self-condensation of an organosilane as the single source, (ii) co-condensation of two or more types of organosilanes, (iii) co-condensation of tetraalkoxysilane and an organosilane, and (iv) spontaneous emulsification and the subsequent radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TPM). This article aims to provide a review on the synthetic strategies of this important type of colloidal particle, followed by a brief discussion on their applications and future perspectives.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Yuhang Ren
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
24
|
Liu M, Shang C, Zhao T, Yu H, Kou Y, Lv Z, Hou M, Zhang F, Li Q, Zhao D, Li X. Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal-organic framework. Nat Commun 2023; 14:1211. [PMID: 36869046 PMCID: PMC9984484 DOI: 10.1038/s41467-023-36832-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
As an important branch of anisotropic nanohybrids (ANHs) with multiple surfaces and functions, the porous ANHs (p-ANHs) have attracted extensive attentions because of the unique characteristics of high surface area, tunable pore structures and controllable framework compositions, etc. However, due to the large surface-chemistry and lattice mismatches between the crystalline and amorphous porous nanomaterials, the site-specific anisotropic assembly of amorphous subunits on crystalline host is challenging. Here, we report a selective occupation strategy to achieve site-specific anisotropic growth of amorphous mesoporous subunits on crystalline metal-organic framework (MOF). The amorphous polydopamine (mPDA) building blocks can be controllably grown on the {100} (type 1) or {110} (type 2) facets of crystalline ZIF-8 to form the binary super-structured p-ANHs. Based on the secondary epitaxial growth of tertiary MOF building blocks on type 1 and 2 nanostructures, the ternary p-ANHs with controllable compositions and architectures are also rationally synthesized (type 3 and 4). These intricate and unprecedented superstructures provide a good platform for the construction of nanocomposites with multiple functionalities and understanding of the structure-property-function relationships.
Collapse
Affiliation(s)
- Minchao Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Cheng Shang
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Tiancong Zhao
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Hongyue Yu
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Yufang Kou
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Zirui Lv
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Mengmeng Hou
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Fan Zhang
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Qiaowei Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Dongyuan Zhao
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
25
|
Popov A, Hernandez R. Bottom-Up Construction of the Interaction between Janus Particles. J Phys Chem B 2023; 127:1664-1673. [PMID: 36780204 PMCID: PMC9969965 DOI: 10.1021/acs.jpcb.2c07858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Indexed: 02/14/2023]
Abstract
While the interaction between two uniformly charged spheres─viz colloids─is well-known, the interaction between nonuniformly charged spheres such as Janus particles is not. Specifically, the Derjaguin approximation relates the potential energy between two spherical particles with the interaction energy Vpl per unit area between two planar surfaces. The formalism has been extended to obtain a quadrature expression for the screened electrostatic interaction between Janus colloids with variable relative orientations. The interaction is decomposed into three zones in the parametric space, distinguished by their azimuthal symmetry. Different specific situations are examined to estimate the contributions of these zones to the total energy. The effective potential Vpl is renormalized such that the resulting potential energy is identical with the actual one for the most preferable relative orientations between the Janus particles. The potential energy as a function of the separation distance and the mutual orientation of a pair of particles compares favorably between the analytical (but approximate) form and the rigorous point-wise computational model used earlier. Coarse-grained models of Janus particles can thus implement this potential model efficiently without loss of generality.
Collapse
Affiliation(s)
- Alexander Popov
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Development of Janus Particles as Potential Drug Delivery Systems for Diabetes Treatment and Antimicrobial Applications. Pharmaceutics 2023; 15:pharmaceutics15020423. [PMID: 36839746 PMCID: PMC9967574 DOI: 10.3390/pharmaceutics15020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Janus particles have emerged as a novel and smart material that could improve pharmaceutical formulation, drug delivery, and theranostics. Janus particles have two distinct compartments that differ in functionality, physicochemical properties, and morphological characteristics, among other conventional particles. Recently, Janus particles have attracted considerable attention as effective particulate drug delivery systems as they can accommodate two opposing pharmaceutical agents that can be engineered at the molecular level to achieve better target affinity, lower drug dosage to achieve a therapeutic effect, and controlled drug release with improved pharmacokinetics and pharmacodynamics. This article discusses the development of Janus particles for tailored and improved delivery of pharmaceutical agents for diabetes treatment and antimicrobial applications. It provides an account of advances in the synthesis of Janus particles from various materials using different approaches. It appraises Janus particles as a promising particulate system with the potential to improve conventional delivery systems, providing a better loading capacity and targeting specificity whilst promoting multi-drugs loading and single-dose-drug administration.
Collapse
|
27
|
Liu B, Duguet E, Ravaine S. Solvent-induced assembly of mono- and divalent silica nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:52-60. [PMID: 36703910 PMCID: PMC9830498 DOI: 10.3762/bjnano.14.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis allows for a fine control of the patch-to-particle size ratio from 0.23 to 0.57. The assembly of the patchy nanoparticles can be triggered by reducing the solvent quality for the polystyrene chains. Dimers or trimers can be obtained by tuning the patch-to-particle size ratio. When mixed with two-patch nanoparticles, one-patch nanoparticles control the length of the resulting chains by behaving as colloidal chain stoppers. The present strategy allows for future elaboration of novel colloidal structures by controlled assembly of nanoparticles.
Collapse
Affiliation(s)
- Bin Liu
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Etienne Duguet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Serge Ravaine
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France
| |
Collapse
|
28
|
Kim YJ, Moon JB, Hwang H, Kim YS, Yi GR. Advances in Colloidal Building Blocks: Toward Patchy Colloidal Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203045. [PMID: 35921224 DOI: 10.1002/adma.202203045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The scalable synthetic route to colloidal atoms has significantly advanced over the past two decades. Recently, colloidal clusters with DNA-coated cores called "patchy colloidal clusters" have been developed, providing a directional bonding with specific angle of rotation due to the shape complementarity between colloidal clusters. Through a DNA-mediated interlocking process, they are directly assembled into low-coordination colloidal structures, such as cubic diamond lattices. Herein, the significant progress in recent years in the synthesis of patchy colloidal clusters and their assembly in experiments and simulations is reviewed. Furthermore, an outlook is given on the emerging approaches to the patchy colloidal clusters and their potential applications in photonic crystals, metamaterials, topological photonic insulators, and separation membranes.
Collapse
Affiliation(s)
- You-Jin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong-Bin Moon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyerim Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Youn Soo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
29
|
Song L, Qi Y, Zhang S. Design and Self-Assembly of Polyhedron Particles to Construct Iridescent Structural Colors. ACS Macro Lett 2022; 11:1362-1365. [PMID: 36416205 DOI: 10.1021/acsmacrolett.2c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polyhedron particles exhibit unique physical properties in constructing novel materials. Here, the polystyrene (PS) polyhedron particles were fabricated via dispersion polymerization, and their morphologies can be controlled by tuning the divinylbenzene (DVB) content and polarity of the reaction medium. The possible formation mechanism is the asymmetric distribution of cross-linked networks during the phase separation process. In addition, the large-scale iridescent structural colors based on polyhedrons were obtained and further explored their applications in smart displays. This presented method guides the fabrication of anisotropic particles and their further assembly to construct novel materials.
Collapse
Affiliation(s)
- Liujun Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Sato M. Two-Dimensional Structures Formed by Triblock Patchy Particles with Two Different Patches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15404-15412. [PMID: 36446728 DOI: 10.1021/acs.langmuir.2c02699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional structures formed by spherical triblock patchy particles are examined by performing Monte Carlo simulations. In the model, the triblock patchy particles have two different types of patches at the polar positions. The patch sizes are different from each other, and the attractive interaction acts only between the same types of patches. The particles translate on a flat plane and rotate three-dimensionally. When varying the two patch sizes, the pressure, and interaction energy, various structures are observed. When the difference between two patch sizes is small, kagome lattices, hexagonal structures, and two-dimensional dodecagonal quasi-crystal structures are observed. When the difference between two patch sizes is large, chain-like structures are created. With lower temperature, sparse structures such as ring-like structures form.
Collapse
Affiliation(s)
- Masahide Sato
- Emerging Media Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
31
|
Zhou X, Lei L, Zeng Y, Lu X, Liang F, Zhang L, Lin G. High salinity effects on the depletion attraction in colloid-polymer mixtures. J Colloid Interface Sci 2022; 631:155-164. [DOI: 10.1016/j.jcis.2022.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
32
|
Self-assembly of emulsion droplets through programmable folding. Nature 2022; 610:502-506. [PMID: 36171292 DOI: 10.1038/s41586-022-05198-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
In the realm of particle self-assembly, it is possible to reliably construct nearly arbitrary structures if all the pieces are distinct1-3, but systems with fewer flavours of building blocks have so far been limited to the assembly of exotic crystals4-6. Here we introduce a minimal model system of colloidal droplet chains7, with programmable DNA interactions that guide their downhill folding into specific geometries. Droplets are observed in real space and time, unravelling the rules of folding. Combining experiments, simulations and theory, we show that controlling the order in which interactions are switched on directs folding into unique structures, which we call colloidal foldamers8. The simplest alternating sequences (ABAB...) of up to 13 droplets yield 11 foldamers in two dimensions and one in three dimensions. Optimizing the droplet sequence and adding an extra flavour uniquely encodes more than half of the 619 possible two-dimensional geometries. Foldamers consisting of at least 13 droplets exhibit open structures with holes, offering porous design. Numerical simulations show that foldamers can further interact to make complex supracolloidal architectures, such as dimers, ribbons and mosaics. Our results are independent of the dynamics and therefore apply to polymeric materials with hierarchical interactions on all length scales, from organic molecules all the way to Rubik's Snakes. This toolbox enables the encoding of large-scale design into sequences of short polymers, placing folding at the forefront of materials self-assembly.
Collapse
|
33
|
Gao Y, Liu K, Lakerveld R, Ding X. Staged Assembly of Colloids Using DNA and Acoustofluidics. NANO LETTERS 2022; 22:6907-6915. [PMID: 35984231 DOI: 10.1021/acs.nanolett.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Assembly of DNA-coated colloids (DNACCs) provides a practical route to programming complex self-assembled materials at the micro/nanoscale. So far, the programmability of DNACC assembly has been extensively exploited internally using different DNA sequences or colloid geometry so that the assembly is mainly manipulated with single-particle spatial resolution such as in crystallization. In this Letter, we present an acoustic approach to externally programming the DNACC assembly with control of spatial resolution over larger scales. We demonstrate assembly of the DNACCs under different acoustic frequencies from stage to stage to produce hierarchical structures that are difficult to fabricate when using DNA coating alone. By programming the acoustic wave frequency, amplitude, and phase, colloidal structures with different morphologies can be assembled. The nonspecific driving force based on acoustic radiation forces at each stage allows our approach to be adopted for most colloidal systems without specific requirements on particle or medium properties.
Collapse
Affiliation(s)
- Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
34
|
Wang Z, Mu Y, Lyu D, Wu M, Li J, Wang Z, Wang Y. Engineering Shapes of Active Colloids for Tunable Dynamics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Sato M. Two-dimensional binary colloidal crystals formed by particles with two different sizes. Sci Rep 2022; 12:12370. [PMID: 35859116 PMCID: PMC9300637 DOI: 10.1038/s41598-022-16806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
The formation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {AB_2}$$\end{document}AB2 type two-dimensional binary colloidal crystals was studied by performing Monte Carlo simulations with two different size particles. The effect of interactions between particles and between particles and a wall, and the particles size ratios on the formation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {AB_2}$$\end{document}AB2 structure were examined. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {AB_2}$$\end{document}AB2 structures formed efficiently when the interaction between equivalently sized particles was smaller than that between differently sized particles. To create \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {AB_2}$$\end{document}AB2 on a wall, it was necessary to choose a suitable particles size ratios, and the attraction between the particles and the wall was greater than that between particles.
Collapse
Affiliation(s)
- Masahide Sato
- Emerging Media Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
36
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
37
|
Sun YW, Li ZW, Chen ZQ, Zhu YL, Sun ZY. Colloidal cubic diamond photonic crystals through cooperative self-assembly. SOFT MATTER 2022; 18:2654-2662. [PMID: 35311843 DOI: 10.1039/d1sm01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal cubic diamond crystals with low-coordinated and staggered structures could display a wide photonic bandgap at low refractive index contrasts, which makes them extremely valuable for photonic applications. However, self-assembly of cubic diamond crystals using simple colloidal building blocks is still considerably challenging, due to their low packing fraction and mechanical instability. Here we propose a new strategy for constructing colloidal cubic diamond crystals through cooperative self-assembly of surface-anisotropic triblock Janus colloids and isotropic colloidal spheres into superlattices. In self-assembly, cooperativity is achieved by tuning the interaction and particle size ratio of colloidal building blocks. The pyrochlore lattice formed by self-assembly of triblock Janus colloids acts as a soft template to direct the packing of colloidal spheres into cubic diamond lattices. Numerical simulations show that this cooperative self-assembly strategy works well in a large range of particle size ratio of these two species. Moreover, photonic band structure calculations reveal that the resulting cubic diamond lattices exhibit wide and complete photonic bandgaps and the width and frequency of the bandgaps can also be easily adjusted by tuning the particle size ratio. Our work will open up a promising avenue toward photonic bandgap materials by cooperative self-assembly employing surface-anisotropic Janus or patchy colloids as a soft template.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
38
|
Kang N, Zhu J, Zhang X, Wang H, Zhang Z. Reconfiguring Self-Assembly of Photoresponsive Hybrid Colloids. J Am Chem Soc 2022; 144:4754-4758. [PMID: 35266712 DOI: 10.1021/jacs.2c00432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reconfigurable self-assembly of colloidal particles allows the bottom-up creation of adaptive materials, yet significant challenges remain. Here, we demonstrate a synthesis of photoresponsive Fe2O3/polysiloxane hybrid colloids that perform a dynamically reconfigurable self-assembly. Such self-assembly is due to chemical gradients originating from the decomposition of H2O2 by the Fe2O3 component under UV irradiation. The morphology of the self-assembly includes chains and flower-structures, where the chains can be transformed in situ into flower-like structures with decreasing UV intensity. The flower-structures can be further switched by applying an external magnetic field, leading to orientationally ordered clusters. This, interestingly, leads to an asymmetrical chemical gradient surrounding the assemblies, and transforms the cluster into a micromotor exhibiting a self-propulsion steerable by the magnetic field. Our findings demonstrate a new possibility to control and reconfigure the self-assembly of colloids, which offers an important pathway for fabrications of adaptive and smart materials at the microscale.
Collapse
Affiliation(s)
- Ning Kang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiao Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoliang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.,Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
39
|
Lang G, Grill C, Scheibel T. Site-Specific Functionalization of Recombinant Spider Silk Janus Fibers. Angew Chem Int Ed Engl 2022; 61:e202115232. [PMID: 34986278 PMCID: PMC9303884 DOI: 10.1002/anie.202115232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Biotechnological production is a powerful tool to design materials with customized properties. The aim of this work was to apply designed spider silk proteins to produce Janus fibers with two different functional sides. First, functionalization was established through a cysteine-modified silk protein, ntagCys eADF4(κ16). After fiber spinning, gold nanoparticles (AuNPs) were coupled via thiol-ene click chemistry. Significantly reduced electrical resistivity indicated sufficient loading density of AuNPs on such fiber surfaces. Then, Janus fibers were electrospun in a side-by-side arrangement, with "non-functional" eADF4(C16) on the one and "functional" ntagCys eADF4(κ16) on the other side. Post-treatment was established to render silk fibers insoluble in water. Subsequent AuNP binding was highly selective on the ntagCys eADF4(κ16) side demonstrating the potential of such silk-based systems to realize complex bifunctional structures with spatial resolutions in the nano scale.
Collapse
Affiliation(s)
- Gregor Lang
- Biopolymer Processing GroupUniversity of BayreuthLudwig-Thoma-Straße 36A95447BayreuthGermany
| | - Carolin Grill
- Chair of BiomaterialsUniversity of BayreuthTAO Gebäude, Prof.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsUniversity of BayreuthTAO Gebäude, Prof.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| |
Collapse
|
40
|
Liu B, Li W, Duguet E, Ravaine S. Linear Assembly of Two-Patch Silica Nanoparticles and Control of Chain Length by Coassembly with Colloidal Chain Stoppers. ACS Macro Lett 2022; 11:156-160. [PMID: 35574797 DOI: 10.1021/acsmacrolett.1c00699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The self-assembly of patchy nanosized building blocks is an efficient strategy for producing highly organized materials. Herein we report the chaining of divalent silica nanoparticles with polystyrene patches dispersed in tetrahydrofuran triggered by lowering the solvent quality. We study the influence of the patch-to-particle size ratio and show that the nature of the added nonsolvent, for example, ethanol, water, or salty water, and its volume fraction should be carefully adjusted. We demonstrate that colloidal assembly initially obeys the kinetic model of step-growth polymerization and that beyond a certain length, the chains have the possibility to cyclize. We also show that the length of the chains can be controlled by the addition of one-patch silica nanoparticles, which act as colloidal analogues of chain stoppers.
Collapse
Affiliation(s)
- Bin Liu
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Weiya Li
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Etienne Duguet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Serge Ravaine
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
41
|
Videbæk TE, Fang H, Hayakawa D, Tyukodi B, Hagan MF, Rogers WB. Tiling a tubule: how increasing complexity improves the yield of self-limited assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:10.1088/1361-648X/ac47dd. [PMID: 34983038 PMCID: PMC8857047 DOI: 10.1088/1361-648x/ac47dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The ability to design and synthesize ever more complicated colloidal particles opens the possibility of self-assembling a zoo of complex structures, including those with one or more self-limited length scales. An undesirable feature of systems with self-limited length scales is that thermal fluctuations can lead to the assembly of nearby, off-target states. We investigate strategies for limiting off-target assembly by using multiple types of subunits. Using simulations and energetics calculations, we explore this concept by considering the assembly of tubules built from triangular subunits that bind edge to edge. While in principle, a single type of triangle can assemble into tubules with a monodisperse width distribution, in practice, the finite bending rigidity of the binding sites leads to the formation of off-target structures. To increase the assembly specificity, we introduce tiling rules for assembling tubules from multiple species of triangles. We show that the selectivity of the target structure can be dramatically improved by using multiple species of subunits, and provide a prescription for choosing the minimum number of subunit species required for near-perfect yield. Our approach of increasing the system's complexity to reduce the accessibility of neighboring structures should be generalizable to other systems beyond the self-assembly of tubules.
Collapse
Affiliation(s)
- Thomas E. Videbæk
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Huang Fang
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Daichi Hayakawa
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - W. Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| |
Collapse
|
42
|
Lang G, Grill C, Scheibel T. Site‐specific functionalization of recombinant spider silk Janus fibers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gregor Lang
- Universität Bayreuth: Universitat Bayreuth Biopolymerprocessing GERMANY
| | - Carolin Grill
- Universität Bayreuth: Universitat Bayreuth Biomaterials GERMANY
| | - Thomas Scheibel
- University of Bayreuth Biomaterials Prof. Rüdiger Bormann Str. 1 95447 Bayreuth GERMANY
| |
Collapse
|
43
|
Sun YW, Li Z, Sun ZY. Multiple 2D crystal structures in bilayered lamellae from direct self-assembly of 3D systems of soft Janus particles. Phys Chem Chem Phys 2022; 24:7874-7881. [DOI: 10.1039/d1cp05894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous crystals and Frank-Kasper phases in two-dimensional (2D) systems of soft particles have been presented by theoretical investigations. How to realize 2D crystals or Frank-kasper phases by direct self-assembly of...
Collapse
|
44
|
Li D, Liu N, Zeng M, Ji J, Chen X, Yuan J. Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA). Polym Chem 2022. [DOI: 10.1039/d2py00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, large-scale preparation of patchy nanoparticles remains challenging. Here, we...
Collapse
|
45
|
Liu B, Ravaine S, Duguet E. Solvent-Induced Assembly of One-Patch Silica Nanoparticles into Robust Clusters, Wormlike Chains and Bilayers. NANOMATERIALS 2021; 12:nano12010100. [PMID: 35010053 PMCID: PMC8747025 DOI: 10.3390/nano12010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
We report the synthesis and solvent-induced assembly of one-patch silica nanoparticles in the size range of 100–150 nm. They consisted, as a first approximation, of silica half-spheres of which the truncated face was itself concave and carried in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis led to 98% pure batches and allowed a fine control of the patch-to-particle size ratio from 0.69 to 1.54. The self-assembly was performed in equivolume mixtures of tetrahydrofuran and ethanol, making the polymeric patches sticky and ready to coalesce together. The assembly kinetics was monitored by collecting samples over time and analyzing statistically their TEM images. Small clusters, such as dimers, trimers, and tetramers, were formed initially and then evolved in part into micelles. Accordingly to previous simulation studies, more or less branched wormlike chains and planar bilayers were observed in the long term, when the patch-to-particle size ratio was high enough. We focused also on the experimental conditions that could allow preparing small clusters in a good morphology yield.
Collapse
Affiliation(s)
- Bin Liu
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France;
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France;
| | - Serge Ravaine
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France;
| | - Etienne Duguet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France;
- Correspondence: ; Tel.: +33-540-002-651
| |
Collapse
|
46
|
Ramírez González JP, Cinacchi G. Phase behavior of hard circular arcs. Phys Rev E 2021; 104:054604. [PMID: 34942798 DOI: 10.1103/physreve.104.054604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023]
Abstract
By using Monte Carlo numerical simulation, this work investigates the phase behavior of systems of hard infinitesimally thin circular arcs, from an aperture angle θ→0 to an aperture angle θ→2π, in the two-dimensional Euclidean space. Except in the isotropic phase at lower density and in the (quasi)nematic phase, in the other phases that form, including the isotropic phase at higher density, hard infinitesimally thin circular arcs autoassemble to form clusters. These clusters are either filamentous, for smaller values of θ, or roundish, for larger values of θ. Provided the density is sufficiently high, the filaments lengthen, merge, and straighten to finally produce a filamentary phase while the roundels compact and dispose themselves with their centers of mass at the sites of a triangular lattice to finally produce a cluster hexagonal phase.
Collapse
Affiliation(s)
- Juan Pedro Ramírez González
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales "Nicolás Cabrera", Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
47
|
DNA self-organization controls valence in programmable colloid design. Proc Natl Acad Sci U S A 2021; 118:2112604118. [PMID: 34750268 DOI: 10.1073/pnas.2112604118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Just like atoms combine into molecules, colloids can self-organize into predetermined structures according to a set of design principles. Controlling valence-the number of interparticle bonds-is a prerequisite for the assembly of complex architectures. The assembly can be directed via solid "patchy" particles with prescribed geometries to make, for example, a colloidal diamond. We demonstrate here that the nanoscale ordering of individual molecular linkers can combine to program the structure of microscale assemblies. Specifically, we experimentally show that covering initially isotropic microdroplets with N mobile DNA linkers results in spontaneous and reversible self-organization of the DNA into Z(N) binding patches, selecting a predictable valence. We understand this valence thermodynamically, deriving a free energy functional for droplet-droplet adhesion that accurately predicts the equilibrium size of and molecular organization within patches, as well as the observed valence transitions with N Thus, microscopic self-organization can be programmed by choosing the molecular properties and concentration of binders. These results are widely applicable to the assembly of any particle with mobile linkers, such as functionalized liposomes or protein interactions in cell-cell adhesion.
Collapse
|
48
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
49
|
Sato M. Clusters formed by dumbbell-like one-patch particles confined in thin systems. Sci Rep 2021; 11:18078. [PMID: 34508134 PMCID: PMC8433354 DOI: 10.1038/s41598-021-97542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model . The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between these centers. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q<1$$\end{document}q<1. With increasing q, the clusters become chain-like . When q increases further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.
Collapse
Affiliation(s)
- Masahide Sato
- Emerging Media Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
50
|
Kim YJ, Kim JH, Jo IS, Pine DJ, Sacanna S, Yi GR. Patchy Colloidal Clusters with Broken Symmetry. J Am Chem Soc 2021; 143:13175-13183. [PMID: 34392686 DOI: 10.1021/jacs.1c05123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Colloidal clusters are prepared by assembling positively charged cross-linked polystyrene (PS) particles onto negatively charged liquid cores of swollen polymer particles. PS particles at the interface of the liquid core are closely packed around the core due to interfacial wetting. Then, by evaporating solvent in the liquid cores, polymers in the cores are solidified and the clusters are cemented. As the swelling ratio of PS cores increases, cores at the center of colloidal clusters are exposed, forming patchy colloidal clusters. Finally, by density gradient centrifugation, high-purity symmetric colloidal clusters are obtained. When silica-PS core-shell particles are swollen and serve as the liquid cores, hybrid colloidal clusters are obtained in which each silica nanoparticle is relocated to the liquid core interface during the swelling-deswelling process breaking symmetry in colloidal clusters as the silica nanoparticle in the core is comparable in size with the PS particle in the shell. The configuration of colloidal clusters is determined once the number of particles around the liquid core is given, which depends on the size ratio of the liquid core and shell particle. Since hybrid clusters are heavier than PS particles, they can be purified using centrifugation.
Collapse
Affiliation(s)
- You-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jae-Hyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - In-Seong Jo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - David J Pine
- Department of Chemical & Biomolecular Engineering, New York University, Brooklyn, New York 11201, United States
| | | | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.,Department of Chemical Engineering, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|