1
|
Huang S, Zhao Y, Phillips S, Wilms B, He C, Wu L. Single-base m 6A epitranscriptomics reveals novel HIV-1 host interaction targets in primary CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630958. [PMID: 39803509 PMCID: PMC11722377 DOI: 10.1101/2024.12.31.630958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
N 6-methyladenosine (m6A) is the most prevalent cellular mRNA modification and plays a critical role in regulating RNA stability, localization, and gene expression. m6A modification plays a vital role in modulating the expression of viral and cellular genes during HIV-1 infection. HIV-1 infection increases cellular RNA m6A levels in many cell types, which facilitates HIV-1 replication and infectivity in target cells. However, the function of m6A modification in regulating HIV-1 infection of primary CD4+ T cells remains unclear. Here, we demonstrate that HIV-1 infection of Jurkat CD4+ T cells and primary CD4+ T cells promotes the interaction between the m6A writer complex subunits methyltransferase-like 3 and 14 (METTL3/METTL14). Using single-base m6A-specific RNA sequencing, we identified several differentially m6A-modified cellular mRNAs, including perilipin 3 (PLIN3), during HIV-1 infection in primary CD4+ T cells. Interestingly, HIV-1 infection increased PLIN3 mRNA level by enhancing its stability, but PLIN3 protein level was decreased. Knocking down PLIN3 in primary CD4+ T cells reduced HIV-1 production but enhanced virion infectivity. In contrast, in Jurkat cells, PLIN3 mRNA and protein expression levels were unaffected by HIV-1 infection, and knocking out PLIN3 did not impact HIV-1 production or infectivity. These results indicate that the interplay between HIV-1 and PLIN3 is cell-type specific and only observed in primary CD4+ T cells. Overall, our results highlight the importance of m6A RNA modification in HIV-1-infected primary CD4+ T cells and suggest its significance as a regulatory mechanism in HIV-1 infection.
Collapse
Affiliation(s)
- Siyu Huang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Bethany Wilms
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Alex K, Winkler EC. Comparative ethical evaluation of epigenome editing and genome editing in medicine: first steps and future directions. JOURNAL OF MEDICAL ETHICS 2024; 50:398-406. [PMID: 37527926 PMCID: PMC11137457 DOI: 10.1136/jme-2022-108888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Targeted modifications of the human epigenome, epigenome editing (EE), are around the corner. For EE, techniques similar to genome editing (GE) techniques are used. While in GE the genetic information is changed by directly modifying DNA, intervening in the epigenome requires modifying the configuration of DNA, for example, how it is folded. This does not come with alterations in the base sequence ('genetic code'). To date, there is almost no ethical debate about EE, whereas the discussions about GE are voluminous. Our article introduces EE into bioethics by translating knowledge from science to ethics and by comparing the risks of EE with those of GE. We, first (I), make the case that a broader ethical debate on EE is due, provide scientific background on EE, compile potential use-cases and recap previous debates. We then (II) compare EE and GE and suggest that the severity of risks of novel gene technologies depends on three factors: (i) the choice of an ex vivo versus an in vivo editing approach, (ii) the time of intervention and intervention windows and (iii) the targeted diseases. Moreover, we show why germline EE is not effective and reject the position of strong epigenetic determinism. We conclude that EE is not always ethically preferable to GE in terms of risks, and end with suggestions for next steps in the current ethical debate on EE by briefly introducing ethical challenges of new areas of preventive applications of EE (III).
Collapse
Affiliation(s)
- Karla Alex
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Eva C Winkler
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
5
|
Mahana Y, Ariyoshi M, Nozawa RS, Shibata S, Nagao K, Obuse C, Shirakawa M. Structural evidence for protein-protein interaction between the non-canonical methyl-CpG-binding domain of SETDB proteins and C11orf46. Structure 2024; 32:304-315.e5. [PMID: 38159574 DOI: 10.1016/j.str.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
SETDB1 and SETDB2 mediate trimethylation of histone H3 lysine 9 (H3K9), an epigenetic hallmark of repressive chromatin. They contain a non-canonical methyl-CpG-binding domain (MBD) and bifurcated SET domain, implying interplay between H3K9 trimethylation and DNA methylation in SETDB functions. Here, we report the crystal structure of human SETDB2 MBD bound to the cysteine-rich domain of a zinc-binding protein, C11orf46. SETDB2 MBD comprises the conserved MBD core and a unique N-terminal extension. Although the MBD core has the conserved basic concave surface for DNA binding, it utilizes it for recognition of the cysteine-rich domain of C11orf46. This interaction involves the conserved arginine finger motif and the unique N-terminal extension of SETDB2 MBD, with a contribution from intermolecular β-sheet formation. Thus, the non-canonical MBD of SETDB1/2 seems to have lost methylated DNA-binding ability but gained a protein-protein interaction surface. Our findings provide insight into the molecular assembly of SETDB-associated repression complexes.
Collapse
Affiliation(s)
- Yutaka Mahana
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ryu-Suke Nozawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachiko Shibata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan.
| |
Collapse
|
6
|
Zhou J, Chen T, Cheng X. One form and two functions: MBD of SETDB2 is a protein-interacting domain. Structure 2024; 32:258-260. [PMID: 38458157 DOI: 10.1016/j.str.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 03/10/2024]
Abstract
In this issue of Structure, Mahana et al.1 present their structural characterization of an annotated methyl-CpG-binding domain (MBD) from the histone H3 lysine 9 methyltransferase SETDB2. This study reveals that, rather than binding DNA as previously hypothesized, this domain instead interacts with a cystine-rich domain from C11orf46, highlighting its involvement in protein-protein interactions.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Waldo JJ, Halmai JANM, Fink KD. Epigenetic editing for autosomal dominant neurological disorders. Front Genome Ed 2024; 6:1304110. [PMID: 38510848 PMCID: PMC10950933 DOI: 10.3389/fgeed.2024.1304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Epigenetics refers to the molecules and mechanisms that modify gene expression states without changing the nucleotide context. These modifications are what encode the cell state during differentiation or epigenetic memory in mitosis. Epigenetic modifications can alter gene expression by changing the chromatin architecture by altering the affinity for DNA to wrap around histone octamers, forming nucleosomes. The higher affinity the DNA has for the histones, the tighter it will wrap and therefore induce a heterochromatin state, silencing gene expression. Several groups have shown the ability to harness the cell's natural epigenetic modification pathways to engineer proteins that can induce changes in epigenetics and consequently regulate gene expression. Therefore, epigenetic modification can be used to target and treat disorders through the modification of endogenous gene expression. The use of epigenetic modifications may prove an effective path towards regulating gene expression to potentially correct or cure genetic disorders.
Collapse
Affiliation(s)
| | | | - Kyle D. Fink
- Neurology Department, Stem Cell Program and Gene Therapy Center, MIND Institute, UC Davis Health System, Sacramento, CA, United States
| |
Collapse
|
8
|
Lin AT, Hammond-Kaarremaa L, Liu HL, Stantis C, McKechnie I, Pavel M, Pavel SSM, Wyss SSÁ, Sparrow DQ, Carr K, Aninta SG, Perri A, Hartt J, Bergström A, Carmagnini A, Charlton S, Dalén L, Feuerborn TR, France CAM, Gopalakrishnan S, Grimes V, Harris A, Kavich G, Sacks BN, Sinding MHS, Skoglund P, Stanton DWG, Ostrander EA, Larson G, Armstrong CG, Frantz LAF, Hawkins MTR, Kistler L. The history of Coast Salish "woolly dogs" revealed by ancient genomics and Indigenous Knowledge. Science 2023; 382:1303-1308. [PMID: 38096292 PMCID: PMC7615573 DOI: 10.1126/science.adi6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance.
Collapse
Affiliation(s)
- Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Liz Hammond-Kaarremaa
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Vancouver Island University, Nanaimo, BC, Canada
| | - Hsiao-Lei Liu
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Chris Stantis
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
| | - Michael Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
| | - Susan sa'hLa mitSa Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
- Coast Salish Wool Weaving Center, Skokomish Nation, WA, USA
- The Evergreen State College, Olympia, WA, USA
| | | | | | | | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angela Perri
- Department of Anthropology, Texas A&M University, College Station, TX, USA
- Chronicle Heritage, Phoenix, AZ, USA
| | - Jonathan Hartt
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sophy Charlton
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gwénaëlle Kavich
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Greger Larson
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
| | - Chelsey G Armstrong
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
9
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication. Nat Commun 2023; 14:6559. [PMID: 37880248 PMCID: PMC10600150 DOI: 10.1038/s41467-023-42276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. However, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, is not fully understood. Here, we report that in mice, adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in a model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings suggest the microglial Cnr1 may contribute to adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gianluca Ursini
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Miyahara
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feiyi Xiong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samskruthi Madireddy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA.
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
11
|
Kiewa J, Mortlock S, Meltzer-Brody S, Middeldorp C, Wray NR, Byrne EM. A Common Genetic Factor Underlies Genetic Risk for Gynaecological and Reproductive Disorders and Is Correlated with Risk to Depression. Neuroendocrinology 2023; 113:1059-1075. [PMID: 37544299 PMCID: PMC10614513 DOI: 10.1159/000533413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Sex steroid hormone fluctuations may underlie both reproductive disorders and sex differences in lifetime depression prevalence. Previous studies report high comorbidity among reproductive disorders and between reproductive disorders and depression. This study sought to assess the multivariate genetic architecture of reproductive disorders and their loading onto a common genetic factor and investigated whether this latent factor shares a common genetic architecture with female depression, including perinatal depression (PND). METHOD Using UK Biobank and FinnGen data, genome-wide association meta-analyses were conducted for nine reproductive disorders, and genetic correlation between disorders was estimated. Genomic Structural Equation Modelling identified a latent genetic factor underlying disorders, accounting for their significant genetic correlations. SNPs significantly associated with both latent factor and depression were identified. RESULTS Excellent model fit existed between a latent factor underlying five reproductive disorders (χ2 (5) = 6.4; AIC = 26.4; CFI = 1.00; SRMR = 0.03) with high standardised loadings for menorrhagia (0.96, SE = 0.05); ovarian cysts (0.94, SE = 0.05); endometriosis (0.83, SE = 0.05); menopausal symptoms (0.77, SE = 0.10); and uterine fibroids (0.65, SE = 0.05). This latent factor was genetically correlated with PND (rG = 0.37, SE = 0.15, p = 1.4e-03), depression in females only (rG = 0.48, SE = 0.06, p = 7.2e-11), and depression in both males and females (MD) (rG = 0.35, SE = 0.03, p = 1.8e-30), with its top locus associated with FSHB/ARL14EP (rs11031006; p = 9.1e-33). SNPs intronic to ESR1, significantly associated with the latent factor, were also associated with PND, female depression, and MD. CONCLUSION A common genetic factor, correlated with depression, underlies risk of reproductive disorders, with implications for aetiology and treatment. Genetic variation in ESR1 is associated with reproductive disorders and depression, highlighting the importance of oestrogen signalling for both reproductive and mental health.
Collapse
Affiliation(s)
- Jacqueline Kiewa
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sally Mortlock
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Christel Middeldorp
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
- Child and Youth Mental Health Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Youth and Family and Department of Research, Arkin Institute for Mental Health, Amsterdam, The Netherlands
- Levvel, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Enda M. Byrne
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits produced by adolescent THC exposure and 16p11.2 duplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550212. [PMID: 37546830 PMCID: PMC10402026 DOI: 10.1101/2023.07.24.550212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. Nonetheless, until now, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, has been unexplored. Here, we report that adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in the mouse model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings highlight the importance of microglial Cnr1 to produce the adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
|
13
|
Privitera F, Piccini F, Recalcati MP, Presi S, Mazzola S, Carrera P. APC-Related Phenotypes and Intellectual Disability in 5q Interstitial Deletions: A New Case and Review of the Literature. Genes (Basel) 2023; 14:1505. [PMID: 37510409 PMCID: PMC10379344 DOI: 10.3390/genes14071505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The 5q deletion syndrome is a relatively rare condition caused by the monoallelic interstitial deletion of the long arm of chromosome 5. Patients described in literature usually present variable dysmorphic features, behavioral disturbance, and intellectual disability (ID); moreover, the involvement of the APC gene (5q22.2) in the deletion predisposes them to tumoral syndromes (Familial Adenomatous Polyposis and Gardner syndrome). Although the development of gastrointestinal tract malignancies has been extensively described, the genetic causes underlying neurologic manifestations have never been investigated. In this study, we described a new patient with a 19.85 Mb interstitial deletion identified by array-CGH and compared the deletions and the phenotypes reported in other patients already described in the literature and the Decipher database. Overlapping deletions allowed us to highlight a common region in 5q22.1q23.1, identifying KCNN2 (5q22.3) as the most likely candidate gene contributing to the neurologic phenotype.
Collapse
Affiliation(s)
- Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Piccini
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Paola Recalcati
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Presi
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Mazzola
- Medical Genetics, ASST del Garda, Desenzano, 25015 Brescia, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
14
|
LaMarca EA, Saito A, Plaza-Jennings A, Espeso-Gil S, Hellmich A, Fernando MB, Javidfar B, Liao W, Estill M, Townsley K, Florio A, Ethridge JE, Do C, Tycko B, Shen L, Kamiya A, Tsankova NM, Brennand KJ, Akbarian S. R-loop landscapes in the developing human brain are linked to neural differentiation and cell-type specific transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549494. [PMID: 37503149 PMCID: PMC10370098 DOI: 10.1101/2023.07.18.549494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here, we construct genome-scale maps for R-loops, three-stranded nucleic acid structures comprised of a DNA/RNA hybrid and a displaced single strand of DNA, in the proliferative and differentiated zones of the human prenatal brain. We show that R-loops are abundant in the progenitor-rich germinal matrix, with preferential formation at promoters slated for upregulated expression at later stages of differentiation, including numerous neurodevelopmental risk genes. RNase H1-mediated contraction of the genomic R-loop space in neural progenitors shifted differentiation toward the neuronal lineage and was associated with transcriptomic alterations and defective functional and structural neuronal connectivity in vivo and in vitro. Therefore, R-loops are important for fine-tuning differentiation-sensitive gene expression programs of neural progenitor cells.
Collapse
Affiliation(s)
- Elizabeth A LaMarca
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Amara Plaza-Jennings
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Espeso-Gil
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allyse Hellmich
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Will Liao
- New York Genome Center, New York, NY 10013, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kayla Townsley
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Florio
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - James E Ethridge
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Do
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Benjamin Tycko
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Nadejda M Tsankova
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current affiliation: Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV. Epigenetic Mechanisms Involved in the Effects of Maternal Hyperhomocysteinemia on the Functional State of Placenta and Nervous System Plasticity in the Offspring. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:435-456. [PMID: 37080931 DOI: 10.1134/s0006297923040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yulia P Milyutina
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Anastasia D Shcherbitskaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb O Kerkeshko
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Irina V Zalozniaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
16
|
Burns AC, Phillips AJK, Rutter MK, Saxena R, Cain SW, Lane JM. Genome-wide gene by environment study of time spent in daylight and chronotype identifies emerging genetic architecture underlying light sensitivity. Sleep 2023; 46:zsac287. [PMID: 36519390 PMCID: PMC9995784 DOI: 10.1093/sleep/zsac287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
STUDY OBJECTIVES Light is the primary stimulus for synchronizing the circadian clock in humans. There are very large interindividual differences in the sensitivity of the circadian clock to light. Little is currently known about the genetic basis for these interindividual differences. METHODS We performed a genome-wide gene-by-environment interaction study (GWIS) in 280 897 individuals from the UK Biobank cohort to identify genetic variants that moderate the effect of daytime light exposure on chronotype (individual time of day preference), acting as "light sensitivity" variants for the impact of daylight on the circadian system. RESULTS We identified a genome-wide significant SNP mapped to the ARL14EP gene (rs3847634; p < 5 × 10-8), where additional minor alleles were found to enhance the morningness effect of daytime light exposure (βGxE = -.03, SE = 0.005) and were associated with increased gene ARL14EP expression in brain and retinal tissues. Gene-property analysis showed light sensitivity loci were enriched for genes in the G protein-coupled glutamate receptor signaling pathway and genes expressed in Per2+ hypothalamic neurons. Linkage disequilibrium score regression identified Bonferroni significant genetic correlations of greater light sensitivity GWIS with later chronotype and shorter sleep duration. Greater light sensitivity was nominally genetically correlated with insomnia symptoms and risk for post-traumatic stress disorder (PTSD). CONCLUSIONS This study is the first to assess light as an important exposure in the genomics of chronotype and is a critical first step in uncovering the genetic architecture of human circadian light sensitivity and its links to sleep and mental health.
Collapse
Affiliation(s)
- Angus C Burns
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute, Cambridge, MA, USA
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sean W Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci 2023; 24:ijms24054778. [PMID: 36902207 PMCID: PMC10003136 DOI: 10.3390/ijms24054778] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The advancement in epigenetics research over the past several decades has led to the potential application of epigenome-editing technologies for the treatment of various diseases. In particular, epigenome editing is potentially useful in the treatment of genetic and other related diseases, including rare imprinted diseases, as it can regulate the expression of the epigenome of the target region, and thereby the causative gene, with minimal or no modification of the genomic DNA. Various efforts are underway to successfully apply epigenome editing in vivo, such as improving target specificity, enzymatic activity, and drug delivery for the development of reliable therapeutics. In this review, we introduce the latest findings, summarize the current limitations and future challenges in the practical application of epigenome editing for disease therapy, and introduce important factors to consider, such as chromatin plasticity, for a more effective epigenome editing-based therapy.
Collapse
|
18
|
Tang X, Mo Z, Chang C, Qian X. Group-shrinkage feature selection with a spatial network for mining DNA methylation data. Comput Biol Med 2023; 154:106573. [PMID: 36706568 DOI: 10.1016/j.compbiomed.2023.106573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Identifying disease-related biomarkers from high-dimensional DNA methylation data helps in reducing early screening costs and inferring pathogenesis mechanisms. Good discovery results have been achieved through spatial correlation methods of methylation sites, group-based regularization, and network constraints. However, these methods still have some key limitations as they cannot exclude isolated differential sites and only consider adjacent site ordering. Therefore, we propose a group-shrinkage feature selection algorithm to encourage the selection of clustered sites and discourage the selection of isolated differential sites. Specifically, a network-guided group-shrinkage strategy is developed to penalize weakly-correlated isolated methylation sites through a network structure constraint. The spatial network is constructed based on spatial correlation information of DNA methylation sites, where this information accounts for the uneven site distribution. The experimental simulations and applications demonstrated that the proposed method outperforms the advanced regularization methods, especially in rejecting isolated methylation sites; hence this study provides an efficient and clinical-valuable method for biomarker candidate discovery in DNA methylation data. Additionally, the proposed method exhibits enhanced reliability due to introducing biological prior knowledge into a regularization-based feature selection framework and could promote more research in the integration between biological prior knowledge and classical feature selection methods, thus facilitating their clinical application. Our source codes will be released at https://github.com/SJTUBME-QianLab/Group-shrinkage-Spatial-Network once this manuscript is accepted for publication.
Collapse
Affiliation(s)
- Xinlu Tang
- Medical Image and Health Informatics Lab, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhanfeng Mo
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai, Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xiaohua Qian
- Medical Image and Health Informatics Lab, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Lyle SM, Ahmed S, Elliott JE, Stener-Victorin E, Nachtigal MW, Drögemöller BI. Transcriptome-wide association analyses identify an association between ARL14EP and polycystic ovary syndrome. J Hum Genet 2023; 68:347-353. [PMID: 36720993 DOI: 10.1038/s10038-023-01120-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 02/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, which is accompanied by a variety of comorbidities including metabolic, reproductive, and psychiatric disorders. Genome-wide association studies have identified several genetic variants that are associated with PCOS. However, these variants often occur outside of coding regions and require further investigation to understand their contribution to PCOS. A transcriptome-wide association study (TWAS) was performed to uncover heritable gene expression profiles that are associated with PCOS in two independent cohorts. Causal gene prioritization was subsequently performed and expression of genes prioritized through these analyses was examined in 49 PCOS patients and 30 controls. TWAS analyses revealed that increased expression of ARL14EP was significantly associated with PCOS risk in the discovery (P = 1.6 × 10-6) and replication cohorts (P = 2.0 × 10-13). Gene prioritization pipelines provided further evidence that ARL14EP is the most likely causal gene at this locus. ARL14EP gene expression was shown to be significantly different between PCOS cases and controls, after adjusting for body mass index, age and testosterone levels (P = 1.2 × 10-13). This study has provided evidence for the role of ARL14EP in PCOS. Given that ARL14EP has been reported to play an important role in chromatin remodeling, variants affecting the expression of ARL14EP may also affect the expression of other genes that contribute to PCOS pathogenesis.
Collapse
Affiliation(s)
- Sarah M Lyle
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samah Ahmed
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jason E Elliott
- Department of Obstetrics, Gynecology and Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Mark W Nachtigal
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada. .,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| |
Collapse
|
20
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
21
|
Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022; 9:650-660. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW: The epigenome modulates gene expression in response to environmental stimuli. Modifications to the epigenome are potentially reversible, making them a promising therapeutic approach to mitigate environmental exposure effects on human health. This review details currently available genome and epigenome editing technologies and highlights ncRNA, including piRNA, as potential tools for targeted epigenome editing. RECENT FINDINGS: Zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease (CRISPR/Cas) research has significantly advanced genome editing technology, with broad promise in genetic research and targeted therapies. Initial epigenome-directed therapies relied on global modification and suffered from limited specificity. Adapted from current genome editing tools, zinc finger protein (ZFP), TALE, and CRISPR/nuclease-deactivated Cas (dCas) systems now confer locus-specific epigenome editing, with promising applicability in the field of environmental health sciences. However, high incidence of off-target effects and time taken for screening limit their use. FUTURE DEVELOPMENT: ncRNA serve as a versatile biomarker with well-characterized regulatory mechanisms that can easily be adapted to edit the epigenome. For instance, the transposon silencing mechanism of germline PIWI-interacting RNAs (piRNA) could be engineered to specifically methylate a given gene, overcoming pitfalls of current global modifiers. Future developments in epigenome editing technologies will inform risk assessment through mechanistic investigation and serve as potential modes of intervention to mitigate environmentally induced adverse health outcomes later in life.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Rachel K Morgan
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn M Polemi
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kimmie E Sala-Hamrick
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Chen GT, Geschwind DH. Challenges and opportunities for precision medicine in neurodevelopmental disorders. Adv Drug Deliv Rev 2022; 191:114564. [PMID: 36183905 PMCID: PMC10409256 DOI: 10.1016/j.addr.2022.114564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of disorders, linked because of their origins in brain developmental processes, including diverse conditions across the age span, including autism spectrum disorders (ASD) and schizophrenia (SCZ). Clinical treatment of these disorders has traditionally focused on symptom management, as the severity of developmental disruption varies widely and the precise molecular mechanisms, timing, and progression of these disorders is usually not known. Several hundred genes have been identified as major risk factors for ASD and SCZ, which creates new potential therapeutic avenues, and there is strong evidence that these genes converge upon key molecular pathways, pointing to opportunities for precision medicine. In this review, we focus on forms of ASD and SCZ with known genetic etiologies and discuss advances in research technologies that enable a more systemic understanding of disease progression. We highlight recent advances in targeted clinical treatment and discuss ongoing preclinical efforts as well as new initiatives aimed at developing scalable platforms for NDD precision medicine.
Collapse
Affiliation(s)
- George T Chen
- Department of Neurology, David Geffen School of Medicine, UCLA, United States; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, United States
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, UCLA, United States; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, United States; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, United States; Department of Human Genetics, David Geffen School of Medicine, UCLA, United States; Institute of Precision Health, UCLA, United States.
| |
Collapse
|
23
|
Tawfik DM, Dereux C, Tremblay JA, Boibieux A, Braye F, Cazauran JB, Rabodonirina M, Cerrato E, Guichard A, Venet F, Monneret G, Payen D, Lukaszewicz AC, Textoris J. Interferon gamma as an immune modulating adjunct therapy for invasive mucormycosis after severe burn – A case report. Front Immunol 2022; 13:883638. [PMID: 36072605 PMCID: PMC9442803 DOI: 10.3389/fimmu.2022.883638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mucormycosis is a deadly fungal infection that mainly affects severely immunocompromised patients. We report herein the case of a previously immunocompetent adult woman who developed invasive cutaneous mucormycosis after severe burn injuries. Interferon-gamma (IFN-γ) treatment was added after failure of conventional treatment and confirmation of a sustained profound immunodepression. The diagnosis was based on a reduced expression of HLA-DR on monocytes (mHLA-DR), NK lymphopenia and a high proportion of immature neutrophils. The immune-related alterations were longitudinally monitored using panels of immune-related biomarkers. Results Initiation of IFN-γ was associated with a rapid clinical improvement and a subsequent healing of mucormycosis infection, with no residual fungi at the surgical wound repair. The serial immunological assessment showed sharp improvements of immune parameters: a rapid recovery of mHLA-DR and of transcriptomic markers for T-cell proliferation. The patient survived and was later discharged from the ICU. Conclusion The treatment with recombinant IFN-γ participated to the resolution of a progressively invasive mucormycosis infection, with rapid improvement in immune parameters. In the era of precision medicine in the ICU, availability of comprehensive immune monitoring tools could help guiding management of refractory infections and provide rationale for immune stimulation strategies in these high risk patients.
Collapse
Affiliation(s)
- Dina M. Tawfik
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), BioMérieux S.A., Lyon, France
| | - Caroline Dereux
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Anesthesia and Critical Care Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Jan-Alexis Tremblay
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Critical Care Department, Hôpital Maisonneuve Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Andre Boibieux
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Fabienne Braye
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jean-Baptiste Cazauran
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Meja Rabodonirina
- Service de Parasitologie, Hospices civils de Lyon, Hôpital de la Croix-Rousse, et Université Claude Bernard Lyon 1, Lyon, France
| | - Elisabeth Cerrato
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), BioMérieux S.A., Lyon, France
| | - Audrey Guichard
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Open Innovation and Partnerships (OIP), BioMérieux S.A., Lyon, France
| | - Fabienne Venet
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Immunology Laboratory, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Immunology Laboratory, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Anne-Claire Lukaszewicz
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Anesthesia and Critical Care Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Julien Textoris
- “Pathophysiology of Injury-Induced Immunosuppression”, Université Claude Bernard Lyon-1 - Hospices Civils de Lyon - BioMérieux, Lyon, France
- Anesthesia and Critical Care Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- *Correspondence: Julien Textoris,
| |
Collapse
|
24
|
Wang Q, Zhang X, Qin T, Wang D, Lin X, Zhu Y, Tan H, Zhao L, Li J, Lin Z, Lin H, Chen W. Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes (Basel) 2022; 13:genes13081431. [PMID: 36011342 PMCID: PMC9408430 DOI: 10.3390/genes13081431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The deletion of chromosome 11p13 involving the WT1 and PAX6 genes has been shown to cause WAGR syndrome (OMIM #194072), a rare genetic disorder that features Wilms’ tumor, aniridia, genitourinary anomalies, as well as mental retardation. In this study, we expand the genotypic and phenotypic spectrum of WAGR syndrome by reporting on six patients from six unrelated families with different de novo deletions located on chromosome 11p13. Very rare phenotypes of lens automated absorption and lens thinning were detected in four of the six patients. We assessed the involvement of the ARL14EP gene in patients with and without severe lens abnormalities and found that its deletion may worsen the lens abnormalities in these patients.
Collapse
Affiliation(s)
- Qiwei Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Tingfeng Qin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoshan Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuanyuan Zhu
- Aegicare, 3803 Building 11A, Shenzhen Bay Ecological Technology Park, Nanshan District, Shenzhen 518063, China
| | - Haowen Tan
- Aegicare, 3803 Building 11A, Shenzhen Bay Ecological Technology Park, Nanshan District, Shenzhen 518063, China
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
- Correspondence:
| |
Collapse
|
25
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
26
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
27
|
Aygün N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, Mory J, Hadden-Ford E, Krupa O, de la Torre-Ubieta L, Geschwind DH, Love MI, Stein JL. Brain-trait-associated variants impact cell-type-specific gene regulation during neurogenesis. Am J Hum Genet 2021; 108:1647-1668. [PMID: 34416157 PMCID: PMC8456186 DOI: 10.1016/j.ajhg.2021.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing quantitative trait locus (e/sQTL) analyses is generally performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements active during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs, and allele-specific expression in cultured cells representing two major developmental stages, primary human neural progenitors (n = 85) and their sorted neuronal progeny (n = 74), identifying numerous loci not detected in either bulk developing cortical wall or adult cortex. Using colocalization and genetic imputation via transcriptome-wide association, we uncover cell-type-specific regulatory mechanisms underlying risk for brain-relevant traits that are active during neocortical differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with common variant associations for cortical surface area and educational attainment.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angela L Elwell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry E Cheek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenan P Courtney
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellie Hadden-Ford
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Ricci R, Colasante G. CRISPR/dCas9 as a Therapeutic Approach for Neurodevelopmental Disorders: Innovations and Limitations Compared to Traditional Strategies. Dev Neurosci 2021; 43:253-261. [PMID: 33940579 DOI: 10.1159/000515845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Brain development is a complex process that requires a series of precise and coordinated events to take place. When alterations in some of those events occur, neurodevelopmental disorders (NDDs) may appear, with their characteristic symptoms, including cognitive, social motor deficits, and epilepsy. While pharmacologic treatments have been the only therapeutic options for many years, more recently the research is turning to the direct removal of the underlying genetic cause of each specific NDD. This is possible thanks to the increased knowledge of genetic basis of those diseases and the enormous advances in genome-editing tools. Together with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategies, there is a great development also of nuclease defective Cas9 (dCas9) tools that, with an extreme flexibility, allow the recruitment of specific protein functions to the desired genomic sites. In this work, we review dCas9-based tools and discuss all the published applications in the setting of therapeutic approaches for NDDs at the preclinical level. In particular, dCas9-based therapeutic strategies for Dravet syndrome, transcallosal dysconnectivity caused by mutations in C11orf46 gene, and Fragile X syndrome are presented and discussed. A direct comparison with other possible therapeutic strategies, such as classic gene replacement or CRISPR/Cas9-based strategies, is provided. We also highlight not only those aspects that constitute a clear advantage compared to previous strategies but also the main technical hurdles related to their applications that need to be overcome.
Collapse
Affiliation(s)
- Raffaele Ricci
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, Ospedale San Raffaele, Milan, Italy.,Translational and Molecular Medicine PhD Program, DIMET, University of Milan-Bicocca, Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
29
|
Policarpi C, Dabin J, Hackett JA. Epigenetic editing: Dissecting chromatin function in context. Bioessays 2021; 43:e2000316. [PMID: 33724509 DOI: 10.1002/bies.202000316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
How epigenetic mechanisms regulate genome output and response to stimuli is a fundamental question in development and disease. Past decades have made tremendous progress in deciphering the regulatory relationships involved by correlating aggregated (epi)genomics profiles with global perturbations. However, the recent development of epigenetic editing technologies now enables researchers to move beyond inferred conclusions, towards explicit causal reasoning, through 'programing' precise chromatin perturbations in single cells. Here, we first discuss the major unresolved questions in the epigenetics field that can be addressed by programable epigenome editing, including the context-dependent function and memory of chromatin states. We then describe the epigenetic editing toolkit focusing on CRISPR-based technologies, and highlight its achievements, drawbacks and promise. Finally, we consider the potential future application of epigenetic editing to the study and treatment of specific disease conditions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Juliette Dabin
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| |
Collapse
|
30
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Yim YY, Teague CD, Nestler EJ. In vivo locus-specific editing of the neuroepigenome. Nat Rev Neurosci 2020; 21:471-484. [PMID: 32704051 PMCID: PMC7439525 DOI: 10.1038/s41583-020-0334-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Studies over the past several decades have identified numerous epigenetic mechanisms associated with pathological states in psychiatric and neurological disease. Until recently, studies investigating chromatin-regulatory proteins, using overexpression or knockdown approaches, did not establish causal roles for epigenetic modifications at specific genes because these techniques typically affect hundreds or thousands of genomic loci. In this Review, we describe recent efforts in using locus-specific neuroepigenome editing in vivo to, for the first time, define causal relationships between a single chromatin modification at a specific gene in a defined cell population and downstream measures at the molecular, cellular, circuit and behavioural levels. We briefly introduce three epigenome-editing platforms: zinc-finger proteins, transcriptional activator-like effectors and clustered regularly interspaced short palindromic repeats (CRISPR). We then explore the development of in vivo neuroepigenome-editing tools and their applications to resolve epigenetic contributions to the pathophysiology of brain diseases. We also discuss technical considerations for in vivo neuroepigenome-editing experiments and ongoing innovations in the field, including new tools to investigate chromatin marks, manipulate chromatin topology and induce epigenetic modifications at multiple genes in the same cell. Lastly, we explore the potential clinical applications of in vivo neuroepigenome editing for treating brain pathology.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Collin D Teague
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, Stricker SH. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiol Rev 2020; 101:177-211. [PMID: 32525760 DOI: 10.1152/physrev.00034.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.
Collapse
Affiliation(s)
- Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Andrea M Neuner
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Maximilian F Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| |
Collapse
|
33
|
Kunii A, Yamamoto T, Sakuma T. Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell Dev Biol Anim 2020; 56:359-366. [PMID: 32514717 DOI: 10.1007/s11626-020-00469-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
CRISPR-Cas9 is a sophisticated tool in which Cas9/sgRNA complexes bind to the programmed target sequences and induce DNA double-strand breaks (DSBs) enabling highly efficient genome editing. Moreover, when nuclease-inactive Cas9 (dCas9) is employed, its specific DNA-binding activity provides a variety of derivative technologies such as transcriptional activation/repression, epigenome editing, and chromosome visualization. In these derivative technologies, particular effector molecules are fused with dCas9 or recruited to the target site. However, there had been room for improvement, because both genome editing and derivative technologies require not only the DNA-binding tools but also the additional components for their efficient and flexible outcomes. For genome editing, DSB repair molecules and knock-in donor templates need to act at the DSB sites. Derivative technologies also require their various effector domains to be gathered onto the target sites. Recently, many groups have developed and utilized inventive platforms to accumulate these additional components to the target sequence by modifying Cas9 protein and/or sgRNA. Here, we summarize the strategies of CRISPR-based effector accumulation and the improved methodologies using these creative platforms.
Collapse
Affiliation(s)
- Atsushi Kunii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
34
|
Chen T, Tyagi S. Integrative computational epigenomics to build data-driven gene regulation hypotheses. Gigascience 2020; 9:giaa064. [PMID: 32543653 PMCID: PMC7297091 DOI: 10.1093/gigascience/giaa064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diseases are complex phenotypes often arising as an emergent property of a non-linear network of genetic and epigenetic interactions. To translate this resulting state into a causal relationship with a subset of regulatory features, many experiments deploy an array of laboratory assays from multiple modalities. Often, each of these resulting datasets is large, heterogeneous, and noisy. Thus, it is non-trivial to unify these complex datasets into an interpretable phenotype. Although recent methods address this problem with varying degrees of success, they are constrained by their scopes or limitations. Therefore, an important gap in the field is the lack of a universal data harmonizer with the capability to arbitrarily integrate multi-modal datasets. RESULTS In this review, we perform a critical analysis of methods with the explicit aim of harmonizing data, as opposed to case-specific integration. This revealed that matrix factorization, latent variable analysis, and deep learning are potent strategies. Finally, we describe the properties of an ideal universal data harmonization framework. CONCLUSIONS A sufficiently advanced universal harmonizer has major medical implications, such as (i) identifying dysregulated biological pathways responsible for a disease is a powerful diagnostic tool; (2) investigating these pathways further allows the biological community to better understand a disease's mechanisms; and (3) precision medicine also benefits from developments in this area, particularly in the context of the growing field of selective epigenome editing, which can suppress or induce a desired phenotype.
Collapse
Affiliation(s)
- Tyrone Chen
- 25 Rainforest Walk, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sonika Tyagi
- 25 Rainforest Walk, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Han W, Zhang C, Shi CT, Gao XJ, Zhou MH, Shao QX, Shen XJ, Wu CJ, Cao F, Hu YW, Yuan JL, Ding HZ, Wang QH, Wang HN. Roles of eIF3m in the tumorigenesis of triple negative breast cancer. Cancer Cell Int 2020; 20:141. [PMID: 32368187 PMCID: PMC7191806 DOI: 10.1186/s12935-020-01220-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background Without targets, triple negative breast cancer (TNBC) has the worst prognosis in all subtypes of breast cancer (BC). Recently, eukaryotic translation initiation factor 3 m (eIF3m) has been declared to be involved in the malignant progression of various neoplasms. The aim of this study is to explore biological functions of eIF3m in TNBC. Methods Multiple databases, including Oncomine, KM-plotter and so on, were performed to analyze prognosis and function of eIF3m in TNBC. After transfection of eIF3m-shRNA lentivirus, CCK-8, colony formation assay, cell cycle analysis, wound healing assay, transwell assays, mitochondrial membrane potential assay and cell apoptosis analysis were performed to explore the roles of eIF3m in TNBC cell bio-behaviors. In addition, western blotting was conducted to analyze the potential molecular mechanisms of eIF3m. Results In multiple databases, up-regulated eIF3m had lower overall survival, relapse-free survival and post progression survival in BC. EIF3m expression in TNBC was obviously higher than in non-TNBC or normal breast tissues. Its expression in TNBC was positively related to differentiation, lymph node invasion and distant metastasis. After knockdown of eIF3m, cell proliferation, migration, invasion and levels of mitochondrial membrane potential of MDA-MB-231 and MDA-MB-436 were all significantly suppressed, while apoptosis rates of them were obviously increased. In addition, eIF3m could regulate cell-cycle, epithelial–mesenchymal transition and apoptosis-related proteins. Combined with public databases and RT-qPCR, 14 genes were identified to be modulated by eIF3m in the development of TNBC. Conclusions eIF3m is an unfavorable indicator of TNBC, and plays a vital role in the process of TNBC tumorigenesis.
Collapse
Affiliation(s)
- Wei Han
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Cong Zhang
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, 215300 People's Republic of China
| | - Chun-Tao Shi
- Department of General Surgery, Wuxi Xishan People's Hospital, Kunshan Wuxi Jiangsu, 214000 People's Republic of China
| | - Xiao-Jiao Gao
- 4Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Ming-Hui Zhou
- 5Centralab, Kunshan First People's Hospital Affiliated to Jiangsu University, Jiangsu, 215300 Kunshan People's Republic of China
| | - Qi-Xiang Shao
- 6Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu, 212013 People's Republic of China
| | - Xiao-Jun Shen
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Cheng-Jiang Wu
- 7Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000 People's Republic of China
| | - Fang Cao
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Yong-Wei Hu
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Jian-Liang Yuan
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Hou-Zhong Ding
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Qing-Hua Wang
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Hao-Nan Wang
- Oncology Department, Wuxi Fifth People's Hospital, Wuxi Jiangsu, 214000 People's Republic of China
| |
Collapse
|