1
|
Zhou Z, E J, Shi Q, Zhang W, Sun L, Fan J. Chromosome-level genome provides novel insights into the starch metabolism regulation and evolutionary history of Tetraselmis helgolandica. J Adv Res 2025:S2090-1232(25)00182-1. [PMID: 40147624 DOI: 10.1016/j.jare.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Tetraselmis helgolandica is a marine microalga belonging to the Chlorophyta phylum. It is widely distributed in the coastal waters of Asia and is commonly used as aquatic feed. T. helgolandica is characterized by its large size, preference for starch accumulation, low temperature tolerance, presence of flagella, and strong motility. However, research on T. helgolandica is limited, and its genome data remains unavailable. OBJECTIVE We generated a high-quality, chromosome-scale genome of T. helgolandica. Through comparative genomics, we uncovered the genome characteristics and evolutionary history of T. helgolandica. Additionally, by integrating transcriptome data, we elucidated how the light-dark rhythm enhances the high starch production. METHODS We utilized long-read sequencing data and high-throughput chromosome conformation capture data from the Oxford Nanopore platform to construct a high-quality genome of T. helgolandica. Genome annotation was performed using multiple databases, and comparative genomic analysis was conducted with nine species, including Arabidopsis thaliana, to reveal the evolutionary history. Finally, we combined transcriptome data to elucidate the molecular mechanisms underlying the high starch yield. RESULTS Circadian rhythm significantly promote starch accumulation and increase amylose content. The chromosome-scale genome revealed it shares a common ancestor with other green algae approximately 1,017 million years ago. This relatively ancient divergence underscores its evolutionary distinction within the green lineage. It may possess a more complex protein modification mechanism and a more fully developed Golgi apparatus. Circadian rhythm broadly up-regulates key enzymes involved in starch synthesis, including GBSS and Starch Synthase, while down-regulating SS IIIa. This regulation enhances starch accumulation and increases the amylose content. CONCLUSION This study provided a high-quality genome of T. helgolandica and revealed the potential mechanism by which the circadian rhythm promotes starch accumulation and increases the amylose ratio. The genome of T. helgolandica will serve as an important resource for evolutionary research and transgenic platform development.
Collapse
Affiliation(s)
- Zuodong Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiawei E
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qianwen Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenjun Zhang
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Pérez‐Barrancos C, Fraile‐Nuez E, Martín‐Díaz JP, González‐Vega A, Escánez‐Pérez J, Díaz‐Durán MI, Presas‐Navarro C, Nieto‐Cid M, Arrieta JM. Shallow Hydrothermal Fluids Shape Microbial Dynamics at the Tagoro Submarine Volcano (Canary Islands, Spain). Environ Microbiol 2025; 27:e70052. [PMID: 39924467 PMCID: PMC11807932 DOI: 10.1111/1462-2920.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Shallow underwater hydrothermal systems are often overlooked despite their potential contribution to marine diversity and biogeochemistry. Over a decade after its eruption, the Tagoro submarine volcano continues to emit heat, reduced compounds, and nutrients into shallow waters, serving as a model system for studying the effects of diffuse hydrothermal fluids on surface microbial communities. The impact on both phytoplankton and bacterial communities was examined through experimental manipulations mimicking dilution levels up to ~100 m from the primary crater of Tagoro. Chlorophyll a concentration doubled in the presence of hydrothermal products, with peak levels detected about a day earlier than in controls. Picoeukaryotes and Synechococcus cell abundances moderately increased, yet small eukaryotic phytoplankton (≤ 5 μm) predominated in the hydrothermally enriched bottles. Dinoflagellates, diatoms, small green algae and radiolarians particularly benefited from the hydrothermal inputs, along with phototrophic and chemoautotrophic bacteria. Our results indicate that hydrothermal products in shallow waters enhance primary production driven by phototrophic microbes, potentially triggering a secondary response associated with increased organic matter availability. Additionally, protistan grazing and parasitism emerged as key factors modulating local planktonic communities. Our findings highlight the role of shallow submarine hydrothermal systems in enhancing local primary production and element cycling.
Collapse
Affiliation(s)
- Clàudia Pérez‐Barrancos
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
- Universidad de Las Palmas de Gran Canaria (ULPGC)Las Palmas de Gran CanariaSpain
| | - Eugenio Fraile‐Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - Juan Pablo Martín‐Díaz
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
- Universidad de La Laguna (ULL)San Cristóbal de La LagunaSpain
| | - Alba González‐Vega
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - José Escánez‐Pérez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - María Isabel Díaz‐Durán
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - Carmen Presas‐Navarro
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - Mar Nieto‐Cid
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)A CoruñaSpain
| | - Jesús María Arrieta
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| |
Collapse
|
3
|
Bowles AMC, Williams TA, Donoghue PCJ, Campbell DA, Williamson CJ. Metagenome-assembled genome of the glacier alga Ancylonema yields insights into the evolution of streptophyte life on ice and land. THE NEW PHYTOLOGIST 2024; 244:1629-1643. [PMID: 38840553 DOI: 10.1111/nph.19860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB, E4L 1H3, Canada
| | | |
Collapse
|
4
|
Mu B, Nair AM, Zhao R. Plastid HSP90C C-terminal extension region plays a regulatory role in chaperone activity and client binding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2288-2302. [PMID: 38969341 DOI: 10.1111/tpj.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.
Collapse
Affiliation(s)
- Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Adheip Monikantan Nair
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
6
|
Mulvey H, Dolan L. RHO of plant signaling was established early in streptophyte evolution. Curr Biol 2023; 33:5515-5525.e4. [PMID: 38039969 DOI: 10.1016/j.cub.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
The algal ancestors of land plants underwent a transition from a unicellular to a multicellular body plan.1 This transition likely took place early in streptophyte evolution, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage.2 How this transition was brought about is unknown; however, it was likely facilitated by the evolution of novel mechanisms to spatially regulate morphogenesis. In land plants, RHO of plant (ROP) signaling plays a conserved role in regulating polarized cell growth and cell division orientation to orchestrate morphogenesis.3,4,5,6,7,8 ROP constitutes a plant-specific subfamily of the RHO GTPases, which are more widely conserved throughout eukaryotes.9,10 Although the RHO family originated in early eukaryotes,11,12 how and when the ROP subfamily originated had remained elusive. Here, we demonstrate that ROP signaling was established early in the streptophyte lineage, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage. This period corresponds to when the unicellular-to-multicellular transition likely took place in the streptophytes. In addition to being critical for the complex morphogenesis of extant land plants, we speculate that ROP signaling contributed to morphological evolution in early streptophytes.
Collapse
Affiliation(s)
- Hugh Mulvey
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Liam Dolan
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria.
| |
Collapse
|
7
|
Yang Z, Ma X, Wang Q, Tian X, Sun J, Zhang Z, Xiao S, De Clerck O, Leliaert F, Zhong B. Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nat Commun 2023; 14:5542. [PMID: 37696791 PMCID: PMC10495350 DOI: 10.1038/s41467-023-41137-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The Viridiplantae comprise two main clades, the Chlorophyta (including a diverse array of marine and freshwater green algae) and the Streptophyta (consisting of the freshwater charophytes and the land plants). Lineages sister to core Chlorophyta, informally refer to as prasinophytes, form a grade of mainly planktonic green algae. Recently, one of these lineages, Prasinodermophyta, which is previously grouped with prasinophytes, has been identified as the sister lineage to both Chlorophyta and Streptophyta. Resolving the deep relationships among green plants is crucial for understanding the historical impact of green algal diversity on marine ecology and geochemistry, but has been proven difficult given the ancient timing of the diversification events. Through extensive taxon and gene sampling, we conduct large-scale phylogenomic analyses to resolve deep relationships and reveal the Prasinodermophyta as the lineage sister to Chlorophyta, raising questions about the necessity of classifying the Prasinodermophyta as a distinct phylum. We unveil that incomplete lineage sorting is the main cause of discordance regarding the placement of Prasinodermophyta. Molecular dating analyses suggest that crown-group green plants and crown-group Prasinodermophyta date back to the Paleoproterozoic-Mesoproterozoic. Our study establishes a plausible link between oxygen levels in the Paleoproterozoic-Mesoproterozoic and the origin of Viridiplantae.
Collapse
Affiliation(s)
- Zhiping Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolin Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
8
|
Kato S, Misumi O, Maruyama S, Nozaki H, Tsujimoto-Inui Y, Takusagawa M, Suzuki S, Kuwata K, Noda S, Ito N, Okabe Y, Sakamoto T, Yagisawa F, Matsunaga TM, Matsubayashi Y, Yamaguchi H, Kawachi M, Kuroiwa H, Kuroiwa T, Matsunaga S. Genomic analysis of an ultrasmall freshwater green alga, Medakamo hakoo. Commun Biol 2023; 6:89. [PMID: 36690657 PMCID: PMC9871001 DOI: 10.1038/s42003-022-04367-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.
Collapse
Affiliation(s)
- Shoichi Kato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yoshida, Yamaguchi, 753-8512, Japan
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai, 980-8578, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yayoi Tsujimoto-Inui
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mari Takusagawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Nanami Ito
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoji Okabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Fumi Yagisawa
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa, 903-0213, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Tomoko M Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan.
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
9
|
Bachy C, Wittmers F, Muschiol J, Hamilton M, Henrissat B, Worden AZ. The Land-Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:585-616. [PMID: 35259927 DOI: 10.1146/annurev-arplant-071921-100530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems-the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.
Collapse
Affiliation(s)
- Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Muschiol
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Hamilton
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille Université (AMU), Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratories, Woods Hole, Massachusetts, USA
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
10
|
de Albuquerque NRM, Haag KL, Fields PD, Cabalzar A, Ben-Ami F, Pombert JF, Ebert D. A new microsporidian parasite, Ordospora pajunii sp. nov (Ordosporidae), of Daphnia longispina highlights the value of genomic data for delineating species boundaries. J Eukaryot Microbiol 2022; 69:e12902. [PMID: 35279911 DOI: 10.1111/jeu.12902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
Speciation is a complex and continuous process that makes the delineation of species boundaries a challenging task in particular in species with little morphological differentiation, such as parasites. In this case, the use of genomic data is often necessary, such as for the intracellular Microsporidian parasites. Here we characterize the genome of a gut parasite of the cladoceran Daphnia longispina (isolate FI-F-10), which we propose as a new species within the genus Ordospora: O. pajunii sp. nov (Ordosporidae). FI-F-10 closest relative, O. colligata is only found in D. magna. Both microsporidian species share several morphological features. Although it is not possible to estimate divergence times for Microsporidia due to the lack of fossil records and accelerated evolutionary rates, we base our proposal on the phylogenomic and genomic distances between both microsporidian lineages. Phylogenomic reconstruction shows that FI-F-10 forms an early diverging branch basal to the cluster that contains all known O. colligata strains. Whole-genome comparisons show that FI-F-10 presents a greater divergence at the sequence level than observed among O. colligata strains, and its genomic Average Nucleotide Identity (ANI) values against O. colligata are beyond the intra-specific range previously established for yeast and prokaryotes. Our data confirm that the ANI metrics are useful for fine genetic divergence calibration across Microsporidia taxa. In combination with phylogenetic and ecological data, genome-based metrics provide a powerful approach to delimitate species boundaries.
Collapse
Affiliation(s)
- Nathalia R M de Albuquerque
- Department of Genetics and Post-Graduation Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Karen L Haag
- Department of Genetics and Post-Graduation Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, Basel University, Vesalgasse 1, 4051, Basel, Switzerland
| | - Andrea Cabalzar
- Department of Environmental Sciences, Zoology, Basel University, Vesalgasse 1, 4051, Basel, Switzerland
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jean-François Pombert
- Department of Biology, Illinois Institute of Technology, 3105 S Dearborn St, Chicago, IL, 60616, USA
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, Basel University, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
11
|
Repetti SI, Iha C, Uthanumallian K, Jackson CJ, Chen Y, Chan CX, Verbruggen H. Nuclear genome of a pedinophyte pinpoints genomic innovation and streamlining in the green algae. THE NEW PHYTOLOGIST 2022; 233:2144-2154. [PMID: 34923642 DOI: 10.1111/nph.17926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The genomic diversity underpinning high ecological and species diversity in the green algae (Chlorophyta) remains little known. Here, we aimed to track genome evolution in the Chlorophyta, focusing on loss and gain of homologous genes, and lineage-specific innovations of the core Chlorophyta. We generated a high-quality nuclear genome for pedinophyte YPF701, a sister lineage to others in the core Chlorophyta and incorporated this genome in a comparative analysis with 25 other genomes from diverse Viridiplantae taxa. The nuclear genome of pedinophyte YPF701 has an intermediate size and gene number between those of most prasinophytes and the remainder of the core Chlorophyta. Our results suggest positive selection for genome streamlining in the Pedinophyceae, independent from genome minimisation observed among prasinophyte lineages. Genome expansion was predicted along the branch leading to the UTC clade (classes Ulvophyceae, Trebouxiophyceae and Chlorophyceae) after divergence from their last common ancestor with pedinophytes, with genomic novelty implicated in a range of basic biological functions. Results emphasise multiple independent signals of genome minimisation within the Chlorophyta, as well as the genomic novelty arising before diversification in the UTC clade, which may underpin the success of this species-rich clade in a diversity of habitats.
Collapse
Affiliation(s)
- Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| | | | | | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| |
Collapse
|
12
|
Wu JY, Hua ZL, Gu L, Li XQ, Gao C, Liu YY. Perfluorinated compounds (PFCs) in regional industrial rivers: Interactions between pollution flux and eukaryotic community phylosymbiosis. ENVIRONMENTAL RESEARCH 2022; 203:111876. [PMID: 34400162 DOI: 10.1016/j.envres.2021.111876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated compounds (PFCs) pose serious threats to aquatic ecosystems, especially their microbial communities. However, little is known about the phylosymbiosis of aquatic fungal and viridiplantae communities in response to PFC accumulation. We quantified the distribution of 14 PFCs in rivers and found that PFBA was dominant in the transition from water to sediment. High through-put sequencing revealed that phyla Ascomycota, Basidiomycota, Anthophyta, and Chlorophyta were the predominant in eukaryotic community. The effects of PFCs on spatial community coalescence at taxonomic and phylogenetic levels (p < 0.05) were revealed. Fungal community coalescence triggered the spatial assembly of fungal and viridiplantae communities in riverine environments (p < 0.05). Null modeling indicated that PFBA, PFTrDA and PFOS, etc, mediated phylogenetic assembly (p < 0.05) and stochastic processes (86.67-100%) maintain phylogenetic turnover in the fungal community. Meanwhile, variable selection (27.78-54.44%) explained the viridiplantae community assemblage. Finally, we identified fungal genera Hannaella, Naganishia, Purpureocillium and Stachybotrys as indicators for PFC pollution (p < 0.001). These results help explain the effects of PFCs on riverine ecological remediation.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| | - Xiao-Qing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Chang Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yuan-Yuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| |
Collapse
|
13
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
14
|
Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, Fojtová M, Zachová D, Fulnečková J, Fajkus J. Evolution of plant telomerase RNAs: farther to the past, deeper to the roots. Nucleic Acids Res 2021; 49:7680-7694. [PMID: 34181710 PMCID: PMC8287931 DOI: 10.1093/nar/gkab545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | | | - Marcela Holá
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague CZ-16000, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Ivana Goffová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| |
Collapse
|
15
|
Experimental identification and in silico prediction of bacterivory in green algae. THE ISME JOURNAL 2021; 15:1987-2000. [PMID: 33649548 PMCID: PMC8245530 DOI: 10.1038/s41396-021-00899-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells.
Collapse
|
16
|
Vlachonasios K, Poulios S, Mougiou N. The Histone Acetyltransferase GCN5 and the Associated Coactivators ADA2: From Evolution of the SAGA Complex to the Biological Roles in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:308. [PMID: 33562796 PMCID: PMC7915528 DOI: 10.3390/plants10020308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Transcription of protein-encoding genes starts with forming a pre-initiation complex comprised of RNA polymerase II and several general transcription factors. To activate gene expression, transcription factors must overcome repressive chromatin structure, which is accomplished with multiprotein complexes. One such complex, SAGA, modifies the nucleosomal histones through acetylation and other histone modifications. A prototypical histone acetyltransferase (HAT) known as general control non-repressed protein 5 (GCN5), was defined biochemically as the first transcription-linked HAT with specificity for histone H3 lysine 14. In this review, we analyze the components of the putative plant SAGA complex during plant evolution, and current knowledge on the biological role of the key components of the HAT module, GCN5 and ADA2b in plants, will be summarized.
Collapse
Affiliation(s)
- Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (N.M.)
| | | | | |
Collapse
|
17
|
Benton R, Dessimoz C, Moi D. A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor. eLife 2020; 9:62507. [PMID: 33274716 PMCID: PMC7746228 DOI: 10.7554/elife.62507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 01/26/2023] Open
Abstract
The insect chemosensory repertoires of Odorant Receptors (ORs) and Gustatory Receptors (GRs) together represent one of the largest families of ligand-gated ion channels. Previous analyses have identified homologous 'Gustatory Receptor-Like' (GRL) proteins across Animalia, but the evolutionary origin of this novel class of ion channels is unknown. We describe a survey of unicellular eukaryotic genomes for GRLs, identifying several candidates in fungi, protists and algae that contain many structural features characteristic of animal GRLs. The existence of these proteins in unicellular eukaryotes, together with ab initio protein structure predictions, provide evidence for homology between GRLs and a family of uncharacterized plant proteins containing the DUF3537 domain. Together, our analyses suggest an origin of this protein superfamily in the last common eukaryotic ancestor.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Department of Computer Science, University College London, London, United Kingdom
| | - David Moi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
18
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
19
|
|
20
|
A planktonic picoeukaryote makes big changes to the green lineage. Nat Ecol Evol 2020; 4:1160-1161. [DOI: 10.1038/s41559-020-1244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|