1
|
Xiao W, Liu G, Chen T, Zhang Y, Ke A, Cai R, Lu C. Escherichia coli yybP-ykoY Riboswitch as a Tandem Riboswitch Regulated by Mn 2+ and pH. ACS Chem Biol 2025. [PMID: 40252020 DOI: 10.1021/acschembio.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The Escherichiacoli yybP-ykoY riboswitch regulates mntP and alx gene expression on the translation level. It contains two tandem domains regulated by Mn2+ and pH. This study investigates the tertiary structure and conformational dynamics of the E. coli yybP-ykoY riboswitch using a combination of crystallography, small-angle X-ray scattering (SAXS), and chemical probing. Our crystal structure of the aptamer domain at 3.8 Å reveals that the yybP-ykoY riboswitch aptamer domain forms a coaxial superhelix containing three helices connected by a three-way junction (3WJ), with L1 and L3 creating a pocket-like structure that binds Mg2+ and Mn2+. SHAPE probing and SAXS show that the yybP-ykoY riboswitch maintains a consistent conformation across pH conditions without Mn2+ but exhibits significant conformational changes under alkaline conditions when Mn2+ is present. These findings align with our proposed model, where Mn2+ binding induces a transition from an "OFF" to an "ON" state in alkaline conditions, while the Mn2+ remains bound to the aptamer independent of pH. This regulatory mechanism allows for more sophisticated control of gene expression, providing a finely tuned adaptive response to environmental changes.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Guangfeng Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Stephen CN, Palmer DE, Bautista C, Mishanina TV. Structurally distinct manganese-sensing riboswitch aptamers regulate diverse expression platform architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.14.628514. [PMID: 39763765 PMCID: PMC11702587 DOI: 10.1101/2024.12.14.628514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Manganese (Mn)-sensing riboswitches protect bacteria from Mn toxicity by upregulating expression of Mn exporters. The Mn aptamers share key features but diverge in other important elements, including within the metal-binding core. Although X-ray crystal structures of isolated aptamers exist, these structural snapshots lack crucial details about how the aptamer communicates the presence or absence of ligand to the expression platform. In this work, we investigated the Mn-sensing translational riboswitches in E. coli ( mntP and alx ), which differ in aptamer secondary structure, nucleotide sequence, and pH-dependence of Mn response. We performed co-transcriptional RNA chemical probing, allowing us to visualize RNA folding intermediates that form and resolve en route to the final folded riboswitch. For the first time, we report that sampling of metal ions by the RNA begins before the aptamer synthesis and folding are complete. At a single-nucleotide resolution, we pinpoint the transcription window where "riboswitching" occurs in response to Mn binding and uncover key differences in how the alx and mntP riboswitches fold. Finally, we describe riboswitch-specific effects of pH, providing insights into how two members of the same riboswitch family differentially sense two distinct environmental cues: concentration of Mn and pH. GRAPHICAL ABSTRACT
Collapse
|
3
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Li J, Zhang L, Johnson-Buck A, Walter NG. Foundation model for efficient biological discovery in single-molecule data. RESEARCH SQUARE 2024:rs.3.rs-4970585. [PMID: 39483892 PMCID: PMC11527229 DOI: 10.21203/rs.3.rs-4970585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Modern data-intensive techniques offer ever deeper insights into biology, but render the process of discovery increasingly complex. For example, exploiting the unique ability of single-molecule fluorescence microscopy (SMFM)1-5. to uncover rare but critical intermediates often demands manual inspection of time traces and iterative ad hoc approaches that are difficult to systematize. To facilitate systematic and efficient discovery from SMFM data, we introduce META-SiM, a transformer-based foundation model pre-trained on diverse SMFM analysis tasks. META-SiM achieves high performance-rivaling best-in-class algorithms-on a broad range of analysis tasks including trace selection, classification, segmentation, idealization, and stepwise photobleaching analysis. Additionally, the model produces high-dimensional embedding vectors that encapsulate detailed information about each trace, which the web-based META-SiM Projector (https://www.simol-projector.org) casts into lower-dimensional space for efficient whole-dataset visualization, labeling, comparison, and sharing. Combining this Projector with the objective metric of Local Shannon Entropy enables rapid identification of condition-specific behaviors, even if rare or subtle. As a result, by applying META-SiM to an existing single-molecule Förster resonance energy transfer (smFRET) dataset6, we discover a previously unobserved intermediate state in pre-mRNA splicing. META-SiM thus removes bottlenecks, improves objectivity, and both systematizes and accelerates biological discovery in complex single-molecule data.
Collapse
Affiliation(s)
- Jieming Li
- Bristol Myers Squibb, New Brunswick, NJ, USA
| | | | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Li J, Zhang L, Johnson-Buck A, Walter NG. Foundation model for efficient biological discovery in single-molecule data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609721. [PMID: 39253410 PMCID: PMC11383305 DOI: 10.1101/2024.08.26.609721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Modern data-intensive techniques offer ever deeper insights into biology, but render the process of discovery increasingly complex. For example, exploiting the unique ability of single-molecule fluorescence microscopy (SMFM)1-5. to uncover rare but critical intermediates often demands manual inspection of time traces and iterative ad hoc approaches that are difficult to systematize. To facilitate systematic and efficient discovery from SMFM data, we introduce META-SiM, a transformer-based foundation model pre-trained on diverse SMFM analysis tasks. META-SiM achieves high performance-rivaling best-in-class algorithms-on a broad range of analysis tasks including trace selection, classification, segmentation, idealization, and stepwise photobleaching analysis. Additionally, the model produces high-dimensional embedding vectors that encapsulate detailed information about each trace, which the web-based META-SiM Projector (https://www.simol-projector.org) casts into lower-dimensional space for efficient whole-dataset visualization, labeling, comparison, and sharing. Combining this Projector with the objective metric of Local Shannon Entropy enables rapid identification of condition-specific behaviors, even if rare or subtle. As a result, by applying META-SiM to an existing single-molecule Förster resonance energy transfer (smFRET) dataset6, we discover a previously unobserved intermediate state in pre-mRNA splicing. META-SiM thus removes bottlenecks, improves objectivity, and both systematizes and accelerates biological discovery in complex single-molecule data.
Collapse
Affiliation(s)
- Jieming Li
- Bristol Myers Squibb, New Brunswick, NJ, USA
| | | | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Steffen FD, Cunha RA, Sigel RKO, Börner R. FRET-guided modeling of nucleic acids. Nucleic Acids Res 2024; 52:e59. [PMID: 38869063 PMCID: PMC11260485 DOI: 10.1093/nar/gkae496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
The functional diversity of RNAs is encoded in their innate conformational heterogeneity. The combination of single-molecule spectroscopy and computational modeling offers new attractive opportunities to map structural transitions within nucleic acid ensembles. Here, we describe a framework to harmonize single-molecule Förster resonance energy transfer (FRET) measurements with molecular dynamics simulations and de novo structure prediction. Using either all-atom or implicit fluorophore modeling, we recreate FRET experiments in silico, visualize the underlying structural dynamics and quantify the reaction coordinates. Using multiple accessible-contact volumes as a post hoc scoring method for fragment assembly in Rosetta, we demonstrate that FRET can be used to filter a de novo RNA structure prediction ensemble by refuting models that are not compatible with in vitro FRET measurement. We benchmark our FRET-assisted modeling approach on double-labeled DNA strands and validate it against an intrinsically dynamic manganese(II)-binding riboswitch. We show that a FRET coordinate describing the assembly of a four-way junction allows our pipeline to recapitulate the global fold of the riboswitch displayed by the crystal structure. We conclude that computational fluorescence spectroscopy facilitates the interpretability of dynamic structural ensembles and improves the mechanistic understanding of nucleic acid interactions.
Collapse
Affiliation(s)
- Fabio D Steffen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Richard A Cunha
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Richard Börner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Chauvier A, Dandpat SS, Romero R, Walter NG. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. Nat Commun 2024; 15:3955. [PMID: 38729929 PMCID: PMC11087558 DOI: 10.1038/s41467-024-48409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Intel Corporation, Hillsboro, OR, USA
| | - Rosa Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Walter N, Chauvier A, Dandpat S, Romero R. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. RESEARCH SQUARE 2024:rs.3.rs-3849447. [PMID: 38352525 PMCID: PMC10862961 DOI: 10.21203/rs.3.rs-3849447/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single molecule and bulk approaches, we discovered how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the paradigmatic Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Collapse
|
9
|
Kumar S, Reddy G. Mechanism of Fluoride Ion Encapsulation by Magnesium Ions in a Bacterial Riboswitch. J Phys Chem B 2023; 127:9267-9281. [PMID: 37851949 DOI: 10.1021/acs.jpcb.3c03941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Riboswitches sense various ions in bacteria and activate gene expression to synthesize proteins that help maintain ion homeostasis. The crystal structure of the aptamer domain (AD) of the fluoride riboswitch shows that the F- ion is encapsulated by three Mg2+ ions bound to the ligand-binding domain (LBD) located at the core of the AD. The assembly mechanism of this intricate structure is unknown. To this end, we performed computer simulations using coarse-grained and all-atom RNA models to bridge multiple time scales involved in riboswitch folding and ion binding. We show that F- encapsulation by the Mg2+ ions bound to the riboswitch involves multiple sequential steps. Broadly, two Mg2+ ions initially interact with the phosphate groups of the LBD using water-mediated outer-shell coordination and transition to a direct inner-shell interaction through dehydration to strengthen their interaction with the LBD. We propose that the efficient binding mode of the third Mg2+ and F- is that they form a water-mediated ion pair and bind to the LBD simultaneously to minimize the electrostatic repulsion between three Mg2+ bound to the LBD. The tertiary stacking interactions among the LBD nucleobases alone are insufficient to stabilize the alignment of the phosphate groups to facilitate Mg2+ binding. We show that the stability of the whole assembly is an intricate balance of the interactions among the five phosphate groups, three Mg2+, and the encapsulated F- ion aided by the Mg2+ solvated water. These insights are helpful in the rational design of RNA-based ion sensors and fast-switching logic gates.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
10
|
Suddala KC, Yoo J, Fan L, Zuo X, Wang YX, Chung HS, Zhang J. Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble. Nat Commun 2023; 14:5438. [PMID: 37673863 PMCID: PMC10482949 DOI: 10.1038/s41467-023-41155-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
T-box riboswitches are multi-domain noncoding RNAs that surveil individual amino acid availabilities in most Gram-positive bacteria. T-boxes directly bind specific tRNAs, query their aminoacylation status to detect starvation, and feedback control the transcription or translation of downstream amino-acid metabolic genes. Most T-boxes rapidly recruit their cognate tRNA ligands through an intricate three-way stem I-stem II-tRNA interaction, whose establishment is not understood. Using single-molecule FRET, SAXS, and time-resolved fluorescence, we find that the free T-box RNA assumes a broad distribution of open, semi-open, and closed conformations that only slowly interconvert. tRNA directly binds all three conformers with distinct kinetics, triggers nearly instantaneous collapses of the open conformations, and returns the T-box RNA to their pre-binding conformations upon dissociation. This scissors-like dynamic behavior is enabled by a hinge-like pseudoknot domain which poises the T-box for rapid tRNA-induced domain closure. This study reveals tRNA-chaperoned folding of flexible, multi-domain mRNAs through a Venus flytrap-like mechanism.
Collapse
Affiliation(s)
- Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Janghyun Yoo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yun-Xing Wang
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
12
|
Abstract
Riboswitches are a class of RNA motifs in the untranslated regions of bacterial messenger RNAs (mRNAs) that can adopt different conformations to regulate gene expression. The binding of specific small molecule or ion ligands, or other RNAs, influences the conformation the riboswitch adopts. Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) offers an approach for probing this structural isomerization, or conformational switching, at the level of single mRNA molecules. SiM-KARTS utilizes fluorescently labeled, short, sequence-complementary DNA or RNA oligonucleotide probes that transiently access a specific RNA conformation over another. Binding and dissociation to a surface-immobilized target RNA of arbitrary length are monitored by Total Internal Reflection Fluorescence Microscopy (TIRFM) and quantitatively analyzed, via spike train and burst detection, to elucidate the rate constants of isomerization, revealing mechanistic insights into riboswitching.
Collapse
|
13
|
Sung HL, Nesbitt DJ. Ligand-Dependent Volumetric Characterization of Manganese Riboswitch Folding: A High-Pressure Single-Molecule Kinetic Study. J Phys Chem B 2022; 126:9781-9789. [PMID: 36399551 DOI: 10.1021/acs.jpcb.2c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanoscopic differences in free volume result in pressure-dependent changes in free energies which can therefore impact folding/unfolding stability of biomolecules. Although such effects are typically insignificant under ambient pressure conditions, they are crucially important for deep ocean marine life, where the hydraulic pressure can be on the kilobar scale. In this work, single molecule FRET spectroscopy is used to study the effects of pressure on both the kinetics and overall thermodynamics for folding/unfolding of the manganese riboswitch. Detailed pressure-dependent analysis of the conformational kinetics allows one to extract precision changes (σ ≲ 4-8 Å3) in free volumes not only between the fully folded/unfolded conformations but also with respect to the folding transition state of the manganese riboswitch. This permits first extraction of a novel "reversible work" free energy (PΔV) landscape, which reveals a monotonic increase in manganese riboswitch volume along the folding coordinate. Furthermore, such a tool permits exploration of pressure-dependent effects on both Mn2+ binding and riboswitch folding, which demonstrate that ligand attachment stabilizes the riboswitch under pressure by decreasing the volume increase upon folding (ΔΔV < 0). Such competition between ligand binding and pressure-induced denaturation dynamics could be of significant evolutionary advantage, compensating for a weakening in riboswitch tertiary structure with pressure-mediated ligand binding and promotion of folding response.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch. Commun Biol 2022; 5:1120. [PMID: 36273041 PMCID: PMC9588036 DOI: 10.1038/s42003-022-04096-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Riboswitches normally regulate gene expression through structural changes in response to the specific binding of cellular metabolites or metal ions. Taking add adenine riboswitch as an example, we explore the influences of metal ions (especially for K+ and Mg2+ ions) on the structure and dynamics of riboswitch aptamer (with and without ligand) by using molecular dynamic (MD) simulations. Our results show that a two-state transition marked by the structural deformation at the connection of J12 and P1 (CJ12-P1) is not only related to the binding of cognate ligands, but also strongly coupled with the change of metal ion environments. Moreover, the deformation of the structure at CJ12-P1 can be transmitted to P1 directly connected to the expression platform in multiple ways, which will affect the structure and stability of P1 to varying degrees, and finally change the regulation state of this riboswitch. Molecular dynamic simulations are employed to assess the influence of metal ions on riboswitch structure and dynamics, suggesting a conformational control of riboswitch aptamers by metal ions before ligand binding.
Collapse
|
15
|
Ray S, Dandpat SS, Chatterjee S, Walter NG. Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs. Nucleic Acids Res 2022; 50:8818-8833. [PMID: 35892287 PMCID: PMC9410914 DOI: 10.1093/nar/gkac635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Noncoding, structured 5′-untranslated regions (5′-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5′-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5′-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5′-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5′-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5′-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.
Collapse
Affiliation(s)
- Sujay Ray
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiba S Dandpat
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Surajit Chatterjee
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Iqbal M, Moin ST. Dynamics of metal binding and mutation in yybP-ykoY riboswitch of Lactococcus lactis. RSC Adv 2022; 12:17337-17349. [PMID: 35765457 PMCID: PMC9190785 DOI: 10.1039/d2ra02189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Riboswitch is a regulatory segment of messenger RNA (mRNA), which by binding to various cellular metabolites regulates the activity of mRNA via modulating transcription, translation, alternative splicing, and stability of the mRNA. yybP–ykoY riboswitch of Lactococcus lactis, which is present upstream of the yoaB gene, functions as a Mn2+-specific genetic ON-switch, and modulates expression of proteins which are significant for Mn2+ homeostasis. The P1.1 switch helix of the aptamer domain of the riboswitch contains an intrinsic transcription terminator structure, which gets stabilized with Mn2+ binding and causes disruption of terminator structure and allows the continuation of transcription. The current research work involved the evaluation of structural and dynamical properties of the yybP-ykoY riboswitch of L. lactis in its Mn2+-free, Mn2+-bound (wild-type), and Mn2+-bound mutant (A41U) states by applying molecular dynamics simulations. Based on the simulations, the effects of Mn2+ absence and A41U mutation were evaluated on the structure and dynamics of the riboswitches followed by the computation of the free energy of metal binding in the wild-type and the mutant riboswitches. The simulation results provided insights into the properties of the riboswitch with the focus on the dynamics of the P1.1 switch helix, and the manganese binding site designated as MB site, as well as the relative stability of the wild-type and the mutant riboswitches, which helped to understand the structural and dynamical role of the metal ion involved in the function of Mn2+-sensing riboswitch. The current research work involved the evaluation of structural and dynamical properties of yybP–ykoY riboswitch of L. lactis in Mn2+-free, Mn2+-bound (wild-type), and Mn2+-bound mutant (A41U) states by applying molecular dynamics simulations.![]()
Collapse
Affiliation(s)
- Mazhar Iqbal
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan +92-21-348-19018 +92-21-99261774
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan +92-21-348-19018 +92-21-99261774
| |
Collapse
|
17
|
He W, Naleem N, Kleiman D, Kirmizialtin S. Refining the RNA Force Field with Small-Angle X-ray Scattering of Helix-Junction-Helix RNA. J Phys Chem Lett 2022; 13:3400-3408. [PMID: 35404614 PMCID: PMC9036580 DOI: 10.1021/acs.jpclett.2c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The growing recognition of the functional and therapeutic roles played by RNA and the difficulties in gaining atomic-level insights by experiments are paving the way for all-atom simulations of RNA. One of the main impediments to the use of all-atom simulations is the imbalance between the energy terms of the RNA force fields. Through exhaustive sampling of an RNA helix-junction-helix (HJH) model using enhanced sampling, we critically assessed the select Amber force fields against small-angle X-ray scattering (SAXS) experiments. The tested AMBER99SB, DES-AMBER, and CUFIX force fields show deviations from measured profiles. First, we identified parameters leading to inconsistencies. Then, as a way to balance the forces governing RNA folding, we adopted strategies to refine hydrogen bonding, backbone, and base-stacking parameters. We validated the modified force field (HB-CUFIX) against SAXS data of the HJH model in different ionic strengths. Moreover, we tested a set of independent RNA systems to cross-validate the force field. Overall, HB-CUFIX demonstrates improved performance in studying thermodynamics and structural properties of realistic RNA motifs.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003United States
| | - Nawavi Naleem
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Diego Kleiman
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Yadav R, Widom JR, Chauvier A, Walter NG. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat Commun 2022; 13:207. [PMID: 35017489 PMCID: PMC8752731 DOI: 10.1038/s41467-021-27827-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
The archetypical transcriptional crcB fluoride riboswitch from Bacillus cereus is an intricately structured non-coding RNA element enhancing gene expression in response to toxic levels of fluoride. Here, we used single molecule FRET to uncover three dynamically interconverting conformations appearing along the transcription process: two distinct undocked states and one pseudoknotted docked state. We find that the fluoride anion specifically snap-locks the magnesium-induced, dynamically docked state. The long-range, nesting, single base pair A40-U48 acts as the main linchpin, rather than the multiple base pairs comprising the pseudoknot. We observe that the proximally paused RNA polymerase further fine-tunes the free energy to promote riboswitch docking. Finally, we show that fluoride binding at short transcript lengths is an early step toward partitioning folding into the docked conformation. These results reveal how the anionic fluoride ion cooperates with the magnesium-associated RNA to govern regulation of downstream genes needed for fluoride detoxification of the cell.
Collapse
Affiliation(s)
- Rajeev Yadav
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Abstract
Fast and efficient site-specific labeling of long RNAs is one of the main bottlenecks limiting distance measurements by means of Förster resonance energy transfer (FRET) or electron paramagnetic resonance (EPR) spectroscopy. Here, we present an optimized protocol for dual end-labeling with different fluorophores at the same time meeting the restrictions of highly labile and degradation-sensitive RNAs. We describe in detail the dual-labeling of a catalytically active wild-type group II intron as a typical representative of long functional RNAs. The modular procedure chemically activates the 5'-phosphate and the 3'-ribose for bioconjugation with a pair of fluorophores, as shown herein, or with spin labels. The mild reaction conditions preserve the structural and functional integrity of the biomacromolecule and results in covalent, dual-labeled RNA in its pre-catalytic state in yields suitable for both ensemble and single-molecule FRET experiments.
Collapse
Affiliation(s)
- Esra Ahunbay
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
21
|
Manigrasso J, Marcia M, De Vivo M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Jeng SCY, Trachman RJ, Weissenboeck F, Truong L, Link KA, Jepsen MDE, Knutson JR, Andersen ES, Ferré-D'Amaré AR, Unrau PJ. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET. RNA (NEW YORK, N.Y.) 2021; 27:433-444. [PMID: 33376189 PMCID: PMC7962493 DOI: 10.1261/rna.078220.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/20/2020] [Indexed: 05/26/2023]
Abstract
To further understand the transcriptome, new tools capable of measuring folding, interactions, and localization of RNA are needed. Although Förster resonance energy transfer (FRET) is an angle- and distance-dependent phenomenon, the majority of FRET measurements have been used to report distances, by assuming rotationally averaged donor-acceptor pairs. Angle-dependent FRET measurements have proven challenging for nucleic acids due to the difficulties in incorporating fluorophores rigidly into local substructures in a biocompatible manner. Fluorescence turn-on RNA aptamers are genetically encodable tags that appear to rigidly confine their cognate fluorophores, and thus have the potential to report angular-resolved FRET. Here, we use the fluorescent aptamers Broccoli and Mango-III as donor and acceptor, respectively, to measure the angular dependence of FRET. Joining the two fluorescent aptamers by a helix of variable length allowed systematic rotation of the acceptor fluorophore relative to the donor. FRET oscillated in a sinusoidal manner as a function of helix length, consistent with simulated data generated from models of oriented fluorophores separated by an inflexible helix. Analysis of the orientation dependence of FRET allowed us to demonstrate structural rigidification of the NiCo riboswitch upon transition metal-ion binding. This application of fluorescence turn-on aptamers opens the way to improved structural interpretation of ensemble and single-molecule FRET measurements of RNA.
Collapse
Affiliation(s)
- Sunny C Y Jeng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Florian Weissenboeck
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Lynda Truong
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Katie A Link
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Mette D E Jepsen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Jay R Knutson
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
23
|
Scull CE, Dandpat SS, Romero RA, Walter NG. Transcriptional Riboswitches Integrate Timescales for Bacterial Gene Expression Control. Front Mol Biosci 2021; 7:607158. [PMID: 33521053 PMCID: PMC7838592 DOI: 10.3389/fmolb.2020.607158] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Transcriptional riboswitches involve RNA aptamers that are typically found in the 5' untranslated regions (UTRs) of bacterial mRNAs and form alternative secondary structures upon binding to cognate ligands. Alteration of the riboswitch's secondary structure results in perturbations of an adjacent expression platform that controls transcription elongation and termination, thus turning downstream gene expression "on" or "off." Riboswitch ligands are typically small metabolites, divalent cations, anions, signaling molecules, or other RNAs, and can be part of larger signaling cascades. The interconnectedness of ligand binding, RNA folding, RNA transcription, and gene expression empowers riboswitches to integrate cellular processes and environmental conditions across multiple timescales. For a successful response to an environmental cue that may determine a bacterium's chance of survival, a coordinated coupling of timescales from microseconds to minutes must be achieved. This review focuses on recent advances in our understanding of how riboswitches affect such critical gene expression control across time.
Collapse
Affiliation(s)
| | | | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Li J, Zhang L, Johnson-Buck A, Walter NG. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nat Commun 2020; 11:5833. [PMID: 33203879 PMCID: PMC7673028 DOI: 10.1038/s41467-020-19673-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically necessitate human expert screening, which is time-consuming and introduces potential for user-dependent expectation bias. Here, we use deep learning to develop a rapid, automatic SMFM trace selector, termed AutoSiM, that improves the sensitivity and specificity of an assay for a DNA point mutation based on single-molecule recognition through equilibrium Poisson sampling (SiMREPS). The improved performance of AutoSiM is based on accepting both more true positives and fewer false positives than the conventional approach of hidden Markov modeling (HMM) followed by hard thresholding. As a second application, the selector is used for automated screening of single-molecule Förster resonance energy transfer (smFRET) data to identify high-quality traces for further analysis, and achieves ~90% concordance with manual selection while requiring less processing time. Finally, we show that AutoSiM can be adapted readily to novel datasets, requiring only modest Transfer Learning.
Collapse
Affiliation(s)
- Jieming Li
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA
- Bristol-Myers Squibb Company, New Brunswick, NJ, USA
| | - Leyou Zhang
- Department of Physics, The University of Michigan, Ann Arbor, MI, USA
- Google, Pittsburgh, PA, USA
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Salsbury AM, Lemkul JA. Recent developments in empirical atomistic force fields for nucleic acids and applications to studies of folding and dynamics. Curr Opin Struct Biol 2020; 67:9-17. [PMID: 32950937 DOI: 10.1016/j.sbi.2020.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/24/2023]
Abstract
Nucleic acids play critical roles in carrying genetic information, participating in catalysis, and preserving chromosomal structure. Despite over a century of study, efforts to understand the dynamics and structure-function relationships of DNA and RNA at the atomic level are still ongoing. Molecular dynamics (MD) simulations augment experiments by providing atomistic resolution and quantitative relationships between structure and conformational energy. Steady advancements in computer hardware, software, and atomistic force fields (FFs) over 40 years have facilitated new discoveries. Here, we review nucleic acid FF development with emphasis on recent refinements that have improved descriptions of important nucleic acid properties. We then discuss several key examples of successes and challenges in modeling nucleic acid structure and dynamics using the latest FFs.
Collapse
Affiliation(s)
- Alexa M Salsbury
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|