1
|
Segers M, Skoruppa E, Schiessel H, Carlon E. Statistical mechanics of multiplectoneme phases in DNA. Phys Rev E 2025; 111:044408. [PMID: 40411083 DOI: 10.1103/physreve.111.044408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/06/2025] [Indexed: 05/26/2025]
Abstract
A stretched DNA molecule that is also under- or overwound undergoes a buckling transition, forming intertwined looped domains called plectonemes. Here we develop a simple theory that extends the two-phase model of stretched supercoiled DNA, allowing for the coexistence of multiple plectonemic domains by including positional and length distribution entropies. Such a multiplectoneme phase is favored in long DNA molecules in which the gain of positional entropy compensates for the cost of nucleating a plectoneme along a stretched DNA segment. Despite its simplicity, the developed theory is shown to be in excellent agreement with Monte Carlo simulations of the twistable wormlike chain model. The theory predicts more plectonemes than experimentally observed, which we attribute to the limited resolution of experimental data. Since plectonemes are detected through fluorescence signals, those shorter than the observable threshold are likely missed.
Collapse
Affiliation(s)
- Midas Segers
- KU Leuven, Soft Matter and Biophysics, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Skoruppa
- TU Dresden, Cluster of Excellence Physics of Life, 01062 Dresden, Germany
| | - Helmut Schiessel
- TU Dresden, Cluster of Excellence Physics of Life, 01062 Dresden, Germany
- TU Dresden, Institut für Theoretische Physik, 01062 Dresden, Germany
| | - Enrico Carlon
- KU Leuven, Soft Matter and Biophysics, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Battaglia C, Michieletto D. Loops are geometric catalysts for DNA integration. Nucleic Acids Res 2024; 52:8184-8192. [PMID: 38864388 DOI: 10.1093/nar/gkae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
The insertion of DNA elements within genomes underpins both genetic diversity and disease when unregulated. Most of DNA insertions are not random and the physical mechanisms underlying the integration site selection are poorly understood. Here, we perform Molecular Dynamics simulations to study the insertion of DNA elements, such as viral DNA or transposons, into naked DNA or chromatin substrates. More specifically, we explore the role of loops within the polymeric substrate and discover that they act as 'geometric catalysts' for DNA integration by reducing the energy barrier for substrate deformation. Additionally, we discover that the 1D pattern and 3D conformation of loops have a marked effect on the distribution of integration sites. Finally, we show that loops may compete with nucleosomes to attract DNA integrations. These results may be tested in vitro and they may help to understand patterns of DNA insertions with implications in genome evolution and engineering.
Collapse
Affiliation(s)
- Cleis Battaglia
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
3
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
4
|
Senavirathne G, London J, Gardner A, Fishel R, Yoder KE. DNA strand breaks and gaps target retroviral intasome binding and integration. Nat Commun 2023; 14:7072. [PMID: 37923737 PMCID: PMC10624929 DOI: 10.1038/s41467-023-42641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - James London
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Anne Gardner
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
| | - Kristine E Yoder
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Kolbeck P, Dass M, Martynenko IV, van Dijk-Moes RJA, Brouwer KJH, van Blaaderen A, Vanderlinden W, Liedl T, Lipfert J. DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging. NANO LETTERS 2023; 23:1236-1243. [PMID: 36745573 PMCID: PMC9951250 DOI: 10.1021/acs.nanolett.2c04299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.
Collapse
Affiliation(s)
- Pauline
J. Kolbeck
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Mihir Dass
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Irina V. Martynenko
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Relinde J. A. van Dijk-Moes
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Kelly J. H. Brouwer
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Alfons van Blaaderen
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Willem Vanderlinden
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Tim Liedl
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Jan Lipfert
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| |
Collapse
|
6
|
Vanderlinden W, Skoruppa E, Kolbeck PJ, Carlon E, Lipfert J. DNA fluctuations reveal the size and dynamics of topological domains. PNAS NEXUS 2022; 1:pgac268. [PMID: 36712371 PMCID: PMC9802373 DOI: 10.1093/pnasnexus/pgac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
DNA supercoiling is a key regulatory mechanism that orchestrates DNA readout, recombination, and genome maintenance. DNA-binding proteins often mediate these processes by bringing two distant DNA sites together, thereby inducing (transient) topological domains. In order to understand the dynamics and molecular architecture of protein-induced topological domains in DNA, quantitative and time-resolved approaches are required. Here, we present a methodology to determine the size and dynamics of topological domains in supercoiled DNA in real time and at the single-molecule level. Our approach is based on quantifying the extension fluctuations-in addition to the mean extension-of supercoiled DNA in magnetic tweezers (MT). Using a combination of high-speed MT experiments, Monte Carlo simulations, and analytical theory, we map out the dependence of DNA extension fluctuations as a function of supercoiling density and external force. We find that in the plectonemic regime, the extension variance increases linearly with increasing supercoiling density and show how this enables us to determine the formation and size of topological domains. In addition, we demonstrate how the transient (partial) dissociation of DNA-bridging proteins results in the dynamic sampling of different topological states, which allows us to deduce the torsional stiffness of the plectonemic state and the kinetics of protein-plectoneme interactions. We expect our results to further the understanding and optimization of magnetic tweezer measurements and to enable quantification of the dynamics and reaction pathways of DNA processing enzymes in the context of physiologically relevant forces and supercoiling densities.
Collapse
Affiliation(s)
| | | | - Pauline J Kolbeck
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amalienstrasse 54, 80799 Munich, Germany,Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Enrico Carlon
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | | |
Collapse
|
7
|
Jóźwik IK, Li W, Zhang DW, Wong D, Grawenhoff J, Ballandras-Colas A, Aiyer S, Cherepanov P, Engelman A, Lyumkis D. B-to-A transition in target DNA during retroviral integration. Nucleic Acids Res 2022; 50:8898-8918. [PMID: 35947647 PMCID: PMC9410886 DOI: 10.1093/nar/gkac644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
Integration into host target DNA (tDNA), a hallmark of retroviral replication, is mediated by the intasome, a multimer of integrase (IN) assembled on viral DNA (vDNA) ends. To ascertain aspects of tDNA recognition during integration, we have solved the 3.5 Å resolution cryo-EM structure of the mouse mammary tumor virus (MMTV) strand transfer complex (STC) intasome. The tDNA adopts an A-like conformation in the region encompassing the sites of vDNA joining, which exposes the sugar-phosphate backbone for IN-mediated strand transfer. Examination of existing retroviral STC structures revealed conservation of A-form tDNA in the analogous regions of these complexes. Furthermore, analyses of sequence preferences in genomic integration sites selectively targeted by six different retroviruses highlighted consistent propensity for A-philic sequences at the sites of vDNA joining. Our structure additionally revealed several novel MMTV IN-DNA interactions, as well as contacts seen in prior STC structures, including conserved Pro125 and Tyr149 residues interacting with tDNA. In infected cells, Pro125 substitutions impacted the global pattern of MMTV integration without significantly altering local base sequence preferences at vDNA insertion sites. Collectively, these data advance our understanding of retroviral intasome structure and function, as well as factors that influence patterns of vDNA integration in genomic DNA.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Da-Wei Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Doris Wong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA
| | - Julia Grawenhoff
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA
| | | | - Sriram Aiyer
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK,Department of Infectious Disease, St-Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Alan N Engelman
- Correspondence may also be addressed to Alan N. Engelman. Tel: +1 617 632 4361; Fax: +1 617 632 4338;
| | - Dmitry Lyumkis
- To whom correspondence should be addressed. Tel: +1 858 453 4100 (Ext 1155);
| |
Collapse
|
8
|
Skoruppa E, Carlon E. Equilibrium fluctuations of DNA plectonemes. Phys Rev E 2022; 106:024412. [PMID: 36109921 DOI: 10.1103/physreve.106.024412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Plectonemes are intertwined helically looped domains which form when a DNA molecule is supercoiled, i.e., over- or underwound. They are ubiquitous in cellular DNA, and their physical properties have attracted significant interest both from the experimental side and from the modeling side. In this paper, we investigate fluctuations of the end-point distance z of supercoiled linear DNA molecules subject to external stretching forces. Our analysis is based on a two-phase model, which describes the supercoiled DNA as composed of a stretched phase and a plectonemic phase. A variety of mechanisms are found to contribute to extension fluctuations, characterized by the variance 〈Δz^{2}〉. We find the dominant contribution to 〈Δz^{2}〉 to originate from phase-exchange fluctuations, the transient shrinking and expansion of plectonemes, which is accompanied by an exchange of molecular length between the two phases. We perform Monte Carlo simulations of the twistable wormlike chain and analyze the fluctuation of various quantities, the results of which are found to agree with the two-phase model predictions. Furthermore, we show that the extension and its variance at high forces are very well captured by the two-phase model, provided that one goes beyond quadratic approximations.
Collapse
Affiliation(s)
- Enrico Skoruppa
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Enrico Carlon
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
10
|
Li M, Liu M, Sha Y. Induced and Inversed Circularly Polarized Luminescence of Achiral Thioflavin T Assembled on Peptide Fibril. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106130. [PMID: 34881501 DOI: 10.1002/smll.202106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Chiroptical inversion of amyloid fibrils is a novel phenomenon and is of fundamental importance; however, the underlying structural basis remains poorly understood. Here, the co-assembly of Thioflavin T (ThT) with T1 amyloid fibril and the induced supramolecular chirality is investigated by induced circular dichroism (ICD) and circularly polarized luminescence (CPL), followed by direct morphological helicity observation of the fibril by an atomic force microscope (AFM). ThT exhibits negative ICD and CPL when assembled on the left-handed T1 fibril. Interestingly, when ThT dynamically interacts with the T1 fibril, the left-handed fibril partially converts into right-handed, accompanied with the inversion of CD and CPL signals. These results indicate that the morphological helicity of template fibril cannot be arbitrarily distinguished by the sign of chiroptical spectra of the dye/peptide assemblies.
Collapse
Affiliation(s)
- Meijun Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Minghua Liu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlin Sha
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
11
|
Prototype Foamy Virus Integrase Displays Unique Biochemical Activities among Retroviral Integrases. Biomolecules 2021; 11:biom11121910. [PMID: 34944553 PMCID: PMC8699820 DOI: 10.3390/biom11121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022] Open
Abstract
Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.
Collapse
|
12
|
Forte G, Michieletto D, Marenduzzo D, Orlandini E. Investigating site-selection mechanisms of retroviral integration in supercoiled DNA braids. J R Soc Interface 2021; 18:20210229. [PMID: 34428944 PMCID: PMC8385341 DOI: 10.1098/rsif.2021.0229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We theoretically study the integration of short viral DNA in a DNA braid made up by two entwined double-stranded DNA molecules. We show that the statistics of single integration events substantially differ in the straight and buckled, or plectonemic, phase of the braid and are more likely in the latter. We further discover that integration is most likely close to plectoneme tips, where the larger bending energy helps overcome the associated energy barrier and that successive integration events are spatio-temporally correlated, suggesting a potential mechanistic explanation of clustered integration sites in host genomes. The braid geometry we consider provides a novel experimental set-up to quantify integration in a supercoiled substrate in vitro, and to better understand the role of double-stranded DNA topology during this process.
Collapse
Affiliation(s)
- G Forte
- SUPA, School of Physics and Astronomy, Peter Guthrie Tait Road, University of Edinburgh, Edinburgh EH9 3FD, UK.,MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - D Michieletto
- SUPA, School of Physics and Astronomy, Peter Guthrie Tait Road, University of Edinburgh, Edinburgh EH9 3FD, UK.,MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, Peter Guthrie Tait Road, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - E Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Universitá degli Studi di Padova, 35131 Padova, Italy
| |
Collapse
|
13
|
Nanopores: a versatile tool to study protein dynamics. Essays Biochem 2021; 65:93-107. [PMID: 33296461 DOI: 10.1042/ebc20200020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
Collapse
|
14
|
Winans S, Goff SP. Mutations altering acetylated residues in the CTD of HIV-1 integrase cause defects in proviral transcription at early times after integration of viral DNA. PLoS Pathog 2020; 16:e1009147. [PMID: 33351861 PMCID: PMC7787678 DOI: 10.1371/journal.ppat.1009147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/06/2021] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
The central function of the retroviral integrase protein (IN) is to catalyze the integration of viral DNA into the host genome to form the provirus. The IN protein has also been reported to play a role in a number of other processes throughout the retroviral life cycle such as reverse transcription, nuclear import and particle morphogenesis. Studies have shown that HIV-1 IN is subject to multiple post-translational modifications (PTMs) including acetylation, phosphorylation and SUMOylation. However, the importance of these modifications during infection has been contentious. In this study we attempt to clarify the role of acetylation of HIV-1 IN during the retroviral life cycle. We show that conservative mutation of the known acetylated lysine residues has only a modest effect on reverse transcription and proviral integration efficiency in vivo. However, we observe a large defect in successful expression of proviral genes at early times after infection by an acetylation-deficient IN mutant that cannot be explained by delayed integration dynamics. We demonstrate that the difference between the expression of proviruses integrated by an acetylation mutant and WT IN is likely not due to altered integration site distribution but rather directly due to a lower rate of transcription. Further, the effect of the IN mutation on proviral gene expression is independent of the Tat protein or the LTR promoter. At early times after integration when the transcription defect is observed, the LTRs of proviruses integrated by the mutant IN have altered histone modifications as well as reduced IN protein occupancy. Over time as the transcription defect in the mutant virus diminishes, histone modifications on the WT and mutant proviral LTRs reach comparable levels. These results highlight an unexpected role for the IN protein in regulating proviral transcription at early times post-integration. A key step of the retrovirus life cycle is the insertion of the viral DNA genome into the host cell genome, a process called integration. The process of integration is solely catalyzed by the virally encoded integrase (IN) protein. IN has been reported to influence a number of other viral processes such as reverse transcription, nuclear import and particle morphogenesis. The HIV-1 IN protein is known to be heavily post-translationally modified. In light of the known effect of post-translational modifications on the function of the orthologous proteins of certain retrotransposons, we were motivated to ask how post-translational modifications of HIV-1 IN may regulate its various functions. In this study, we examined the consequences of mutations preventing the acetylation of the IN protein on the retroviral life cycle. Surprisingly, we saw that mutations blocking IN acetylation had only modest effects on viral DNA integration. Instead, we uncovered a novel function for HIV-1 IN in regulating proviral transcription at early times after infection. Our data suggests that IN may be retained on proviral DNA at early times after integration and promote proviral gene expression by altering chromatin modifications at the viral transcriptional promoter.
Collapse
Affiliation(s)
- Shelby Winans
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, New York, United States of America
- Columbia University, Department of Microbiology and Immunology, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York United States of America
| | - Stephen P. Goff
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, New York, United States of America
- Columbia University, Department of Microbiology and Immunology, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York United States of America
- * E-mail:
| |
Collapse
|