1
|
Xi O, Zhang S, Li J, Hu H, Bai M. Geometric Morphometrics and Genetic Diversity Analysis of Chalcidoidea ( Diglyphus and Pachyneuron) at Various Elevations. INSECTS 2024; 15:497. [PMID: 39057230 PMCID: PMC11277471 DOI: 10.3390/insects15070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Eulophidae and Pteromalidae are parasitic wasps with a global distribution and import for the biological control of pests. They can be distributed in different altitude regions, but their morphological and genetic adaptations to different altitudes are unclear. Here, we collected specimens that belong to Eulophidae and Pteromalidae from various altitudinal gradients, based on integrated taxonomic approaches to determine the species composition, and we analyzed their body shape and size from different altitudes using geometric morphometrics. Then, we performed an analysis of the D. isaea population's haplotype genes to illustrate their genetic diversity. As a result, eight species that belong to two genera, Diglyphus Walker (Eulophidae) and Pachyneuron Walker (Pteromalidae), were identified, including two newly recorded species from China (D. chabrias and D. sabulosus). Through a geometric morphometrics analysis of body shape, we found that a narrow forewing shape and a widened thorax are the significant characteristics of adaptation to high-altitude environments in D. isaea and P. aphidis. Additionally, the body size studies showed a principal relationship between centroid size and altitude; the size of the forewings and thorax increases at higher altitudes. Next, using haplotype analysis, 32 haplotypes were found in seven geographic populations with high genetic diversity of this species. Our research provides preliminary evidence for the morphological and genetic diversity adaptation of parasitic wasps to extreme environments, and these data can provide important references for investigations on the ecological adaptability of parasitic wasps.
Collapse
Affiliation(s)
- Ouyan Xi
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Shuli Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Jinzhe Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Hongying Hu
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Ming Bai
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100864, China;
| |
Collapse
|
2
|
Ramos Aguila LC, Li X, Akutse KS, Bamisile BS, Sánchez Moreano JP, Lie Z, Liu J. Host-Parasitoid Phenology, Distribution, and Biological Control under Climate Change. Life (Basel) 2023; 13:2290. [PMID: 38137891 PMCID: PMC10744521 DOI: 10.3390/life13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | - Jessica Paola Sánchez Moreano
- Grupo Traslacional en Plantas, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador;
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| |
Collapse
|
3
|
Girish KS, Srinivasan U. Community science data provide evidence for upward elevational range shifts by Eastern Himalayan birds. Biotropica 2022. [DOI: 10.1111/btp.13133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Umesh Srinivasan
- Centre for Ecological Sciences Indian Institute of Science Bangalore India
| |
Collapse
|
4
|
Not Too Warm, Not Too Cold: Thermal Treatments to Slightly Warmer or Colder Conditions from Mother’s Origin Can Enhance Performance of Montane Butterfly Larvae. BIOLOGY 2022; 11:biology11060915. [PMID: 35741436 PMCID: PMC9219776 DOI: 10.3390/biology11060915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Extreme weather events and climate change can alter organismal development and, in turn, affect species survival, community composition, and ecosystem processes and services. We examined the performance of butterfly larvae of five montane Erebia species from the Swiss Alps under three thermal scenarios: at, above, or below those at the elevation where their mother originated. We found evidence of better larval performance in temperature treatments associated with low and middle elevations and a decreased performance at temperature treatments associated with higher elevations. In contrast, larvae performed poorly in thermal treatments that differed strongly from maternal conditions. The inclusion of additional life history stages in future studies could further advance the understanding of factors affecting thermal tolerance in cold-adapted Erebia butterflies. Abstract Climate change alters organismal performance via shifts in temperature. However, we know little about the relative fitness impacts of climate variability and how cold-adapted ectotherms mediate these effects. Here, we advance the field of climate change biology by directly testing for species performance, considering the effects of different thermal environments at the first developmental stage of larvae. We conducted our experiments in climatic chambers (2019–2020) using five cold-adapted butterflies of the genus Erebia (Erebia aethiops, Erebia cassioides, Erebia manto, Erebia tyndarus, Erebia nivalis). Larvae were reared indoors and were treated with higher and lower temperatures than those of their mothers’ origins. Overall, we found evidence of better performance at warmer temperatures and a decreased performance at lower temperatures, and larvae were able to tolerate small temperature changes from mother’s origin. Warmer conditions, however, were unfavorable for E. nivalis, indicative of its limited elevational range and its poor ability to mediate a variety of thermal conditions. Further, larvae generally performed poorly where there was a large difference in thermal regimen from that of their maternal origin. Future efforts should include additional life history stages and focus on a more mechanistic understanding of species thermal tolerance. Such studies could increase the realism of predicted responses to climate change and could account for asynchronous changes in species development, which will alter community composition and ecosystem functioning.
Collapse
|
5
|
McCain CM, Garfinkel CF. Climate change and elevational range shifts in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:111-118. [PMID: 34175465 DOI: 10.1016/j.cois.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
On mountains, unique in their steep and rapid climatic gradients, many insects are shifting their elevational range limits to track recent temperature change. In a review of the range shift literature to date, most of the 1478 montane insect populations tested so far are shifting to higher elevations, but there is conspicuous variation in the responses. We discuss the impact of study methodology as well as potential abiotic and biotic factors that may underlie this variation in climate change response. We encourage more empirical studies spanning greater insect biodiversity and directly testing how variation in species' traits, biogeography, and abiotic-biotic context shapes variation in range shift responses.
Collapse
Affiliation(s)
- Christy M McCain
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA; CU Museum of Natural History, University of Colorado, Boulder, CO 80309 USA.
| | - Chloe F Garfinkel
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
6
|
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev Camb Philos Soc 2021; 96:2113-2126. [PMID: 34056827 PMCID: PMC8518917 DOI: 10.1111/brv.12746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most studied, diverse, and widespread animal groups, making them an ideal model for climate change research. They are a particularly informative model for studying the effects of climate change on species ecology because they are ectotherms that thermoregulate with a suite of physiological, behavioural, and phenotypic traits. While some species have been negatively impacted by climatic disturbances, others have prospered, largely in accordance with their diversity in life-history traits. Here we take advantage of a large repertoire of studies on butterflies and moths to provide a review of the many ways in which climate change is impacting insects, animals, and ecosystems. By studying these climate-based impacts on ecological processes of Lepidoptera, we propose appropriate strategies for species conservation and habitat management broadly across animals.
Collapse
Affiliation(s)
- Geena M. Hill
- Florida Natural Areas InventoryFlorida State University1018 Thomasville Rd., #200‐CTallahasseeFL323303U.S.A.
| | - Akito Y. Kawahara
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of BiologyUniversity of Florida876 Newell Dr.GainesvilleFL32611U.S.A.
| | - Jaret C. Daniels
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area Dr.GainesvilleFL32608U.S.A.
| | - Craig C. Bateman
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32611U.S.A.
| |
Collapse
|
7
|
Shah AA, Dillon ME, Hotaling S, Woods HA. High elevation insect communities face shifting ecological and evolutionary landscapes. CURRENT OPINION IN INSECT SCIENCE 2020; 41:1-6. [PMID: 32553896 DOI: 10.1016/j.cois.2020.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Climate change is proceeding rapidly in high mountain regions worldwide. Rising temperatures will impact insect physiology and associated fitness and will shift populations in space and time, thereby altering community interactions and composition. Shifts in space are expected as insects move upslope to escape warming temperatures and shifts in time will occur with changes in phenology of resident high-elevation insects. Clearly, spatiotemporal shifts will not affect all species equally. Terrestrial insects may have more opportunities than aquatic insects to exploit microhabitats, potentially buffering them from warming. Such responses of insects to warming may also fuel evolutionary change, including hitchhiking of maladaptive alleles and genetic rescue. Together, these considerations suggest a striking restructuring of high-elevation insect communities that remains largely unstudied.
Collapse
Affiliation(s)
- Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
8
|
Kinsella RS, Thomas CD, Crawford TJ, Hill JK, Mayhew PJ, Macgregor CJ. Unlocking the potential of historical abundance datasets to study biomass change in flying insects. Ecol Evol 2020; 10:8394-8404. [PMID: 32788988 PMCID: PMC7417223 DOI: 10.1002/ece3.6546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/08/2022] Open
Abstract
Trends in insect abundance are well established in some datasets, but far less is known about how abundance measures translate into biomass trends. Moths (Lepidoptera) provide particularly good opportunities to study trends and drivers of biomass change at large spatial and temporal scales, given the existence of long-term abundance datasets. However, data on the body masses of moths are required for these analyses, but such data do not currently exist.To address this data gap, we collected empirical data in 2018 on the forewing length and dry mass of field-sampled moths, and used these to train and test a statistical model that predicts the body mass of moth species from their forewing lengths (with refined parameters for Crambidae, Erebidae, Geometridae and Noctuidae).Modeled biomass was positively correlated, with high explanatory power, with measured biomass of moth species (R 2 = 0.886 ± 0.0006, across 10,000 bootstrapped replicates) and of mixed-species samples of moths (R 2 = 0.873 ± 0.0003), showing that it is possible to predict biomass to an informative level of accuracy, and prediction error was smaller with larger sample sizes.Our model allows biomass to be estimated for historical moth abundance datasets, and so our approach will create opportunities to investigate trends and drivers of insect biomass change over long timescales and broad geographic regions.
Collapse
Affiliation(s)
| | - Chris D. Thomas
- Department of BiologyUniversity of YorkYorkUK
- Leverhulme Centre for Anthropocene BiodiversityUniversity of YorkYorkUK
| | | | - Jane K. Hill
- Department of BiologyUniversity of YorkYorkUK
- Leverhulme Centre for Anthropocene BiodiversityUniversity of YorkYorkUK
| | | | - Callum J. Macgregor
- Department of BiologyUniversity of YorkYorkUK
- Leverhulme Centre for Anthropocene BiodiversityUniversity of YorkYorkUK
- Energy and Environment InstituteUniversity of HullHullUK
| |
Collapse
|