1
|
Wang Z, Xu P, Guo SM, Daniliuc CG, Studer A. C-to-N atom swapping and skeletal editing in indoles and benzofurans. Nature 2025:10.1038/s41586-025-09019-6. [PMID: 40399673 DOI: 10.1038/s41586-025-09019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/14/2025] [Indexed: 05/23/2025]
Abstract
Skeletal editing comprises the structural reorganization of compounds. Such editing can be achieved through atom swapping, atom insertion, atom deletion or reorganization of the compound's backbone structure1,2. Conducted at a late stage in drug development campaigns, skeletal editing enables diversification of an existing pharmacophore, enhancing the efficiency of drug development. Instead of constructing a heteroarene classically from basic building blocks, structural variants are readily accessible directly starting from a lead compound or approved pharmacophore. Here we present C to N atom swapping in indoles at the C2 position to give indazoles through oxidative cleavage of the indole heteroarene core and subsequent ring closure. Reactions proceed through ring-opened oximes as intermediates. These ring deconstructed intermediates can also be diverted into benzimidazoles resulting in an overall C to N atom swapping with concomitant skeletal reorganization. The same structural diverting strategies are equally well applicable to benzofurans leading to either benzisoxazoles or benzoxazoles. The compound classes obtained through these methods-indazoles3,4, benzisoxazoles5, benzimidazoles6,7 and benzoxazoles8-are biologically relevant moieties found as substructures in natural products and pharmaceuticals. The procedures introduced substantially enlarge the methods portfolio in the emerging field of skeletal editing.
Collapse
Affiliation(s)
- Zhe Wang
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Pengwei Xu
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Shu-Min Guo
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
2
|
Sharma M, Pascoe CA, Jones SK, Barthel SG, Davis KM, Biegasiewicz KF. Intermolecular 1,2,4-Thiadiazole Synthesis Enabled by Enzymatic Halide Recycling with Vanadium-Dependent Haloperoxidases. J Am Chem Soc 2025; 147:10698-10705. [PMID: 40071831 PMCID: PMC11951160 DOI: 10.1021/jacs.5c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
The enzymatic synthesis of heterocycles is an emerging biotechnology for the sustainable construction of societally important molecules. Herein, we describe an enzyme-mediated strategy for the oxidative dimerization of thioamides enabled by enzymatic halide recycling by vanadium-dependent haloperoxidase enzymes. This approach allows for intermolecular biocatalytic bond formation using a catalytic quantity of halide salt and hydrogen peroxide as the terminal oxidant. The established method is applied to a diverse range of thioamides to generate the corresponding 1,2,4-thiadiazoles in moderate to high yields with excellent chemoselectivity. Mechanistic experiments suggest that the reaction proceeds through two distinct enzyme-mediated sulfur halogenation events that are critical for heterocycle formation. Molecular docking experiments provide insight into reactivity differences between biocatalysts used in this study. Finally, the developed biocatalytic oxidative dimerization is applied to a preparative scale chemoenzymatic synthesis of the anticancer agent penicilliumthiamine B. These studies demonstrate that enzymatic halide recycling is a promising platform for intermolecular bond formation.
Collapse
Affiliation(s)
- Manik Sharma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Cameron A. Pascoe
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Stacey K. Jones
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sophia G. Barthel
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Katherine M. Davis
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kyle F. Biegasiewicz
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Fang YJ, Wu XB, Wang QM, Xie ZK, Yao CZ, Jiang HJ, Yu J. High-performance anionic stereogenic-at-cobalt(III) complex/halide salts/oxone catalytic system for enantioselective halocyclization of olefins. Chem Commun (Camb) 2025; 61:2814-2817. [PMID: 39838888 DOI: 10.1039/d4cc06610c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A high-performance anionic stereogenic-at-cobalt(III) complex/oxone catalytic system was developed for various enantioselective intramolecular halocyclizations of olefins using halide salts as halogen sources, delivering structurally diverse halogenated heterocyclic compounds with outstanding stereoselectivity (up to 97 : 3 e.r.). In this protocol, ultra-low catalyst loadings can be routinely used, since the stereogenic-at-cobalt(III) complexes were the sole counteranions of cationic halonium intermediates, minimizing background reactions to the greatest extent possible.
Collapse
Affiliation(s)
- Yi-Jun Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Xiao-Bao Wu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Qi-Ming Wang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Zu-Kui Xie
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Matsui K, Uyanik M, Ishihara K. Electrochemical oxidative dearomatization of electron-deficient phenols using Br +/Br - catalysis. Chem Commun (Camb) 2025; 61:2075-2078. [PMID: 39790034 DOI: 10.1039/d4cc06472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An electrochemical method for the oxidative dearomatization of electron-deficient phenols by employing tetrabutylammonium bromide as a mediator under aqueous biphasic conditions is reported. This approach represents a safer alternative to the use of stoichiometric chemical oxidants and enables oxidative dearomative spirolactonization and spiroetherification reactions. Compared to previous approaches based on direct electrolysis, this strategy expands the substrate scope to electron-deficient phenols. Cyclic-voltammetry analysis suggests that the bromide ions might be oxidized to Br2 or Br3- ions that are in equilibrium with the catalytically active hypobromite under aqueous conditions.
Collapse
Affiliation(s)
- Kai Matsui
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| |
Collapse
|
5
|
Wang J, Ji N, Gao Z, Tang XY, Wang L. Synthesis of 2-Sulfonyl Carbazoles via Oxidative C-H Functionalization of Tetrahydrocarbazoles with Sulfonyl Hydrazides. Org Lett 2025; 27:821-826. [PMID: 39797814 DOI: 10.1021/acs.orglett.4c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Herein, we report an approach for the synthesis of 2-sulfonyl carbazoles from the oxidative C-H sulfonylation of tetrahydrocarbazoles. The mechanistic study reveals that this special selectivity is realized by the addition of a sulfonyl radical to the 3,4-dihydrocabazole intermediate via dehydrogenative desaturation of tetrahydrocarbazoles. This approach features readily available starting materials, high regioselectivity, broad substrate scope, and attractive synthetic utility.
Collapse
Affiliation(s)
- Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Na Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zifeng Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
6
|
Bro F, Depta L, Dekker NJ, Bryce-Rogers HP, Madsen ML, Præstegaard KF, Petersson T, Whitmarsh-Everiss T, Kubus M, Laraia L. Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products. ACS CENTRAL SCIENCE 2025; 11:136-146. [PMID: 39866705 PMCID: PMC11758220 DOI: 10.1021/acscentsci.4c01657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.
Collapse
Affiliation(s)
- Frederik
Simonsen Bro
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nienke J. Dekker
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hogan P. Bryce-Rogers
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Kaia Fiil Præstegaard
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tino Petersson
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Mariusz Kubus
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Yu L, Cai R, Lv L, Dong H, Xu Y, Zhang Q, Shen R. Recent advances in the oxidative activation of the C2-C3 π bond of indoles and its applications. Org Biomol Chem 2025; 23:774-792. [PMID: 39660389 DOI: 10.1039/d4ob01692k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The oxidative C2-C3 π bond activation strategy is the most efficient tool to synthesize oxygen-containing indoline, which frequently appears in natural products with various biological activities as structural units. Recently, the oxidation-induced cascade strategy through oxygenation activation of the indolic C2-C3 π bond of indoles has received much attention for its use in efficiently establishing complex indoline with oxygen-containing molecular architectures, and holds tremendous potential in the total synthesis of indole alkaloids. It can be carried out using potential activated indole radical cations or imine cation intermediates produced via oxidative C2-C3 π bond activation of indole with various nucleophiles or ring-forming reagents by employing simple and non-decorated indoles as starting substrates. Herein, we have reviewed recent advances in the oxidation-induced cascade strategies connecting intra-cyclization or inter-annulation reactions, nucleophilic or radical additions and rearrangement via the oxidative C2-C3 π bond activation of indoles over the past two decades, providing diverse oxygen-containing indolines such as indoxyls, indoline oxygen-heterocycles and indolones. The features and mechanisms of different types of oxidation-induced cascade reactions have been summarized and represented, and examples have been given of their asymmetric reactions and applications in the total synthesis of indole alkaloids.
Collapse
Affiliation(s)
- Lemao Yu
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310018, China.
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing 312000, China
| | - Ruonan Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing 312000, China
| | - Lujing Lv
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing 312000, China
| | - Huaping Dong
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Yingjie Xu
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Qiang Zhang
- Zhejiang Novo Biotech Co., Ltd, Shaoxing 312366, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing 312000, China
| |
Collapse
|
8
|
Mhaske K, Gangai S, Taneja N, Narayan R. Two-Fold Oxidative Coupling of Furan with Indole Provides Modular Access to a New Class of Tetra-(Hetero)Arylated Furans with Up to Four Different Substituents. Chemistry 2024; 30:e202402929. [PMID: 39268636 DOI: 10.1002/chem.202402929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Highly arylated propeller-shaped heteroarenes constitute an intriguing class of molecular scaffolds for material science applications. Among these, tetraarylated furans demonstrate differentiated properties as compared to other similar heterocyclic cores. The synthetic complexity to access tetraarylated furans increases significantly with increasing number of different peripheral aryl groups. There are only a very limited number of methodologies available to access furans with four different (hetero)aryl substituents. Notably, none of these involve direct oxidative coupling on the furan core as the method of choice. Herein, we report the first methodology based on a sequential two-fold oxidative C-C coupling of furans with indoles to access bis(indolyl)furans (BIFs) - a new class of 'extremely congested' tetra-(hetero)arylated furans with up to four different substituents. The reaction is mediated by inexpensive, earth-abundant FeCl3⋅6H2O and displays high efficiency, wide substrate scope, modularity and aqueous compatibility. Moreover, we also present the first validation of the distinct aggregation-caused quenching (ACQ) property of the tetraarylated furans beyond only phenyls as peripheral groups and disclose new mechanistic underpinnings for the same.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Neha Taneja
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishikesh Narayan
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
9
|
Shaheeda S, Sharma S, Mandal N, Shyamal P, Datta A, Paul A, Bisai A. Regioselective Electrochemical Construction of C sp2-C sp2 Linkage at C5-C5' Position of 2-Oxindoles via an Intermolecular Anodic Dehydrogenative Coupling. Chemistry 2024; 30:e202403420. [PMID: 39308393 DOI: 10.1002/chem.202403420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024]
Abstract
Applying electricity as a reagent in synthetic organic chemistry has attracted particular attention from synthetic chemists worldwide as an environmentally benign and cost-effective technique. Herein, we report the construction of the Csp2-Csp2 linkage at the C5-C5' position of 2-oxindole utilizing electricity as the traceless oxidant in an anodic dehydrogenative homo-coupling process. A variety of 3,3-disubstituted-2-oxindoles were subjected to dimerization, achieving yields of up to 70 % through controlled potential electrolysis at an applied potential of 1.5 V versus Ag/Ag+ nonaqueous reference electrode. This electro-synthetic approach facilitates the specific assembly of C5-C5' (para-para coupled) dimer of 3,3-disubstituted-2-oxindole without the necessity of any external oxidants or additives and DFT (Density Functional Theory) calculations provided confirmation of this pronounced regioselectivity. Furthermore, validation through control experiments and voltammetric analyses substantiated the manifestation of radical-radical coupling (or biradical pathway) for the dimerization process.
Collapse
Affiliation(s)
- Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| |
Collapse
|
10
|
Liu X, Qiao P, Chen H, Gao Y, Chen H. Synthesis of C-N or C-C Spiroindolines via Rearrangement Coupling Reaction. Org Lett 2024; 26:9759-9763. [PMID: 39481044 DOI: 10.1021/acs.orglett.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we report a general approach to effectively construct C-N or C-C spiroindolines using tetrahydro-β-carbolines as starting materials via a rearrangement coupling reaction. This method is characterized by its operational simplicity and mild conditions. Notably, a wide range of anilines and indoles are suitable for this intermolecular coupling, yielding the corresponding C-N or C-C spiroindolines in good to excellent yields.
Collapse
Affiliation(s)
- Xiaoling Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
11
|
Zhang F, Luo Y, Liu X, Liu Y, Xu J. NCS-Mediated Direct C(sp 3)-H Oxygenation of 2-Methylindoles Using Water as the Oxygen Source. J Org Chem 2024; 89:14586-14590. [PMID: 39298672 DOI: 10.1021/acs.joc.4c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In continuation of our research interest in the green oxidation of indoles, we further explore the direct oxidation of 2-methylindoles to 2-formyl indoles promoted by NCS and associated with H2O as the oxygen source. This methodology was demonstrated to be a robust protocol consisting of chlorination, SN2', and oxidation processes, and presents a reasonably broad substrate scope and excellent functional group tolerance, thus enabling the preparation of high added-value versatile building blocks susceptible to further functionalization.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuling Luo
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Xiaoyi Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yaoyao Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
12
|
Yu LM, Chen H, Fang W, Cai R, Tao Y, Li Y, Dong H. Recent advances in oxidative dearomatization involving C-H bonds for constructing value-added oxindoles. Org Biomol Chem 2024; 22:7074-7091. [PMID: 39157861 DOI: 10.1039/d4ob00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring three-dimensional chemical space is an important research objective of organic synthetic chemistry. Oxidative dearomatization (ODA) is one of the most important and powerful tools for realizing this goal, because it changes and removes aromatic structures from aromatic compounds to increase levels of saturation and stereoisomerism by direct addition reactions between functional groups with aromatic cores under oxidative conditions. As a hot topic in indole chemistry, the synthetic value of the oxidative dearomatization of indoles has been well recognized and has witnessed rapid development recently, since it could provide convenient and unprecedented access to fabricate high-value-added three-dimensional oxindole skeletons, such as C-quaternary indolones, polycycloindolones and spiroindolones, and be widely applied to the total synthesis of these oxindole alkaloids. Therefore, this article provides a review of recent developments in oxidative dearomatization involving the C-H bonds of indoles. In this article, the features and mechanisms of different types of ODA reactions of indoles are summarized and represented, and asymmetric synthesis methods and their applications are illustrated with examples, and future development trends in this field are predicted at the end.
Collapse
Affiliation(s)
- Le-Mao Yu
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310018, China.
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Haojin Chen
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Wenjing Fang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ruonan Cai
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yi Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaping Dong
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
13
|
Kato T, Sahara N, Akagawa S, Uyanik M, Ishihara K. Oxidative Dearomative Coupling of Electron-Deficient Arenols Using Hypohalite Catalysis. Org Lett 2024; 26:7255-7260. [PMID: 39158363 DOI: 10.1021/acs.orglett.4c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We developed performant in situ hypohalite, especially hypobromite, catalysis for the oxidative dearomatization of low-reactivity electron-deficient arenols. The reaction scope encompasses inter- and intramolecular oxidative dearomative C-O, C-N, and C-C coupling reactions. Notably, using a chiral ammonium countercation, we achieved enantioselective hypobromite catalysis for oxidative dearomative coupling reactions. Mechanistic studies revealed that the reaction mechanisms might differ depending on the halide identity.
Collapse
Affiliation(s)
- Takehiro Kato
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Naoto Sahara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Sho Akagawa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Xu J, Zhang Y, Cai Q, Chen L, Sun Y, Liu Q, Gao Y, Chen H. Green Late-Stage Functionalization of Tryptamines. Chemistry 2024; 30:e202401436. [PMID: 38869004 DOI: 10.1002/chem.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
An efficient and rapid protocol for the oxidative halogenation of tryptamines with 10 % aqueous NaClO has been developed. This reaction is featured by its operational simplicity, metal-free conditions, no purification, and high yield. Notably, the resulting key intermediates are suitable for further functionalization with various nucleophiles, including amines, N-aromatic heterocycles, indoles and phenols. The overall transformation exhibits broad functional-group tolerance and is applicable to the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Jiayi Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yahui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiling Cai
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yang Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qinying Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
15
|
Chaudhary D, Kuram MR. Hexafluoroisopropanol (HFIP)-Mediated Intramolecular Cyclization of Allenamides To Access C1-Vinyl Tetrahydro-β-carbolines. J Org Chem 2024; 89:11783-11788. [PMID: 39054730 DOI: 10.1021/acs.joc.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The construction of biologically interesting N-heterocycles under metal-free conditions is a constant goal in industry and academia. Herein, we have developed an hexafluoroisopropanol (HFIP)-mediated intramolecular cyclization of allenamides, providing tetrahydro-β-carboline derivatives embedded with a C1-vinyl functionality. The metal-free protocol provided tetrahydro-β-carboline derivatives atom-efficiently under room temperature with a broad substrate scope in good to excellent yields. The potential impact of the protocol is further highlighted by synthesizing derivatives of biologically important molecules and diversified scaffolds via postsynthetic modifications.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
17
|
Ren H, Yang BQ, Shi J, Wu W, Jiang B, Chi Q. Copper-Catalyzed Tunable Oxygenative Rearrangement of Tetrahydrocarbazoles. Chemistry 2024; 30:e202401293. [PMID: 38828487 DOI: 10.1002/chem.202401293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Herein, we report a general copper-catalyzed method for the tunable oxygenative rearrangement of tetrahydrocarbazoles to cyclopentyl-bearing spiroindolin-2-ones and spiroindolin-3-ones. The method demonstrates excellent chemoselectivity, regioselectivity, and product control simply by using the H2O and O2 as oxygen source, respectively. This open-flask method is safe and simple to operate, and no other chemical oxidants are required. Besides, inspired from the unique pathway of 1, 2-migration rearrangement, a highly controllable hydroxylation of indoles for the construction of C3a-hydroxyl iminium indolines was also developed. Mechanistic experiments suggest that a single-electron transfer-induced oxidation process is responsible for the tunable selectivity control.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Bing-Qing Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Biaobiao Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
18
|
Yue Y, Guo X, Zhang J, Zhang Z, Zhang Y, Tang Q, Bai R, Yi H, Liu J. Electrochemical Oxidation Enables Radical Dearomative Spiroannulation to 2H-Spiro[benzofuran-3,9'-fluoren]-2-one. Chemistry 2024; 30:e202401303. [PMID: 38794842 DOI: 10.1002/chem.202401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Developing pragmatic strategies for accessing functional benzofuran-2-ones from 3-([1,1'-biphenyl]-2-yl)benzofuran remains an enduring challenge. Herein, we have achieved a highly discriminating electrochemical oxidative dearomative spiroannulation of 3-([1,1'-biphenyl]-2-yl)benzofuran, culminating in the synthesis of 2H-spiro[benzofuran-3,9'-fluoren]-2-one derivatives. By harnessing the electrophilic intermediates of benzofuryl radical cations supported by DFT calculations, we attain exceptional regioselectivity while eliminating the need for stoichiometric oxidants. Mechanistic investigations reveal a sequence of events involving the benzofuran radical cation, encompassing the capture of H2O, nucleophilic arene attack, and subsequent deprotonation, ultimately yielding the final benzofuran-2-ones.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiaohui Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Jianhang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhiqiang Zhang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yilin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Qinghu Tang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
19
|
Zhou Y, Akkarasereenon K, Liu L, Lin R, Song L, Tong R. Ecofriendly Protocol for ipso-Bromination of Arylboronic Acids. Org Lett 2024; 26:5151-5156. [PMID: 38864512 DOI: 10.1021/acs.orglett.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We report a novel and environmentally friendly method for the ipso-bromination of arylboronic acids by exploiting the oxone/KBr system. We discovered that CuBr can catalyze the reaction and increase the yield from 63 to 97%. We believe that CuBr might catalyze the in situ generation of HOBr from oxone/KBr. The mild reaction condition permits tolerance of a diverse array of functional groups with exclusive regio- and chemoselectivity and allows low-cost large-scale reaction without explosion risk.
Collapse
Affiliation(s)
- Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Lifang Liu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Lin
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
20
|
Zhang Z, Sun H, Zhang M, Song S, Peng M, Dai W, Wang Y, Yu F. Switchable Skeletal Rearrangement of Hexahydro-4 H-indol-4-ones: Divergent Synthesis of Dihydroxy-4 H-cyclopenta[ b]pyridin-4-ones and 8-Alkenyl Oxepane-2,6-diones. Org Lett 2024; 26:4205-4211. [PMID: 38743606 DOI: 10.1021/acs.orglett.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unprecedented base-controlled selective skeletal rearrangement reaction of hexahydro-4H-indol-4-ones has been developed. In this protocol, highly functionalized dihydroxy-4H-cyclopenta[b]pyridin-4-ones and 8-alkenyl oxepane-2,6-diones were prepared with a broad substrate scope and high chemoselectivity in moderate to excellent yields selectively by modulating LiOH and Et3N. In addition, the newly formed 8-alkenyl oxepane-2,6-dione scaffolds could be easily further derivatized to 5-(pyrrol-2-yl)dihydrofuran-2(3H)-ones through a rare intramolecular rearrangement reaction.
Collapse
Affiliation(s)
- Zhilai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Haifeng Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Menglin Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| |
Collapse
|
21
|
Mhaske K, Gangai S, Fernandes R, Kamble A, Chowdhury A, Narayan R. Aerobic Catalytic Cross-Dehydrogenative Coupling of Furans with Indoles Provides Access to Fluorophores with Large Stokes Shift. Chemistry 2024; 30:e202302929. [PMID: 38175849 DOI: 10.1002/chem.202302929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 01/06/2024]
Abstract
Sustainability in chemical processes is a crucial aspect in contemporary chemistry with sustainable catalysis as a vital parameter of the same. There has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions. Furan is a versatile heterocycle of natural origin used for multiple applications. However, it has scarcely been used in cross-dehydrogenative coupling. In this work, we have explored the cross-dehydrogentive coupling of furans with indoles using commonly available, inexpensive FeCl3 ⋅ 6H2 O (<0.25 $/g) as catalyst in the presence of so called 'ultimate oxidant' - oxygen, without the need for any external ligand or additive. The reactions were found to be scalable and to work even under partially aqueous conditions. This makes the reaction highly economical, practical, operationally simple and sustainable. The methodology provides direct access to π-conjugated short oligomers consisting of furan, thiophene and indole. These compounds were found to show interesting fluorescence properties with remarkably large Stokes shift (up to 205 nm). Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by nucleophilic trapping by furan.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Angulimal Kamble
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
22
|
Nam Y, Tam AT, Miller ER, Scheidt KA. A Platform for the Synthesis of Corynantheine-Type Corynanthe Alkaloids. J Am Chem Soc 2024; 146:118-124. [PMID: 38153983 PMCID: PMC11756354 DOI: 10.1021/jacs.3c12556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Corynantheine-type alkaloids are major components of the Mitragyna speciosa, also known as kratom, that exhibit unique pharmacological activity. However, no universal method to prepare these alkaloids has been reported. Disclosed herein is a catalytic, asymmetric platform that enables rapid access to corynantheine alkaloids. The first enantioselective total synthesis of (-)-corynantheidine pseudoindoxyl is described. The first asymmetric syntheses of (+)-corynoxine and (-)-corynoxine B were also achieved, along with enantioselective syntheses of (-)-corynantheidol and (-)-corynantheidine. Through this work, all series of corynantheine alkaloids including indole, spirooxindole, and pseudoindoxyl can now be accessed in the laboratory, enabling comprehensive biological investigation of kratom alkaloids to be undertaken.
Collapse
Affiliation(s)
- Yunchan Nam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, United States
| | - Anthony T. Tam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, United States
| | - Eric R. Miller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, United States
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, United States
| |
Collapse
|
23
|
Gangai S, Fernandes R, Mhaske K, Narayan R. Cu(ii)-catalyzed aerobic oxidative coupling of furans with indoles enables expeditious synthesis of indolyl-furans with blue fluorescence. RSC Adv 2024; 14:1239-1249. [PMID: 38174245 PMCID: PMC10762296 DOI: 10.1039/d3ra08226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
With the purpose of incorporating sustainability in chemical processes, there has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions and processes. In this work, we have explored the atom-economic oxidative coupling between two important electron-rich heterocycles - indoles and furans - using commonly available, inexpensive metal catalyst CuCl2·2H2O (<0.25$ per g) to develop an expeditious synthesis of indolyl-furans. Moreover, the reaction proceeded well in the presence of the so-called 'ultimate oxidant' - air, without the need for any external ligand or additive. The reaction was found to be scalable and to work even under partially aqueous conditions. This makes the methodology highly economical, practical, operationally simple and sustainable. In addition, the methodology provides direct access to novel indole-furan-thiophene (IFT)-based electron-rich π-conjugated systems, which show green-yellow fluorescence with large Stokes shift and high quantum yields. Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by the nucleophilic attack by furan.
Collapse
Affiliation(s)
- Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa GEC Campus, Farmagudi Goa-403401 India
| |
Collapse
|
24
|
Li S, Liu X, Tung CH, Liu L. Late-Stage Chemo- and Enantioselective Oxidation of Indoles to C3-Monosubstituted Oxindoles. J Am Chem Soc 2023. [PMID: 38038721 DOI: 10.1021/jacs.3c11742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Catalytic asymmetric preparation of chiral 3-monosubstituted oxindoles represents a significant challenge in synthetic chemistry due to the ease of racemization of the tertiary stereocenter through enolization. Here, we describe a general titanium-catalyzed chemo- and enantioselective indole oxidation to produce a diverse set of chiral 3-monosubstituted oxindoles with up to 96% yield, 99% ee, and with a substrate/catalyst ratio of 10,000 by using the combination of a simple titanium(salan) catalyst with green and atom-economic terminal oxidant H2O2. The mild approach tolerates a broad range of functional groups, enabling late-stage asymmetric diversification of a series of commercial drugs and natural products together with late-stage asymmetric construction of a wide set of enzyme antagonists, all of which are difficult to achieve through existing methods.
Collapse
Affiliation(s)
- Song Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xigong Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
25
|
Giraudo A, Armano E, Morano C, Pallavicini M, Bolchi C. Green Oxidation of Heterocyclic Ketones with Oxone in Water. J Org Chem 2023; 88:15461-15465. [PMID: 37823876 PMCID: PMC10629238 DOI: 10.1021/acs.joc.3c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/13/2023]
Abstract
The recently reported efficient conversion of cyclic ketones to lactones by Oxone in neutral buffered water is extended to heterocyclic ketones, namely, cyclic N-Boc azaketones and oxoethers with the aim of obtaining N-protected azalactones and their analogues with oxygen in place of nitrogen. N-Boc-4-piperidinone and all the cyclic oxoethers were successfully oxidized to lactones, while the azacyclic ketones with nitrogen α-positioned to carbonyl were univocally transformed into N-Boc-ω-amino acids and N-Boc-N-formyl-ω-amino acids operating in alkaline water and DMF, respectively.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Edoardo Armano
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Camillo Morano
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, I-20133, Milano, Italy
| |
Collapse
|
26
|
Alshammari MB, Aly AA, Ahmad A, Brown AB, Mohamed AH. Recent synthetic strategies of spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives-a review. RSC Adv 2023; 13:32786-32823. [PMID: 37942448 PMCID: PMC10628897 DOI: 10.1039/d3ra06054c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Spiro-heterocycles have received special attention in medicinal chemistry because of their promising biological activity. Over the years, many synthetic methodologies have been established for the construction of spirocyclic compounds. Spiro heterocycles such as spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives have been found to exhibit diversified biological and pharmacological activity in addition to their therapeutic properties. In view of these facts, we decided in this review to present representative synthetic approaches of the aforementioned spiro heterocycles, especially in the past 20 years.
Collapse
Affiliation(s)
- Mohammed B Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharij Saudi Arabia
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharij Saudi Arabia
| | - Alan B Brown
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL 32901 USA
| | - Asmaa H Mohamed
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| |
Collapse
|
27
|
Das A, Jonathan C, Saha R, Ahmed MI, Bhowmik S. Regioselective Decarboxylative Transformations of Tetrahydro-β-carboline-1-carboxylic Acid: Reagent Controlled Selectivity toward Alkynylated or Enaminone Products. Org Lett 2023; 25:7310-7315. [PMID: 37791996 DOI: 10.1021/acs.orglett.3c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A one-pot, regioselective decarboxylative alkynylation of tetrahydro-β-carboline-1-carboxylic acid under peroxide-free condition is reported. The reaction is highly selective for the 1-position over the 3-position of tetrahydro-β-carboline. The reaction can afford alkynylated or enaminone products depending on the reagent. The reaction proceeds through sequential decarboxylative iminium ion formation followed by an alkynylation and oxidative rearrangement cascade.
Collapse
Affiliation(s)
- Arka Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Christine Jonathan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Rana Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Md Imran Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Subhendu Bhowmik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| |
Collapse
|
28
|
Ren H, Wang RA, Shi J, Song JR, Wu W, Chi Q, Zhang N. Electrochemical bromocyclization enables 3,5-diversification of heterocyclic indolines. Org Biomol Chem 2023; 21:7290-7294. [PMID: 37650516 DOI: 10.1039/d3ob00985h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Electrophilic bromocyclization reactions are widely used as key steps in the synthesis of diverse functionalized tetrahydrofuroindolines and hexahydropyrroloindolines. However, the direct dibromination variants of these reactions for the synthesis of 3,5-dibromoindolines remain undeveloped. Here, we report a protonic-acid-promoted electrooxidative protocol for the dearomative C3,C5-dibromocyclizations of tryptophol and tryptamine derivatives. This electrosynthetic approach, which enables direct selective construction of heterocyclic 3a,5a-dibromoindolines with inexpensive, non-hazardous NaBr as both the electrolyte and Br source, provides a convenient, practical method for the late-stage 3,5-diversification of heterocyclic indolines.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
29
|
Zheng T, Xu J, Cheng S, Ye J, Ma S, Tong R. Green Halogenation of Indoles with Oxone-Halide. J Org Chem 2023; 88:11497-11503. [PMID: 37499121 DOI: 10.1021/acs.joc.3c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Oxidative functionalization of indoles is one of the most widely used approaches to exploit the synthetic utility of indoles. In continuation of our research interest in the green oxidation of indoles, we further explore the oxidation of indoles with oxone-halide and discover that the protecting group on the nitrogen of indoles plays a decisive role in controlling the pathways of indole oxidation with oxone-halide. An electron-withdrawing group on the nitrogen of indoles (N-EWG) enables C2 halogenation with stoichiometric halide, while C3 halogenation could be selectively achieved by using stoichiometric halide without dependence on the electronic property of the protecting group on the indole nitrogen. Different from our previous results obtained by using catalytic halide, these findings lead to the development of an environmentally friendly, efficient, and mild protocol for access to 2- or 3-haloindoles (chloro and bromo). As compared to the previous synthetic methods for 2-/3-haloindoles, our method exploits the in situ-generated reactive halogenating species from oxone-halide for halogenation of indoles and thus eliminates the use of stoichiometric halogenating agents and the production of toxic and hazardous organic byproducts derived from oxidants.
Collapse
Affiliation(s)
- Tao Zheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaojun Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
30
|
Fan G, Wang Q, Xu J, Zheng P, Chi YR. Carbene-catalyzed chemoselective reaction of unsymmetric enedials for access to Furo[2,3-b]pyrroles. Nat Commun 2023; 14:4243. [PMID: 37454112 PMCID: PMC10349821 DOI: 10.1038/s41467-023-39988-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
A carbene-catalyzed chemoselective reaction of unsymmetric enedials is disclosed. The reaction provides a concise access to bicyclic furo[2,3-b]pyrroles derivatives in excellent selectivity. A main challenge in this reaction is chemoselective reaction of the two aldehyde moieties in the enedial substrates. Mechanistic studies via experiments suggest that our chemoselectivity controls are mostly achieved on the reducing properties of different sited Breslow intermediates. Several side reactions processes and the corresponding side adducts are also studied by high resolution mass spectroscopy analysis. Our method allows for efficient assembly of the furo[2,3-b]pyrrole structural moieties and their analogues widely found in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Guodong Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Qingyun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China.
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
31
|
Arteaga Giraldo JJ, Lindsay AC, Seo RCY, Kilmartin PA, Sperry J. Electrochemical oxidation of 3-substituted indoles. Org Biomol Chem 2023. [PMID: 37366580 DOI: 10.1039/d3ob00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
2-Oxindoles are an abundant heteroaromatic motif in natural products and pharmaceuticals. An appealing method for accessing 2-oxindoles is by oxidation of the corresponding indole, a transformation currently executed using stoichiometric quantities of unsafe chemical oxidants that can also form unwanted side-products. Herein, we report that 3-substituted indoles undergo a logistically straightforward, electrochemical oxidation to the corresponding 2-oxindole in the presence of potassium bromide (>20 examples), with only traces of the oxidative dimer detected. Cyclic voltammetry and control studies infer that the reaction proceeds by electrochemical generation of elemental bromine (Br2) that upon reaction with indole, followed by hydrolysis, delivers the 2-oxindole. This procedure is an appealing alternative to existing methods used to access 2-oxindoles by oxidation of the parent indole.
Collapse
Affiliation(s)
- Juan J Arteaga Giraldo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Ashley C Lindsay
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Rachel Chae-Young Seo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Paul A Kilmartin
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
32
|
Leas DA, Schultz DC, Huigens RW. Chemical Reactions of Indole Alkaloids That Enable Rapid Access to New Scaffolds for Discovery. SYNOPEN 2023; 7:165-185. [PMID: 37795132 PMCID: PMC10549995 DOI: 10.1055/a-2048-8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
This graphical review provides a concise overview of indole alkaloids and chemical reactions that have been reported to transform both these natural products and derivatives to rapidly access new molecular scaffolds. Select biologically active compounds from these synthetic efforts are reported herein.
Collapse
Affiliation(s)
- Derek A Leas
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Daniel C Schultz
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Hou M, Wang Y, Li P, Ma X, Zhang G, Song Q. Divergent Synthesis of 1,1-Carbonyl Amino Alkyl Borons from Indoles. Org Lett 2023. [PMID: 37229694 DOI: 10.1021/acs.orglett.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
α-Boryl carbonyl species and α-boryl amino compounds are valuable and important frameworks in organic synthesis. However, the strategies that could merge the two scaffolds into one compound, named 1,1-carbonyl amino alkyl boron, are elusive and underdeveloped. Herein, we present an efficient method that could address this gap and produce 1,1-carbonyl amino alkyl borons from readily accessible indoles via oxidation by m-CPBA or oxone. This reaction features operational simplicity, divergent synthesis, broad substrate scope, and valuable products.
Collapse
Affiliation(s)
- Mengyuan Hou
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yahao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Puhui Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
34
|
Liu J, Mallick S, Xie Y, Grassin C, Lucas B, Schölermann B, Pahl A, Scheel R, Strohmann C, Protzel C, Berg T, Merten C, Ziegler S, Waldmann H. Morphological Profiling Identifies the Motor Protein Eg5 as Cellular Target of Spirooxindoles. Angew Chem Int Ed Engl 2023; 62:e202301955. [PMID: 36929571 DOI: 10.1002/anie.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Oxindoles and iso-oxindoles are natural product-derived scaffolds that provide inspiration for the design and synthesis of novel biologically relevant compound classes. Notably, the spirocyclic connection of oxindoles with iso-oxindoles has not been explored by nature but promises to provide structurally related compounds endowed with novel bioactivity. Therefore, methods for their efficient synthesis and the conclusive discovery of their cellular targets are highly desirable. We describe a selective RhIII -catalyzed scaffold-divergent synthesis of spirooxindole-isooxindoles and spirooxindole-oxindoles from differently protected diazooxindoles and N-pivaloyloxy aryl amides which includes a functional group-controlled Lossen rearrangement as key step. Unbiased morphological profiling of a corresponding compound collection in the Cell Painting assay efficiently identified the mitotic kinesin Eg5 as the cellular target of the spirooxindoles, defining a unique Eg5 inhibitor chemotype.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Yusheng Xie
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Corentin Grassin
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Belén Lucas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Compound Management and Screening Center, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Christoph Protzel
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Merten
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| |
Collapse
|
35
|
Wang A, Zhu BZ, Huang CH, Zhang WX, Wang M, Li X, Ling L, Ma J, Fang J. Generation mechanism of singlet oxygen from the interaction of peroxymonosulfate and chloride in aqueous systems. WATER RESEARCH 2023; 235:119904. [PMID: 36989807 DOI: 10.1016/j.watres.2023.119904] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Peroxymonosulfate (PMS, HSO5-) is a widely-used disinfectant and oxidant in environmental remediation. It was deemed that PMS reacted with chloride (Cl-) to form free chlorine during water purification. Here, we demonstrated that singlet oxygen (1O2) was efficiently generated from PMS and Cl- interaction. Mechanism of 1O2 formation was uniquely verified by the reaction of HSO5- and chlorine molecule (Cl2) and the oxygen atoms in 1O2 deriving from the peroxide group of HSO5- were revealed. Density functional theory calculations determined that the reaction of HSO5- and Cl2 was thermodynamically favorable and exergonic at 37.8 kcal/mol. Quite intriguingly, 1O2 was generated at a higher yield (1.5 × 105 M - 1 s - 1) than in the well-known reaction of H2O2 with Cl2 (35 M - 1 s - 1). Besides chlorine, 1O2 formed in PMS-Cl- interaction dominated the degradation of micropollutants, also it substantially enhanced the damage of deoxynucleoside in DNA, which were beneficial to micropollutant oxidation and pathogen disinfection. The contribution of 1O2 for carbamazepine degradation was enhanced at higher Cl- level and lower pH, and reached 96.3% at pH 4.1 and 5 min. Natural organic matter (NOM) was a sink for chlorine, thereby impeding 1O2 formation to retard carbamazepine degradation. 1O2 also played important roles (48.3 - 63.5%) on the abatement of deoxyguanosine and deoxythymidine at pH 4.1 and 10 min in PMS/Cl-. On the other hand, this discovery also alerted the harm of 1O2 for human health as it can be formed during the interaction of residual PMS in drinking water/swimming pools and the high-level Cl- in human bodies.
Collapse
Affiliation(s)
- Anna Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Guangdong Environmental Protection Research Institute Co., Ltd., 510080 Guangzhou, China
| | - Ben-Zhan Zhu
- Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Chun-Hua Huang
- Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Wei-Xian Zhang
- School of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, 518107 Shenzhen, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310018 Hangzhou, China
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, 519087 Zhuhai, China
| | - Jun Ma
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China.
| |
Collapse
|
36
|
zheng H, Chen X, Zuo J, Ye J, Zhao C, Xu J. Syntheses of spiro-oxindoles via KI/oxone-mediated oxidation/cyclization of homotryptamine and homotryptophol derivatives. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
37
|
Trouvé J, Youssef K, Kasemthaveechok S, Gramage-Doria R. Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | - Khalil Youssef
- Univ Rennes, CNRS, ISCR-UMR6226, FR-35000 Rennes, France
| | | | | |
Collapse
|
38
|
Jiang SY, Shi J, Wang W, Sun YZ, Wu W, Song JR, Yang X, Hao GF, Pan WD, Ren H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Shu-Yun Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Yan-Zheng Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Xiaoyan Yang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| |
Collapse
|
39
|
Nguyen TAM, Grzech D, Chung K, Xia Z, Nguyen TD, Dang TTT. Discovery of a cytochrome P450 enzyme catalyzing the formation of spirooxindole alkaloid scaffold. FRONTIERS IN PLANT SCIENCE 2023; 14:1125158. [PMID: 36818833 PMCID: PMC9936145 DOI: 10.3389/fpls.2023.1125158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Spirooxindole alkaloids feature a unique scaffold of an oxindole ring sharing an atom with a heterocyclic moiety. These compounds display an extensive range of biological activities such as anticancer, antibiotics, and anti-hypertension. Despite their structural and functional significance, the establishment and rationale of the spirooxindole scaffold biosynthesis are yet to be elucidated. Herein, we report the discovery and characterization of a cytochrome P450 enzyme from kratom (Mitragyna speciosa) responsible for the formation of the spirooxindole alkaloids 3-epi-corynoxeine (3R, 7R) and isocorynoxeine (3S, 7S) from the corynanthe-type (3R)-secoyohimbane precursors. Expression of the newly discovered enzyme in Saccharomyces cerevisiae yeast allows for the efficient in vivo and in vitro production of spirooxindoles. This discovery highlights the versatility of plant cytochrome P450 enzymes in building unusual alkaloid scaffolds and opens a gateway to access the prestigious spirooxindole pharmacophore and its derivatives.
Collapse
Affiliation(s)
- Tuan-Anh M. Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Khoa Chung
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Zhicheng Xia
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Thu-Thuy T. Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
40
|
Zedler M, Tse SW, Ruiz-Gonzalez A, Haseloff J. Paper-Based Multiplex Sensors for the Optical Detection of Plant Stress. MICROMACHINES 2023; 14:314. [PMID: 36838015 PMCID: PMC9968015 DOI: 10.3390/mi14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The rising population and the ongoing climate crisis call for improved means to monitor and optimise agriculture. A promising approach to tackle current challenges in food production is the early diagnosis of plant diseases through non-invasive methods, such as the detection of volatiles. However, current devices for detection of multiple volatiles are based on electronic noses, which are expensive, require complex circuit assembly, may involve metal oxides with heating elements, and cannot easily be adapted for some applications that require miniaturisation or limit front-end use of electronic components. To address these challenges, a low-cost optoelectronic nose using chemo-responsive colorimetric dyes drop-casted onto filter paper has been developed in the current work. The final sensors could be used for the quantitative detection of up to six plant volatiles through changes in colour intensities with a sub-ppm level limit of detection, one of the lowest limits of detection reported so far using colorimetric gas sensors. Sensor colouration could be analysed using a low-cost spectrometer and the results could be processed using a microcontroller. The measured volatiles could be used for the early detection of plant abiotic stress as early as two days after exposure to two different stresses: high salinity and starvation. This approach allowed a lowering of costs to GBP 1 per diagnostic sensing paper. Furthermore, the small size of the paper sensors allows for their use in confined settings, such as Petri dishes. This detection of abiotic stress could be easily achieved by exposing the devices to living plants for 1 h. This technology has the potential to be used for monitoring of plant development in field applications, early recognition of stress, implementation of preventative measures, and mitigation of harvest losses.
Collapse
Affiliation(s)
| | | | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| |
Collapse
|
41
|
León Rayo DF, Mansour A, Wu W, Bhawal BN, Gagosz F. Steric, Electronic and Conformational Synergistic Effects in the Gold(I)-catalyzed α-C-H Bond Functionalization of Tertiary Amines. Angew Chem Int Ed Engl 2023; 62:e202212893. [PMID: 36170553 DOI: 10.1002/anie.202212893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Direct C-H bond functionalization is a useful strategy for the straightforward formation of C-C and C-Heteroatom bonds. In the present work, a unique approach for the challenging electrophilic Au-catalyzed α-C-H bond functionalization of tertiary amines is presented. Electronic, steric and conformational synergistic effects exerted by the use of a malonate unit in the substrate were key to the success of this transformation. This new reactivity was applied to the synthesis of tetrahydro-γ-carboline products which, under oxidative conditions, could be converted into valuable structural motifs found in bioactive alkaloid natural products.
Collapse
Affiliation(s)
- David F León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Wenbin Wu
- Département de Chimie, UMR 7652 CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| | - Benjamin N Bhawal
- Département de Chimie, UMR 7652 CNRS, Ecole Polytechnique, 91128, Palaiseau, France.,Present Address: EaStChem, School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada.,Département de Chimie, UMR 7652 CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| |
Collapse
|
42
|
Han L, Liu T, Wang H, Luan X. Palladium-Catalyzed Alkenyl C-H Activation/Diamination toward Tetrahydrocarbazole and Analogs Using Hydroxylamines as Single-Nitrogen Sources. Org Lett 2023; 25:58-63. [PMID: 36542630 DOI: 10.1021/acs.orglett.2c03809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A palladium-catalyzed alkenyl C-H activation/diamination reaction of cycloalkenyl bromoarenes with hydroxylamines is described. A wide range of tetrahydrocarbazoles and analogs has been prepared using fine-tuning bifunctional secondary hydroxylamines as the single-nitrogen sources. Mechanistic investigations suggest that the selective alkenyl C-H activation/diamination cascade process should build the N-heterocycles.
Collapse
Affiliation(s)
- Lingbo Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Tingjie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
43
|
Song L, Zhou Y, Liang H, Li H, Lai Y, Yao H, Lin R, Tong R. Two Green Protocols for Halogenative Semipinacol Rearrangement. J Org Chem 2023; 88:504-512. [PMID: 36480595 DOI: 10.1021/acs.joc.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semipinacol rearrangement is a special type of Wagner-Meerwein rearrangement that involves carbocation 1,2-rearrangement to provide carbonyl compounds with an α-quaternary carbon center. It has been strategically used for natural product synthesis and construction of highly congested quaternary carbons. Herein, we report a safe and green protocol that uses oxone/halide and Fenton bromide to achieve halogenative semipinacol rearrangement. The key feature of this method is the green in situ generation of reactive halogenating species from oxidation of halide with oxone or H2O2, which produces a nontoxic byproduct (potassium sulfate or water). Easy operation (insensitive to air and moisture) at room temperature without using special equipment adds additional advantage over previous methods.
Collapse
Affiliation(s)
- Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Hanbin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Hongzuo Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yunrong Lai
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510275, China
| | - Ran Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510275, China
| |
Collapse
|
44
|
Zheng T, Li Z, Luo Y, Zhang J, Xu J. A direct and efficient 3-halooxidation of indoles using DMSO as oxygen source. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Rajeshwaran P, Trouvé J, Youssef K, Gramage‐Doria R. Sustainable Wacker-Type Oxidations. Angew Chem Int Ed Engl 2022; 61:e202211016. [PMID: 36164675 PMCID: PMC10092001 DOI: 10.1002/anie.202211016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/09/2022]
Abstract
The Wacker reaction is the oxidation of olefins to ketones and typically requires expensive and scarce palladium catalysts in the presence of an additional copper co-catalyst under harsh conditions (acidic media, high pressure of air/dioxygen, elevated temperatures). Such a transformation is relevant for industry, as shown by the synthesis of acetaldehyde from ethylene as well as for fine-chemicals, because of the versatility of a carbonyl group placed at specific positions. In this regard, many contributions have focused on controlling the chemo- and regioselectivity of the olefin oxidation by means of well-defined palladium catalysts under different sets of reaction conditions. However, the development of Wacker-type processes that avoid the use of palladium catalysts has just emerged in the last few years, thereby paving the way for the generation of more sustainable procedures, including milder reaction conditions and green chemistry technologies. In this Minireview, we discuss the development of new catalytic processes that utilize more benign catalysts and sustainable reaction conditions.
Collapse
|
46
|
Zhao D, Pan Y, Guo S, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Copper-Catalyzed Oxidative Dearomatized Oxyalkylation of Indoles with Alcohols: Synthesis of 3-Alkoxy-2-Oxindoles. J Org Chem 2022; 87:16867-16872. [DOI: 10.1021/acs.joc.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
47
|
Wang J, Chen Y, Du W, Chen N, Fu K, He Q, Shao L. Green oxidative rearrangement of indoles using halide catalyst and hydrogen peroxide. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Boyarskaya DV, Ongaro A, Piemontesi C, Wang Q, Zhu J. Synthesis of 3-Acyloxyindolenines by TiCl 3-Mediated Reductive Cyclization of 2-( ortho-Nitroaryl)-Substituted Enol Esters. Org Lett 2022; 24:7004-7008. [PMID: 36121329 DOI: 10.1021/acs.orglett.2c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of TiCl3, the reductive cyclization of tetrasubstituted enol esters bearing a 2-(ortho-nitroaryl) substituent affords 3-acyloxy-2,3-disubstituted indolenines in good yields. A domino process involving the partial reduction of nitro to a nitroso group followed by 5-center-6π-electrocyclization, 1,2-acyloxy migration, and the further reduction of the resulting nitrone intermediate accounts for the reaction outcome. The so-obtained indolenines are converted smoothly to 2,2-disubstituted oxindoles via a sequence of saponification and semipinacol rearrangement.
Collapse
Affiliation(s)
- Dina V Boyarskaya
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Alberto Ongaro
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| |
Collapse
|
49
|
Liang L, Guo LD, Tong R. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products. Acc Chem Res 2022; 55:2326-2340. [PMID: 35916456 DOI: 10.1021/acs.accounts.2c00358] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The six-membered heterocycles containing oxygen and nitrogen (tetrahydropyrans, pyrans, piperidines) are among the most common heterocyclic structures ubiquitously present in bioactive molecules such as carbohydrates, small-molecule drugs, and natural products. Chemical synthesis of fully functionalized pyrans and piperidines is a research theme of practical importance and scientific significance and, thus, has attracted continuous interest from synthetic chemists. Among the numerous synthetic approaches, Achmatowicz rearrangement (AchR) represents a general and unique strategy that uses biomass-derived furfuryl alcohols as the renewable starting material to obtain fully functionalized six-membered oxygen/nitrogen heterocycles, which provides golden opportunities for organic chemists to address various synthetic challenges.This Account summarizes our 10 years of work on exploiting AchR to address some challenges in organic synthesis ranging from green chemistry and organic methodology to the total synthesis of natural products. We enabled the sustainable and safe use of AchR in a small (academia) or large (industrial) scale by developing two generations of green approaches for AchR (oxone-halide and Fenton-halide), which largely eliminate the use of the most popular, but more toxic and expansive, NBS and m-CPBA. This triggered our intensive interest in developing new green chemistry for important organic reactions, in particular, halogenation/oxidation reactions involving reactive halogenating species with the aim of eliminating the use of commonly used toxic halogen agents such as elemental bromine, chlorine gas, and various N-haloamide reagents (NBS, NCS, and NIS). We successfully employed oxone-halide and Fenton-halide as green alternatives to several mechanistically related organic reactions including arene/alkene halogenation, oxidation or oxidative rearrangement of indoles, oxidation of alcohols/thioacetals, and oxidative halogenation of aldoximes for the in situ generation of nitrile oxide. These green reactions are expected to have a solid impact on the future of organic synthesis in academia and industries.We expanded the synthetic utility of AchR by exploring several new transformations of AchR products and developed a cascade reductive ring expansion, reductive deoxygenation/Heck-Matsuda arylation, palladium-catalyzed C-arylation, and regiodivergent [3 + 2] cycloaddition with 1,3-dicarbonyls. These methodologies offer a new avenue to fully functionalized six-membered heterocycles.The synthetic utility of AchR was demonstrated in our total synthesis of 28 natural products with a pyran/piperidine moiety. The AchR-based strategy endows the total synthesis with scalability, sustainability, and flexibility. The green and scalable approaches developed in our lab for AchR allow us to easily obtain decagrams of synthetically valuable pyrans and/or piperidines with low risk and low cost from biomass-derived furfuryl alcohol/aldehyde.
Collapse
|
50
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|