1
|
Wang J, Verkerk AO, Wilders R, Zhang Y, Zhang K, Prakosa A, Rivaud MR, Marsman EMJ, Boender AR, Klerk M, Fokkert L, de Jonge B, Neef K, Kirzner OF, Bezzina CR, Remme CA, Tan HL, Boukens BJ, Devalla HD, Trayanova NA, Christoffels VM, Barnett P, Boink GJJ. SCN10A-short gene therapy to restore conduction and protect against malignant cardiac arrhythmias. Eur Heart J 2025; 46:1747-1762. [PMID: 39973098 PMCID: PMC12055233 DOI: 10.1093/eurheartj/ehaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AND AIMS Life-threatening arrhythmias are a well-established consequence of reduced cardiac sodium current (INa). Gene therapy approaches to increase INa have demonstrated potential benefits to prevent arrhythmias. However, the development of such therapies is hampered by the large size of sodium channels. In this study, SCN10A-short (S10s), a short transcript encoding the carboxy-terminal domain of the human neuronal sodium channel, was evaluated as a gene therapy target to increase INa and prevent arrhythmias. METHODS Adeno-associated viral vector overexpressing S10s was injected into wild type and Scn5a-haploinsufficient mice on which patch-clamp studies, optical mapping, electrocardiogram analyses, and ischaemia reperfusion were performed. In vitro and in silico studies were conducted to further explore the effect of S10s gene therapy in the context of human hearts. RESULTS Cardiac S10s overexpression increased cellular INa, maximal action potential upstroke velocity, and action potential amplitude in Scn5a-haploinsufficient cardiomyocytes. S10s gene therapy rescues conduction slowing in Scn5a-haploinsufficient mice and prevented ventricular tachycardia induced by ischaemia-reperfusion in wild type mice. S10s overexpression increased maximal action potential upstroke velocity in human inducible pluripotent stem cell-derived cardiomyocytes and prevented inducible arrhythmias in simulated human heart models. CONCLUSIONS S10s gene therapy may be effective to treat cardiac conduction abnormalities and associated arrhythmias.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - E Madelief J Marsman
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Arie R Boender
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Berend de Jonge
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Klaus Neef
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands
| | - Osne F Kirzner
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Department of Anaesthesiology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Walsh R, Mauleekoonphairoj J, Mengarelli I, Bosada FM, Verkerk AO, van Duijvenboden K, Poovorawan Y, Wongcharoen W, Sutjaporn B, Wandee P, Chimparlee N, Chokesuwattanaskul R, Vongpaisarnsin K, Dangkao P, Wu CI, Tadros R, Amin AS, Lieve KV, Postema PG, Kooyman M, Beekman L, Sahasatas D, Amnueypol M, Krittayaphong R, Prechawat S, Anannab A, Makarawate P, Ngarmukos T, Phusanti K, Veerakul G, Kingsbury Z, Newington T, Maheswari U, Ross MT, Grace A, Lambiase PD, Behr ER, Schott JJ, Redon R, Barc J, Christoffels VM, Wilde AA, Nademanee K, Bezzina CR, Khongphatthanayothin A. A Rare Noncoding Enhancer Variant in SCN5A Contributes to the High Prevalence of Brugada Syndrome in Thailand. Circulation 2025; 151:31-44. [PMID: 39391988 PMCID: PMC11670919 DOI: 10.1161/circulationaha.124.069041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Brugada syndrome (BrS) is a cardiac arrhythmia disorder that causes sudden death in young adults. Rare genetic variants in the SCN5A gene encoding the Nav1.5 sodium channel and common noncoding variants at this locus are robustly associated with the condition. BrS is particularly prevalent in Southeast Asia but the underlying ancestry-specific factors remain largely unknown. METHODS Genome sequencing of BrS probands and population-matched controls from Thailand was performed to identify rare noncoding variants at the SCN5A-SCN10A locus that were enriched in patients with BrS. A likely causal variant was prioritized by computational methods and introduced into human induced pluripotent stem cell (hiPSC) lines using CRISPR-Cas9. The effect of the variant on SCN5A expression and Nav1.5 sodium channel current was then assessed in hiPSC-derived cardiomyocytes (hiPSC-CMs). RESULTS A rare noncoding variant in an SCN5A intronic enhancer region was highly enriched in patients with BrS (detected in 3.9% of cases with a case-control odds ratio of 45.2). The variant affects a nucleotide conserved across all mammalian species and predicted to disrupt a Mef2 transcription factor binding site. Heterozygous introduction of the enhancer variant in hiPSC-CMs caused significantly reduced SCN5A expression from the variant-containing allele and a 30% reduction in Nav1.5-mediated sodium current density compared with isogenic controls, confirming its pathogenicity. Patients with the variant had severe phenotypes, with 89% experiencing cardiac arrest. CONCLUSIONS This is the first example of a functionally validated rare noncoding variant at the SCN5A locus and highlights how genome sequencing in understudied populations can identify novel disease mechanisms. The variant partly explains the increased prevalence of BrS in this region and enables the identification of at-risk variant carriers to reduce the burden of sudden cardiac death in Thailand.
Collapse
Affiliation(s)
- Roddy Walsh
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - John Mauleekoonphairoj
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Isabella Mengarelli
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Fernanda M. Bosada
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Arie O. Verkerk
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Medical Biology (A.O.V., K.v.D., V.M.C.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Karel van Duijvenboden
- Medical Biology (A.O.V., K.v.D., V.M.C.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Yong Poovorawan
- Departments of Pediatrics (Y.P., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanwarang Wongcharoen
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Boosamas Sutjaporn
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pharawee Wandee
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nitinan Chimparlee
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Piyavate Hospital, Bangkok, Thailand (N.C.)
| | - Ronpichai Chokesuwattanaskul
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Medicine (K.V.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund (K.V., P.D.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Dangkao
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund (K.V., P.D.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand (P.D.)
| | - Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan (C.-I.W.)
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Quebec, Canada (R.T.)
| | - Ahmad S. Amin
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Krystien V.V. Lieve
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Pieter G. Postema
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Maarten Kooyman
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Leander Beekman
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Dujdao Sahasatas
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Thailand (D.S., P.M.)
| | - Montawatt Amnueypol
- Departments of Medicine, Faculty of Medicine at Ramathibodi Hospital (M.A., T. Ngarmukos), Mahidol University, Bangkok, Thailand
| | - Rungroj Krittayaphong
- Faculty of Medicine at Siriraj Hospital (R.K.), Mahidol University, Bangkok, Thailand
| | - Somchai Prechawat
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alisara Anannab
- Department of Cardiovascular and Intervention, Central Chest Institute of Thailand, Nonthaburi, Thailand (A.A.)
| | - Pattarapong Makarawate
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Thailand (D.S., P.M.)
| | - Tachapong Ngarmukos
- Departments of Medicine, Faculty of Medicine at Ramathibodi Hospital (M.A., T. Ngarmukos), Mahidol University, Bangkok, Thailand
| | - Keerapa Phusanti
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakorn Ratchasima, Thailand (K.P.)
| | | | - Zoya Kingsbury
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Taksina Newington
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Uma Maheswari
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Mark T. Ross
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Andrew Grace
- Department of Biochemistry, University of Cambridge, UK (A.G.)
| | - Pier D. Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK (P.D.L.)
- Institute of Cardiovascular Science, Population Health, UCL, London, UK (P.D.L.)
| | - Elijah R. Behr
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, UK (E.R.B.)
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London, UK (E.R.B.)
| | - Jean-Jacques Schott
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Nantes Université, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, Nantes, France (J.-J.S., R.R., J.B.)
| | - Richard Redon
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Nantes Université, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, Nantes, France (J.-J.S., R.R., J.B.)
| | - Julien Barc
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Nantes Université, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, Nantes, France (J.-J.S., R.R., J.B.)
| | - Vincent M. Christoffels
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
| | - Arthur A.M. Wilde
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Koonlawee Nademanee
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok, Thailand (K.N.)
| | - Connie R. Bezzina
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
| | - Apichai Khongphatthanayothin
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Departments of Pediatrics (Y.P., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Bangkok Heart Hospital, Bangkok General Hospital, Thailand (G.V., A.K.)
| |
Collapse
|
3
|
Pandey KN. Genetic and Epigenetic Mechanisms Regulating Blood Pressure and Kidney Dysfunction. Hypertension 2024; 81:1424-1437. [PMID: 38545780 PMCID: PMC11168895 DOI: 10.1161/hypertensionaha.124.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The pioneering work of Dr Lewis K. Dahl established a relationship between kidney, salt, and high blood pressure (BP), which led to the major genetic-based experimental model of hypertension. BP, a heritable quantitative trait affected by numerous biological and environmental stimuli, is a major cause of morbidity and mortality worldwide and is considered to be a primary modifiable factor in renal, cardiovascular, and cerebrovascular diseases. Genome-wide association studies have identified monogenic and polygenic variants affecting BP in humans. Single nucleotide polymorphisms identified in genome-wide association studies have quantified the heritability of BP and the effect of genetics on hypertensive phenotype. Changes in the transcriptional program of genes may represent consequential determinants of BP, so understanding the mechanisms of the disease process has become a priority in the field. At the molecular level, the onset of hypertension is associated with reprogramming of gene expression influenced by epigenomics. This review highlights the specific genetic variants, mutations, and epigenetic factors associated with high BP and how these mechanisms affect the regulation of hypertension and kidney dysfunction.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA
| |
Collapse
|
4
|
Rojo D, Hael CE, Soria A, de Souza FSJ, Low MJ, Franchini LF, Rubinstein M. A mammalian tripartite enhancer cluster controls hypothalamic Pomc expression, food intake, and body weight. Proc Natl Acad Sci U S A 2024; 121:e2322692121. [PMID: 38652744 PMCID: PMC11067048 DOI: 10.1073/pnas.2322692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.
Collapse
Affiliation(s)
- Daniela Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Clara E. Hael
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Agustina Soria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Flávio S. J. de Souza
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| |
Collapse
|
5
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
6
|
Zhou P, VanDusen NJ, Zhang Y, Cao Y, Sethi I, Hu R, Zhang S, Wang G, Ye L, Mazumdar N, Chen J, Zhang X, Guo Y, Li B, Ma Q, Lee JY, Gu W, Yuan GC, Ren B, Chen K, Pu WT. Dynamic changes in P300 enhancers and enhancer-promoter contacts control mouse cardiomyocyte maturation. Dev Cell 2023; 58:898-914.e7. [PMID: 37071996 PMCID: PMC10231645 DOI: 10.1016/j.devcel.2023.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023]
Abstract
Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Nathan J VanDusen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchun Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yangpo Cao
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Isha Sethi
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shuo Zhang
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Guangyu Wang
- Cardiovascular Department, Houston Methodist, Weill Cornell Medical College, Houston, TX, USA
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Neil Mazumdar
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jian Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yuxuan Guo
- Peking University Health Science Center, Beijing, China
| | - Bin Li
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Julianna Y Lee
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Weiliang Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Casini S, Marchal GA, Kawasaki M, Fabrizi B, Wesselink R, Nariswari FA, Neefs J, van den Berg NWE, Driessen AHG, de Groot JR, Verkerk AO, Remme CA. Differential Sodium Current Remodelling Identifies Distinct Cellular Proarrhythmic Mechanisms in Paroxysmal vs Persistent Atrial Fibrillation. Can J Cardiol 2023; 39:277-288. [PMID: 36586483 DOI: 10.1016/j.cjca.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying progression from paroxysmal to persistent atrial fibrillation (AF) are not fully understood, but alterations in (late) sodium current (INa) have been proposed. Human studies investigating electrophysiological changes at the paroxysmal stage of AF are sparse, with the majority employing right atrial appendage cardiomyocytes (CMs). We here investigated action potential (AP) characteristics and (late) INa remodelling in left atrial appendage CMs (LAA-CMs) from patients with paroxysmal and persistent AF and patients in sinus rhythm (SR), as well as the potential contribution of the "neuronal" sodium channel SCN10A/NaV1.8. METHODS Peak INa, late INa and AP properties were investigated through patch-clamp analysis on single LAA-CMs, whereas quantitative polymerase chain reaction was used to assess SCN5A/SCN10A expression levels in LAA tissue. RESULTS In paroxysmal and persistent AF LAA-CMs, AP duration was shorter than in SR LAA-CMs. Compared with SR, peak INa and SCN5A expression were significantly decreased in paroxysmal AF, whereas they were restored to SR levels in persistent AF. Conversely, although late INa was unchanged in paroxysmal AF compared with SR, it was significantly increased in persistent AF. Peak or late Nav1.8-based INa was not detected in persistent AF LAA-CMs. Similarly, expression of SCN10A was not observed in LAAs at any stage. CONCLUSIONS Our findings demonstrate differences in (late) INa remodeling in LAA-CMs from patients with paroxysmal vs persistent AF, indicating distinct cellular proarrhythmic mechanisms in different AF forms. These observations are of particular relevance when considering potential pharmacologic approaches targeting (late) INa in AF.
Collapse
Affiliation(s)
- Simona Casini
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| | - Gerard A Marchal
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Makiri Kawasaki
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Fransisca A Nariswari
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands; Amsterdam UMC, location University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Popa IP, Șerban DN, Mărănducă MA, Șerban IL, Tamba BI, Tudorancea I. Brugada Syndrome: From Molecular Mechanisms and Genetics to Risk Stratification. Int J Mol Sci 2023; 24:ijms24043328. [PMID: 36834739 PMCID: PMC9967917 DOI: 10.3390/ijms24043328] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Brugada syndrome (BrS) is a rare hereditary arrhythmia disorder, with a distinctive ECG pattern, correlated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD) in young adults. BrS is a complex entity in terms of mechanisms, genetics, diagnosis, arrhythmia risk stratification, and management. The main electrophysiological mechanism of BrS requires further research, with prevailing theories centered on aberrant repolarization, depolarization, and current-load match. Computational modelling, pre-clinical, and clinical research show that BrS molecular anomalies result in excitation wavelength (k) modifications, which eventually increase the risk of arrhythmia. Although a mutation in the SCN5A (Sodium Voltage-Gated Channel Alpha Subunit 5) gene was first reported almost two decades ago, BrS is still currently regarded as a Mendelian condition inherited in an autosomal dominant manner with incomplete penetrance, despite the recent developments in the field of genetics and the latest hypothesis of additional inheritance pathways proposing a more complex mode of inheritance. In spite of the extensive use of the next-generation sequencing (NGS) technique with high coverage, genetics remains unexplained in a number of clinically confirmed cases. Except for the SCN5A which encodes the cardiac sodium channel NaV1.5, susceptibility genes remain mostly unidentified. The predominance of cardiac transcription factor loci suggests that transcriptional regulation is essential to the Brugada syndrome's pathogenesis. It appears that BrS is a multifactorial disease, which is influenced by several loci, each of which is affected by the environment. The primary challenge in individuals with a BrS type 1 ECG is to identify those who are at risk for sudden death, researchers propose the use of a multiparametric clinical and instrumental strategy for risk stratification. The aim of this review is to summarize the latest findings addressing the genetic architecture of BrS and to provide novel perspectives into its molecular underpinnings and novel models of risk stratification.
Collapse
Affiliation(s)
- Irene Paula Popa
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Dragomir N. Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minela Aida Mărănducă
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionela Lăcrămioara Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence:
| | - Ionuț Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
9
|
Miller JA, Moise N, Weinberg SH. Modeling incomplete penetrance in long QT syndrome type 3 through ion channel heterogeneity: an in silico population study. Am J Physiol Heart Circ Physiol 2023; 324:H179-H197. [PMID: 36487185 PMCID: PMC10072004 DOI: 10.1152/ajpheart.00430.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Many cardiac diseases are characterized by an increased late sodium current, including heart failure, hypertrophic cardiomyopathy, and inherited long QT syndrome type 3 (LQT3). The late sodium current in LQT3 is caused by a gain-of-function mutation in the voltage-gated sodium channel Nav1.5. Despite a well-defined genetic cause of LQT3, treatment remains inconsistent because of incomplete penetrance of the mutation and variability of antiarrhythmic efficacy. Here, we investigate the relationship between LQT3-associated mutation incomplete penetrance and variability in ion channel expression, simulating a population of 1,000 individuals with the O'Hara-Rudy model of the human ventricular myocyte. We first simulate healthy electrical activity (i.e., in the absence of a mutation) and then incorporate heterozygous expression for three LQT3-associated mutations (Y1795C, I1768V, and ΔKPQ), to directly compare the effects of each mutation on individuals across a diverse population. For all mutations, we find that susceptibility, defined by either the presence of an early afterdepolarization (EAD) or prolonged action potential duration (APD), primarily depends on the balance between the conductance of IKr and INa, for which individuals with a higher IKr-to-INa ratio are less susceptible. Furthermore, we find distinct differences across the population, observing individuals susceptible to zero, one, two, or all three mutations. Individuals tend to be less susceptible with an appropriate balance of repolarizing currents, typically via increased IKs or IK1. Interestingly, the more critical repolarizing current is mutation specific. We conclude that the balance between key currents plays a significant role in mutant-specific presentation of the disease phenotype in LQT3.NEW & NOTEWORTHY An in silico population approach investigates the relationship between variability in ion channel expression and gain-of-function mutations in the voltage-gated sodium channel associated with the congenital disorder long QT syndrome type 3 (LQT3). We find that ion channel variability can contribute to incomplete penetrance of the mutation, with mutant-specific differences in ion channel conductances leading to susceptibility to proarrhythmic action potential duration prolongation or early afterdepolarizations.
Collapse
Affiliation(s)
- Jacob A Miller
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
10
|
Lalaguna L, Ramos-Hernández L, Priori SG, Lara-Pezzi E. Genome Editing and Inherited Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:115-127. [DOI: 10.1007/978-981-19-5642-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Yang D, Chung T, Kim D. DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator. Bioinformatics 2022; 38:3501-3512. [PMID: 35640981 DOI: 10.1093/bioinformatics/btac373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/17/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The importance of chromatin loops in gene regulation is broadly accepted. There are mainly two approaches to predict chromatin loops: transcription factor (TF) binding-dependent approach and genomic variation-based approach. However, neither of these approaches provides an adequate understanding of gene regulation in human tissues. To address this issue, we developed a deep learning-based chromatin loop prediction model called DeepLUCIA (Deep Learning-based Universal Chromatin Interaction Annotator). RESULTS Although DeepLUCIA does not use TF binding profile data which previous TF binding-dependent methods critically rely on, its prediction accuracies are comparable to those of the previous TF binding-dependent methods. More importantly, DeepLUCIA enables the tissue-specific chromatin loop predictions from tissue-specific epigenomes that cannot be handled by genomic variation-based approach. We demonstrated the utility of the DeepLUCIA by predicting several novel target genes of SNPs identified in genome-wide association studies targeting Brugada syndrome, COVID-19 severity, and age-related macular degeneration. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dongchan Yang
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Taesu Chung
- Biotechnology & Healthcare Examination Division, KIPO, Daejeon, 35208, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
12
|
Paludan-Müller C, Larsen S, Ahlberg G, Andreasen L, Monfort LM, Svendsen JH, Jespersen T, Bundgaard H, Kanters JK, Olesen MS. Clinical Implications of
SCN10A
Loss-of-Function Variants in 169 610 Exomes Representing the General Population. Circ Genom Precis Med 2022; 15:e003574. [DOI: 10.1161/circgen.121.003574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christian Paludan-Müller
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Medicine (C.P.-M., G.A., L.M.M., J.H.S., H.B.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Simon Larsen
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gustav Ahlberg
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Medicine (C.P.-M., G.A., L.M.M., J.H.S., H.B.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laura Andreasen
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laia M. Monfort
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Medicine (C.P.-M., G.A., L.M.M., J.H.S., H.B.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper H. Svendsen
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Clinical Medicine (C.P.-M., G.A., L.M.M., J.H.S., H.B.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henning Bundgaard
- The Unit for Inherited Cardiac Diseases (H.B.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Clinical Medicine (C.P.-M., G.A., L.M.M., J.H.S., H.B.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jørgen K. Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences (J.K.K.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten S. Olesen
- Laboratory for Molecular Cardiology (C.P.-M., S.L., G.A., L.A., L.M.M., J.H.S., M.S.O.), Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Biomedical Sciences (C.P.-M., S.L., G.A., L.A., L.M.M., T.J., M.S.O.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
14
|
Man JCK, Bosada FM, Scholman KT, Offerhaus JA, Walsh R, van Duijvenboden K, van Eif VWW, Bezzina CR, Verkerk AO, Boukens BJ, Barnett P, Christoffels VM. Variant Intronic Enhancer Controls SCN10A-short Expression and Heart Conduction. Circulation 2021; 144:229-242. [PMID: 33910361 DOI: 10.1161/circulationaha.121.054083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent W W van Eif
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Phil Barnett
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
15
|
Pinsach-Abuin ML, Del Olmo B, Pérez-Agustin A, Mates J, Allegue C, Iglesias A, Ma Q, Merkurjev D, Konovalov S, Zhang J, Sheikh F, Telenti A, Brugada J, Brugada R, Gymrek M, di Iulio J, Garcia-Bassets I, Pagans S. Analysis of Brugada syndrome loci reveals that fine-mapping clustered GWAS hits enhances the annotation of disease-relevant variants. Cell Rep Med 2021; 2:100250. [PMID: 33948580 PMCID: PMC8080235 DOI: 10.1016/j.xcrm.2021.100250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Genome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited. Here, we interrogate the value of integrating the full set of GWAS hits in a locus repeatedly associated with cardiac conduction traits and arrhythmia, SCN5A-SCN10A. Our analysis reveals 5 common 7-SNV haplotypes (Hap1-5) with 2 combinations associated with life-threatening arrhythmia-Brugada syndrome (the risk Hap1/1 and protective Hap2/3 genotypes). Hap1 and Hap2 share 3 SNVs; thus, this analysis suggests that assuming redundancy among clustered GWAS hits can lead to confounding disease-risk associations and supports the need to deconstruct GWAS data in the context of haplotype composition.
Collapse
Affiliation(s)
- Mel Lina Pinsach-Abuin
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Bernat Del Olmo
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Adrian Pérez-Agustin
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesus Mates
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Catarina Allegue
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Anna Iglesias
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergiy Konovalov
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amalio Telenti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Josep Brugada
- Arrhythmia Unit, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Ramon Brugada
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Service, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Melissa Gymrek
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Julia di Iulio
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara Pagans
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
16
|
Gacita AM, Fullenkamp DE, Ohiri J, Pottinger T, Puckelwartz MJ, Nobrega MA, McNally EM. Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation 2021; 143:1302-1316. [PMID: 33478249 PMCID: PMC8009836 DOI: 10.1161/circulationaha.120.050432] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inherited cardiomyopathy associates with a range of phenotypes, mediated by genetic and nongenetic factors. Noninherited cardiomyopathy also displays varying progression and outcomes. Expression of cardiomyopathy genes is under the regulatory control of promoters and enhancers, and human genetic variation in promoters and enhancers may contribute to this variability. METHODS We superimposed epigenomic profiling from hearts and cardiomyocytes, including promoter-capture chromatin conformation information, to identify enhancers for 2 cardiomyopathy genes, MYH7 and LMNA. Enhancer function was validated in human cardiomyocytes derived from induced pluripotent stem cells. We also conducted a genome-wide search to ascertain genomic variation in enhancers positioned to alter cardiac expression and correlated one of these variants to cardiomyopathy progression using biobank data. RESULTS Multiple enhancers were identified and validated for LMNA and MYH7, including a key enhancer that regulates the switch from MYH6 expression to MYH7 expression. Deletion of this enhancer resulted in a dose-dependent increase in MYH6 and faster contractile rate in engineered heart tissues. We searched for genomic variation in enhancer sequences across the genome, with a focus on nucleotide changes that create or interrupt transcription factor binding sites. The sequence variant, rs875908, disrupts a T-Box Transcription Factor 5 binding motif and maps to an enhancer region 2 kilobases from the transcriptional start site of MYH7. Gene editing to remove the enhancer that harbors this variant markedly reduced MYH7 expression in human cardiomyocytes. Using biobank-derived data, rs875908 associated with longitudinal echocardiographic features of cardiomyopathy. CONCLUSIONS Enhancers regulate cardiomyopathy gene expression, and genomic variation within these enhancer regions associates with cardiomyopathic progression over time. This integrated approach identified noncoding modifiers of cardiomyopathy and is applicable to other cardiac genes.
Collapse
Affiliation(s)
- Anthony M. Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Dominic E. Fullenkamp
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Joyce Ohiri
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Tess Pottinger
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
17
|
Carreras D, Martinez-Moreno R, Pinsach-Abuin M, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ, Pagans S. Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22052755. [PMID: 33803193 PMCID: PMC7963191 DOI: 10.3390/ijms22052755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The SCN5A gene encodes the α-subunit of the voltage-gated cardiac sodium channel (NaV1.5), a key player in cardiac action potential depolarization. Genetic variants in protein-coding regions of the human SCN5A have been largely associated with inherited cardiac arrhythmias. Increasing evidence also suggests that aberrant expression of the SCN5A gene could increase susceptibility to arrhythmogenic diseases, but the mechanisms governing SCN5A expression are not yet well understood. To gain insights into the molecular basis of SCN5A gene regulation, we used rat gastrocnemius muscle four days following denervation, a process well known to stimulate Scn5a expression. Our results show that denervation of rat skeletal muscle induces the expression of the adult cardiac Scn5a isoform. RNA-seq experiments reveal that denervation leads to significant changes in the transcriptome, with Scn5a amongst the fifty top upregulated genes. Consistent with this increase in expression, ChIP-qPCR assays show enrichment of H3K27ac and H3K4me3 and binding of the transcription factor Gata4 near the Scn5a promoter region. Also, Gata4 mRNA levels are significantly induced upon denervation. Genome-wide analysis of H3K27ac by ChIP-seq suggest that a super enhancer recently described to regulate Scn5a in cardiac tissue is activated in response to denervation. Altogether, our experiments reveal that similar mechanisms regulate the expression of Scn5a in denervated muscle and cardiac tissue, suggesting a conserved pathway for SCN5A expression among striated muscles.
Collapse
Affiliation(s)
- David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Manel M. Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, 43003 Reus, Spain;
| | - Pol Gomà
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Hospital Josep Trueta, 17007 Girona, Spain
| | - Fabiana S. Scornik
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Guillermo J. Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Sara Pagans
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| |
Collapse
|
18
|
Bertero A, Rosa-Garrido M. Three-dimensional chromatin organization in cardiac development and disease. J Mol Cell Cardiol 2021; 151:89-105. [PMID: 33242466 PMCID: PMC11056610 DOI: 10.1016/j.yjmcc.2020.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Recent technological advancements in the field of chromatin biology have rewritten the textbook on nuclear organization. We now appreciate that the folding of chromatin in the three-dimensional space (i.e. its 3D "architecture") is non-random, hierarchical, and highly complex. While 3D chromatin structure is partially encoded in the primary sequence and thereby broadly conserved across cell types and states, a substantial portion of the genome seems to be dynamic during development or in disease. Moreover, there is growing evidence that at least some of the 3D structure of chromatin is functionally linked to gene regulation, both being modulated by and impacting on multiple nuclear processes (including DNA replication, transcription, and RNA splicing). In recent years, these new concepts have nourished several investigations about the functional role of 3D chromatin topology dynamics in the heart during development and disease. This review aims to provide a comprehensive overview of our current understanding in this field, and to discuss how this knowledge can inform further research as well as clinical practice.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA.
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, 650 Charles Young Dr, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Man JCK, van Duijvenboden K, Krijger PHL, Hooijkaas IB, van der Made I, de Gier-de Vries C, Wakker V, Creemers EE, de Laat W, Boukens BJ, Christoffels VM. Genetic Dissection of a Super Enhancer Controlling the Nppa-Nppb Cluster in the Heart. Circ Res 2021; 128:115-129. [PMID: 33107387 DOI: 10.1161/circresaha.120.317045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Binding Sites
- Binding, Competitive
- CRISPR-Cas Systems
- Cell Line
- Disease Models, Animal
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice, Knockout
- Multigene Family
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Ingeborg B Hooijkaas
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
20
|
Pérez-Agustín A, Pinsach-Abuin M, Pagans S. Role of Non-Coding Variants in Brugada Syndrome. Int J Mol Sci 2020; 21:E8556. [PMID: 33202810 PMCID: PMC7698069 DOI: 10.3390/ijms21228556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, SCN5A is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS. However, more than 65% of diagnosed cases cannot be explained by variants in SCN5A or other genes. Therefore, in an important number of BrS cases, the underlying mechanisms are still elusive. Common variants, mostly located in non-coding regions, have emerged as potential modulators of the disease by affecting different regulatory mechanisms, including transcription factors (TFs), three-dimensional organization of the genome, or non-coding RNAs (ncRNAs). These common variants have been hypothesized to modulate the interindividual susceptibility of the disease, which could explain incomplete penetrance of BrS observed within families. Altogether, the study of both common and rare variants in parallel is becoming increasingly important to better understand the genetic basis underlying BrS. In this review, we aim to describe the challenges of studying non-coding variants associated with disease, re-examine the studies that have linked non-coding variants with BrS, and provide further evidence for the relevance of regulatory elements in understanding this cardiac disorder.
Collapse
Affiliation(s)
- Adrian Pérez-Agustín
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| | | | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| |
Collapse
|
21
|
Abstract
Cardiac arrhythmias are defined as electrical disorders of the pumping heart, including therein a wide range of physiopathological entities [...]
Collapse
|
22
|
Abstract
RATIONALE There is growing evidence that common variants and rare sequence alterations in regulatory sequences can result in birth defects or predisposition to disease. Congenital heart defects are the most common birth defect and have a clear genetic component, yet only a third of cases can be attributed to structural variation in the genome or a mutation in a gene. The remaining unknown cases could be caused by alterations in regulatory sequences. OBJECTIVE Identify regulatory sequences and gene expression networks that are active during organogenesis of the human heart. Determine whether these sites and networks are enriched for disease-relevant genes and associated genetic variation. METHODS AND RESULTS We characterized ChromHMM (chromatin state) and gene expression dynamics during human heart organogenesis. We profiled 7 histone modifications in embryonic hearts from each of 9 distinct Carnegie stages (13-14, 16-21, and 23), annotated chromatin states, and compared these maps to over 100 human tissues and cell types. We also generated RNA-sequencing data, performed differential expression, and constructed weighted gene coexpression networks. We identified 177 412 heart enhancers; 12 395 had not been previously annotated as strong enhancers. We identified 92% of all functionally validated heart-positive enhancers (n=281; 7.5× enrichment; P<2.2×10-16). Integration of these data demonstrated novel heart enhancers are enriched near genes expressed more strongly in cardiac tissue and are enriched for variants associated with ECG measures and atrial fibrillation. Our gene expression network analysis identified gene modules strongly enriched for heart-related functions, regulatory control by heart-specific enhancers, and putative disease genes. CONCLUSIONS Well-connected hub genes with heart-specific expression targeted by embryonic heart-specific enhancers are likely disease candidates. Our functional annotations will allow for better interpretation of whole genome sequencing data in the large number of patients affected by congenital heart defects.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington CT, USA
| | - Tara N. Yankee
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington CT, USA
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington CT, USA
| | - Andrea Wilderman
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington CT, USA
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington CT, USA
| | - Justin Cotney
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington CT, USA
- Institute for Systems Genomics, UConn, Storrs CT, USA
| |
Collapse
|
23
|
Conjugated activation of myocardial-specific transcription of Gja5 by a pair of Nkx2-5-Shox2 co-responsive elements. Dev Biol 2020; 465:79-87. [PMID: 32687896 DOI: 10.1016/j.ydbio.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The sinoatrial node (SAN) is the primary pacemaker in the heart. During cardiogenesis, Shox2 and Nkx2-5 are co-expressed in the junction domain of the SAN and regulate pacemaker cell fate through a Shox2-Nkx2-5 antagonism. Cx40 is a marker of working myocardium and an Nkx2-5 transcriptional output antagonized by Shox2, but the underlying regulatory mechanisms remain elusive. Here we characterized a bona fide myocardial-specific Gja5 (coding gene of Cx40) distal enhancer consisting of a pair of Nkx2-5 and Shox2 co-bound elements in the regulatory region of Gja5. Transgenic reporter assays revealed that neither element alone, but the conjugation of both elements together, drives myocardial-specific transcription. Genetic analyses confirmed that the activation of this enhancer depends on Nkx2-5 but is inhibited by Shox2 in vivo, and its presence is essential for Gja5 expression in the myocardium but not the endothelial cells of the heart. Furthermore, chromatin conformation analysis showed an Nkx2-5-dependent loop formation between these two elements and the Gja5 promoter in vivo, indicating that Nkx2-5 bridges the conjugated activation of this enhancer by pairing the two elements to the Gja5 promoter.
Collapse
|
24
|
Correction to: Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:e143-e146. [DOI: 10.1161/res.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|