1
|
Xue D, Zhao Y, Cao J, Wang Y, Li X, Ma T. Spin Engineering of Dual-Atom Site Catalysts for Efficient Electrochemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504213. [PMID: 40528657 DOI: 10.1002/adma.202504213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/28/2025] [Indexed: 06/20/2025]
Abstract
Dual-atom site catalysts (DASCs) provide more advantages than single-atom systems in improving energy conversions, owing to their unique features. For example, the coupling effect may align the spin of two adjacent dual-atom active centers in parallel or antiparallel via electron exchange interactions, thereby altering reaction mechanisms and overall efficiency. While numerous reviews have explored spin-dependent electrocatalysis, there remains a lack of a comprehensive, spin-focused framework for understanding the catalytic behavior of DASCs. This review emphasizes the role of spin in dual-atom site centers for electrocatalysis research. First, spin fundamentals in electrocatalysts, including spin-selective orbital occupation, spin ordering, and spin coupling, are comprehensively summarized to provide a solid foundation for subsequent discussions. Then, spin engineering strategies of DASCs are reviewed, including manipulating the spin configuration of the central atoms, modulating coordination environments, and tuning metal-support interactions. Next, recent developments in spin engineering of DASCs are reviewed, with a focus on structure-performance relationships. Furthermore, high-throughput screening techniques integrated with machine learning are discussed for developing highly efficient DASCs based on spin engineering. The challenges and opportunities of DASCs and spin engineering are thoroughly discussed to promote the advancement of new energy applications.
Collapse
Affiliation(s)
- Dongping Xue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Yan Wang
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| |
Collapse
|
2
|
Ye S, Liu F, She F, Chen J, Zhang D, Kumatani A, Shiku H, Wei L, Li H. Hydrogen Binding Energy Is Insufficient for Describing Hydrogen Evolution on Single-Atom Catalysts. Angew Chem Int Ed Engl 2025; 64:e202425402. [PMID: 40109007 DOI: 10.1002/anie.202425402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
The design principles for metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) in the hydrogen evolution reaction (HER) have been extensively studied. Yet, consensus remains elusive, hindering advancements in hydrogen energy technologies. Although the hydrogen binding energy (ΔGH*) has long been used as a key HER descriptor during the past two decades, originating from the activity volcano of metallic surfaces, its applicability to HER SACs has been met with significant controversy. Herein, we investigate the effects of HO*/O* poisoning and H* coverage on SACs with varied metal centers and coordination environments using pH-dependent surface Pourbaix diagrams at the reversible hydrogen electrode (RHE) scale and microkinetic modeling. Our findings reveal that HO* poisoning, realistic H* adsorption strengths at active metal sites, and the potential HER activity at the coordinating N-sites are crucial factors that should be considered for accurate descriptor development. Experimental validation using a series of M-phthalocyanine/CNT catalysts (M = Co, Ni, Cu) confirms the theoretical predictions, with excellent agreement in exchange current densities and the role of N-sites in Ni/Cu-phthalocyanine/CNT catalysts. This work provides answers to a long-lasting debate on HER descriptors by establishing ΔGH* and ΔGHO* as a combined HER descriptor for SACs, offering new guidelines for catalyst design.
Collapse
Affiliation(s)
- Songbo Ye
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Fangzhou Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Fangxin She
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Jiaxiang Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Akichika Kumatani
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Department of Electrical and Electronic Engineering, Chiba Institute of Technology, Chiba, 275-0016, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
You S, Zhang C, Yu M, Tan X, Sun K, Zheng Y, Zhuang Z, Yan W, Zhang J. Rational Dual-Atom Design to Boost Oxygen Reduction Reaction on Iron-Based Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502102. [PMID: 40388648 DOI: 10.1002/smll.202502102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/01/2025] [Indexed: 05/21/2025]
Abstract
The oxygen reduction reaction (ORR) is critical for energy conversion technologies like fuel cells and metal-air batteries. However, advancing efficient and stable ORR catalysts remains a significant challenge. Iron-based single-atom catalysts (Fe SACs) have emerged as promising alternatives to precious metals. However, their catalytic performance and stability remain constrained. Introducing a second metal (M) to construct Fe─M dual-atom catalysts (Fe─M DACs) is an effective strategy to enhance the performance of Fe SACs. This review provides a comprehensive overview of the recent advancements in Fe-based DACs for ORR. It begins by examining the structural advantages of Fe─M DACs from the perspectives of electronic structure and reaction pathways. Next, the precise synthetic strategies for DACs are discussed, and the structure-performance relationships are explored, highlighting the role of the second metal in improving catalytic activity and stability. The review also covers in situ characterization techniques for real-time observation of catalytic dynamics and reaction intermediates. Finally, future directions for Fe─M DACs are proposed, emphasizing the integration of advanced experimental strategies with theoretical simulations as well as artificial intelligence/machine learning to design highly active and stable ORR catalysts, aiming to expand the application of Fe─M DACs in energy conversion and storage technologies.
Collapse
Affiliation(s)
- Shengping You
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Chao Zhang
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Mingyu Yu
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Xin Tan
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Kaian Sun
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Yun Zheng
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Wei Yan
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Li X, Liu X, Hussain M, Li J, Chen Z, Fang Y, Su C, He C, Lu J. Engineering Local Coordination and Electronic Structures of Dual-Atom Catalysts. ACS NANO 2025; 19:17114-17139. [PMID: 40310690 DOI: 10.1021/acsnano.5c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Heterogeneous dual-atom catalysts (DACs), defined by atomically precise and isolated metal pairs on solid supports, have garnered significant interest in advancing catalytic processes and technologies aimed at achieving sustainable energy and chemical production. DACs present board opportunities for atomic-level structural and property engineering to enhance catalytic performance, which can effectively address the limitations of single-atom catalysts, including restricted active sites, spatial constraints, and the typically positive charge nature of supported single metal species. Despite the rapid progress in this field, the intricate relationship between local atomic environments and the catalytic behavior of dual-metal active sites remains insufficiently understood. This review highlights recent progress and major challenges in this field. We begin by discussing the local modulation of coordination and electronic structures in DACs and its impact on catalytic performance. Through specific case studies, we demonstrate the importance of optimizing the entire catalytic ensemble to achieve efficient, selective, and stable performance in both model and industrially relevant reactions. Additionally, we also outline future research directions, emphasizing the challenges and opportunities in synthesis, characterization, and practical applications, aiming to fully unlock the potential of these advanced catalysts.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Muzammil Hussain
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518000, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou, Jiangsu 215000, China
| |
Collapse
|
5
|
Yuan P, Wun CKT, Lo TWB. Harnessing Synergistic Cooperation of Neighboring Active Motifs in Heterogeneous Catalysts for Enhanced Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501960. [PMID: 40350980 DOI: 10.1002/adma.202501960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Indexed: 05/14/2025]
Abstract
Understanding the intricate interplay between catalytically active motifs in heterogeneous catalysts has long posed a significant challenge in the design of highly active and selective reactions. Drawing inspiration from biological enzymes and homogeneous catalysts, the synergistic cooperation between neighboring active motifs has emerged as a crucial factor in achieving effective catalysis. This synergistic control is often observed in natural enzymes and homogeneous systems through ligand coordination. The synergistic interaction is especially vital in reactions involving tandem or cascade steps, where distinct active motifs provide different functionalities to enable the co-activation of the reaction substrate(s). Situated within a 3D spatial domain, these catalytically active motifs can shape favorable catalytic landscapes by modulating electronic and geometric characteristics, thereby stabilizing specific intermediate or transition state species in a specific catalytic reaction. In this review, we aim to explore a diverse array of the latest heterogeneous catalytic systems that capitalize on the synergistic cooperativity between neighboring active motifs. We will delve into how such synergistic interactions can be utilized to engineer more favorable catalytic landscapes, ultimately resulting in the modulation of catalytic reactivities.
Collapse
Affiliation(s)
- Peng Yuan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
- PolyU-Daya Bay Technology and Innovation Research Institute, The Hong Kong Polytechnic University, Huizhou, Guangdong, 516083, China
| | - Ching Kit Tommy Wun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
- PolyU-Daya Bay Technology and Innovation Research Institute, The Hong Kong Polytechnic University, Huizhou, Guangdong, 516083, China
| | - Tsz Woon Benedict Lo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
- PolyU-Daya Bay Technology and Innovation Research Institute, The Hong Kong Polytechnic University, Huizhou, Guangdong, 516083, China
| |
Collapse
|
6
|
Zhong DC, Wang YC, Wang M, Lu TB. Precise Synthesis of Dual-Atom Catalysts for Better Understanding the Enhanced Catalytic Performance and Synergistic Mechanism. Acc Chem Res 2025; 58:1379-1391. [PMID: 40207527 DOI: 10.1021/acs.accounts.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
ConspectusDual-atom catalysts (DACs), featuring two catalytic sites in close proximity, have emerged as a new frontier in energy-related catalysis. Compared with single-atom catalysts (SACs), DACs have more space to optimize the catalytic performance by changing the dual-atom catalytic sites and their coordination environments. Through adjusting the compositions and coordination environments of the metal sites in DACs, it is possible to finely tune the electronic and geometric properties of active centers, and then the synergistic effects for facilitating substrates activation and intermediates stabilization can be strengthened or optimized, consequently tailoring diverse reaction pathways and achieving various challenging catalytic reactions. The most important yet challenging task in DACs studies is the precise synthesis of DACs, which is crucial to understand the relationship between the catalytic performance and structure at the atomic level. In most cases, DACs were synthesized via the pyrolysis of a mixture of metal salts and organic ligands, in which two metals are randomly distributed in DACs, and it was difficult to control the M···M distance (M = metal ion) and uniform dispersion of DACs. Hence, developing innovative strategies for the precise synthesis of DACs with definite structures and high-efficiency catalytic performance is urgently needed.In this Account, we tentatively summarize the strategies for the precise synthesis of DACs and their applications in activation and conversion of small molecules such as H2O, CO2, and so on. Focusing on the precise synthesis of DACs, three types of synthesis strategies have been put forward and systematically introduced. Based on the precise synthesis strategies, the applications of the resulting DACs with high purity in synergistically activating and converting small molecules have concurrently been discussed, including the cleavage of C-C bonds, activation and reduction of CO2 and H2O, and so on. Attempts have been made to explain why the catalytic performance of DACs for these functions is much higher than what SACs have achieved. Efforts have been made on revealing the influences of dual-metal site types, the separations between dual metals, their geometry configurations and coordination environments, as well as the ligand structures on the catalytic performance. Emphasis has been placed on the analysis of the structure-reactivity relationship and revealing the synergistic mechanism at the molecular level. Finally, perspectives on the current challenges and future development of DACs have been put forward. We anticipate and believe that this Account will provide profound insights into the synthesis of structurally defined DACs and give new insights of synergistic catalytic effects in DACs.
Collapse
Affiliation(s)
- Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu-Chen Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mei Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
7
|
Ma R, Zhang J, Gong J, Lin Y, Zhang J, Huang ZQ, Chang CR, Liu S, Zhu W, Wang Y, Zeng K, Tao Y, Hu J, Zhang Z, Liang X, Han Y, Mao J, Zhuang Z, Yan J, Wang D, Xiong Y. The Cooperative Effects of the Rh-M Dual-Metal Atomic Pairs in Formic Acid Oxidation. Angew Chem Int Ed Engl 2025; 64:e202503095. [PMID: 40095392 DOI: 10.1002/anie.202503095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
The continuously increasing mass activity of precious metal in formic acid oxidation reaction (FAOR) is the key to achieving the practical application of direct formic acid fuel cells (DFAFCs). Herein, Rh-based dual-metal atomic pairs supported on nitrogen-doped carbon catalysts [DAP-(M, Rh)/CN] with adjacent interatomic Rh-M (M = V, Cr, Mn, Fe, Co, Ni, Cu) have been synthesized by a "host-guest" strategy. It is discovered that DAP-(Cr, Rh)/CN shows the highest mass activity of 64.1 A mg-1, which is 3.8 times higher than that of the single atom Rh catalyst (17.0 A mg-1) and two orders of magnitude higher than Pd/C (0.58 A mg-1). Interestingly, the mass activity of DAP-(M, Rh)/CN first increases from 11.7 A mg-1 (Rh-V) to 64.1 A mg-1 (Rh-Cr) and then decreases to 21.8 A mg-1 (Rh-Cu), forming a volcano curve of the reaction activity. Density functional theory calculations combined with in situ Fourier transform infrared spectrometer (FTIR) spectra reveal that formic acid oxidized on a series of DAP-(M, Rh)/CN catalysts through the formate route with the subsidiary M metal atoms binding the HCOO species and the Rh atom accepting the H atoms. The most suitable adsorption strength of HCOO on the Cr sites luckily contributes to two spontaneous elementary steps and thus accelerates the FAOR rates.
Collapse
Affiliation(s)
- Runze Ma
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bioinspired Materials and Devices & School of Energy and Power Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Jiaxin Gong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Jialin Zhang
- Beijing Key Laboratory of Bioinspired Materials and Devices & School of Energy and Power Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Shoujie Liu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yuxin Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Ke Zeng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Yu Tao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jinhua Hu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P.R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Jun Yan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| |
Collapse
|
8
|
Krstajić Pajić MN, Dobrota AS, Mazare A, Đurđić S, Zhou X, Denisov N, Skorodumova NV, Manojlović D, Vasilić R, Pašti IA, Schmuki P, Lačnjevac U. Polydisperse Pt Deposits Over TiO 2-Nanotube-Array-Supported Ru Nanoparticles: Harnessing the Interfacial Synergy for Efficient Hydrogen Evolution Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411870. [PMID: 40166857 DOI: 10.1002/smll.202411870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Developing cost-effective precious metal electrocatalysts for the hydrogen evolution reaction (HER) is key to realizing the economic viability of acidic water electrolysis. Herein, galvanic displacement is employed for in situ formation of bimetallic Pt/Ru deposits on H-intercalated TiO2 nanotube arrays. It is found that a two-step procedure yields polydisperse deposits with a dominant fraction of Ru nanoparticles coated with atomic and subnanometric Pt islands. These Pt|Ru nanointerfaces induce charge transfer from Pt to Ru, which modulates the electronic structure of Pt sites for accelerated HER kinetics. By varying the platinization time in the second step, a balance between the exposure of catalytically active Pt|Ru nanointerfaces and the total number of Pt surface sites is achieved. The optimized composite, termed Ru-30min@Pt-30min, requires an overpotential of 58 mV to deliver a current density of 100 mA cm-2 in 1.0 m HClO4 and maintains performance stability and structure integrity under prolonged operation. Moreover, it presents a 3.5-fold increase in precious metal mass activity over Pt/C at η = 80 mV. Theoretical calculations reveal that the electronic interactions generated by Pt-modification of Ru and hydrogenated TiO2 surfaces provide multiple active sites with improved Hads energetics compared to pure Pt and Ru.
Collapse
Grants
- 451-03-65/2024-03/200135 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-65/2024-03/200146 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-65/2024-03/200162 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-65/2024-03/200168 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200053 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- CZ.02.1.01/0.0/0.0/15_003/0000416 Operational Program Research, Development and Education - European Regional Development Fund
- Ministry of Education, Youth and Sports of the Czech Republic
- 23-08019X GA CR-EXPRO project
- Czech Science Foundation
- 2022-06725 Swedish Research Council
- 2018-05973 Swedish Research Council
Collapse
Affiliation(s)
- Mila N Krstajić Pajić
- University of Belgrade - Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Ana S Dobrota
- University of Belgrade - Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, 11158, Serbia
| | - Anca Mazare
- Department of Materials Science, WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Slađana Đurđić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Xin Zhou
- Department of Materials Science, WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science, WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Natalia V Skorodumova
- Applied Physics, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, 971 87, Sweden
| | - Dragan Manojlović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Rastko Vasilić
- University of Belgrade - Faculty of Physics, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Igor A Pašti
- University of Belgrade - Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, 11158, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade, 11000, Serbia
| | - Patrik Schmuki
- Department of Materials Science, WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Uroš Lačnjevac
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade, 11030, Serbia
| |
Collapse
|
9
|
Wang L, Liu Y. Electrocatalytic Innovations at Atomic Scale: From Single-Atom to Periodic Ensembles for Sustainable Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:634. [PMID: 40278499 PMCID: PMC12029464 DOI: 10.3390/nano15080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Atomically dispersed catalysts, including single-atom, dual-atom, and periodic single-metal site catalysts, have revolutionized electrocatalysis by merging atomic precision with heterogeneous stability. This review traces their evolution from pioneering stabilization strategies to advanced microenvironment engineering, enabling breakthroughs in oxygen reduction, hydrogen evolution, and CO2 reduction. SACs maximize atom utilization but face multi-step reaction limits, addressed by DACs through synergistic dual-site mechanisms. PSMSCs further enhance activity via ordered atomic arrangements, ensuring uniform active sites and mechanistic clarity. Key breakthroughs include microenvironment engineering to tailor active sites, as well as advanced characterization techniques revealing dynamic restructuring under operando conditions. The transition from isolated atoms to ordered ensembles highlights the importance of atomic-level control in unlocking new catalytic mechanisms. This work underscores the transformative potential of ADCs in sustainable energy technologies and provides a roadmap for future research in rational catalyst design, dynamic behavior analysis, and scalable synthesis.
Collapse
Affiliation(s)
- Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | | |
Collapse
|
10
|
Li T, Zhang R, Fang N, Shi Y, Li J, He C, Chu Y. Metal cluster-mediated photocatalysis: synthesis, characterization and application. NANOSCALE 2025; 17:9834-9869. [PMID: 40171804 DOI: 10.1039/d5nr00506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The escalation of global energy crises and environmental degradation has intensified the focus on photocatalytic technology, which harnesses solar energy for direct chemical reactions in a green manner. Metal clusters serve as multifunctional components in photocatalytic systems, with their unique properties (such as dimensions, composition, and surface modification) offering a plethora of regulatory mechanisms for designing innovative and efficient cluster-based photocatalysts. These improvements enhance light absorption, charge separation, and catalytic activity. This comprehensive review explores the fundamental principles and applications of photocatalytic technology, emphasizing the role of metal cluster materials in advancing this field. The synthetic methodologies, especially AI-assisted synthesis, characterization techniques, and modification strategies of metal cluster materials are introduced in detail, highlighting their significance in enhancing photocatalytic performance. The applications of metal clusters in various photocatalytic processes are also discussed, including water splitting, CO2 reduction, N2 fixation, pollutant degradation, H2O2 generation and selective organic synthesis, showcasing their potential in environmental remediation and energy transformation. Finally, the review concludes with an outlook on future research directions, emphasizing the need for innovating synthesis methods, developing advanced characterizations techniques, and optimizing catalytic performance to address existing challenges and unlock the full potential of cluster-based photocatalysts.
Collapse
Affiliation(s)
- Tong Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Ruirui Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Ningjie Fang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yanbiao Shi
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanshu He
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
11
|
Zou S, Cao L, Zhang X, Chen C, Tada M, Muratsugu S, Tian R, Sun H, Li A, Han X, Liao X, Huang J, Masri AR. 'Tearing Effect' of Alloy-Support Interaction for Alloy Redispersion in NiRu/TiO 2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2025; 64:e202425066. [PMID: 39918915 DOI: 10.1002/anie.202425066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
Supported alloy catalysts have been extensively applied to many significant industrial chemical processes due to the abundant active sites with distinguishable geometry and electron states. However, a detailed in situ investigation of the interaction between support and alloy nanoparticles is still lacking. Here, a subversive 'tearing effect' on the interface of TiO2-supported NiRu alloy nanoparticles is in situ discovered by environmental transmission electron microscopy (ETEM) with a dramatic redispersion process of alloy nanoparticles from ~25 nm to 2-3 nm under the repeated hydrogen reduction. Dual-driven by the distinct alloy-support interaction involving the restructuring of alloy nanoparticles and growth of TiOx overlayer, larger NiRu alloy nanoparticles spontaneously disintegrate into atoms migrating on support. Atoms are finally captured by the defects generated on TiO2 during the repeat reduction, which also confines the further growth of the newly alloy nanoparticles. Owing to this specific alloy-support interaction, smaller alloy nanoparticles on TiO2 support are much more stable than the bigger ones, which holds promise for industrial applications as durable catalysts. This novel metal-support interaction with the 'tearing effect' revealed on supported alloy catalysts provides new knowledge on the structure-performance relationships in all the alloy catalysts for hydrogenation reactions.
Collapse
Affiliation(s)
- Sibei Zou
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution, The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Liwei Cao
- Department: Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Institution, Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing, 100124, China
| | - Xingmo Zhang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Chaoqi Chen
- Department: Department of Chemistry, Institution: Nagoya University, Graduate School of Science/Research Centre for Materials Science, Nagoya, 464-8602, Japan
| | - Mizuki Tada
- Department: Department of Chemistry, Institution: Nagoya University, Graduate School of Science/Research Centre for Materials Science, Nagoya, 464-8602, Japan
| | - Satoshi Muratsugu
- Department: Department of Chemistry, Institution: Nagoya University, Graduate School of Science/Research Centre for Materials Science, Nagoya, 464-8602, Japan
| | - Rongying Tian
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution, The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Haoyue Sun
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Ang Li
- Department: Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Institution, Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing, 100124, China
| | - Xiaodong Han
- Department: Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Institution, Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing, 100124, China
- Department: Department of Materials Science and Engineering, Institution: Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaozhou Liao
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution, The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Jun Huang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Assaad R Masri
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution, The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
12
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
14
|
Husile A, Wang Z, Guan J. Bimetallic effects in carbon dioxide electroreduction. Chem Sci 2025; 16:5413-5446. [PMID: 40083971 PMCID: PMC11901347 DOI: 10.1039/d5sc00670h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
As a clean and sustainable technology, electrocatalytic carbon dioxide reduction reaction (ECO2RR) occupies a central position in the global energy transformation and climate change strategy. Compared with single metallic catalysts, bimetallic catalysts have many advantages, such as the synergistic effect between bimetals, enhanced CO2 adsorption capacity, and lower reaction energy barriers, which make them widely used in the CO2RR for the generation of multi-carbon products. This review systematically summarizes the latest advances in bimetallic effects for the CO2RR. In this paper, we start with a classified introduction on the CO2RR mechanisms, followed by a comprehensive discussion of the structure-activity relationships of various bimetallic catalysts, including regulation of metal centers, regulation of the distance between metal sites, regulation of the coordination environment, interface engineering, and strain engineering. Next, we showcase the advantages of bimetallic catalysts in the CO2RR. Then, the research progress of typical bimetallic catalysts for the ECO2RR is discussed, including diatomic catalysts, bimetallic alloys, bimetallic MOFs and bimetallic COFs. Finally, we summarize the challenges faced today from the five aspects of product selectivity, catalyst stability, product purification, theoretical simulations and in situ characterization techniques and put forward the research direction to promote the industrialization process of CO2RR.
Collapse
Affiliation(s)
- Anaer Husile
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| | - Zhenlu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| | - Jingqi Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| |
Collapse
|
15
|
Lee G, Jun SE, Lim J, Kim J, Lee H, Cheon WS, Ryoo GW, Cho BG, Lee S, Kwon MS, Park IH, Jang HW, Park SH, Kwon KC. Tuning Hydrogen Binding on Ru Sites by Ni Alloying on MoO 2 Enables Efficient Alkaline Hydrogen Evolution for Anion Exchange Membrane Water Electrolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414622. [PMID: 39806571 PMCID: PMC11904955 DOI: 10.1002/advs.202414622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO2, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms. Theoretical simulations reveal that substituting Ni atoms for adjacent Ru atoms reduces the high hydrogen adsorption Gibbs free energy on Ru while maintaining a low energy barrier for water dissociation. As a result, the RuNi/MoO₂ catalyst shows excellent HER performance with a low overpotential of 51 mV at a current density of 100 mA cm⁻2, outperforming commercial Pt/C. Furthermore, RuNi/MoO₂ demonstrates high turnover frequency (7.06 s-1), mass activity (13.4 A mg-1), and price activity (1030.77 A dollar-1). In an AEMWE cell, RuNi/MoO₂ as the cathode catalyst achieves a current density of 1 A cm-2 at 60 °C with just 1.7 V using 1 m KOH. This work highlights the potential of RuNi/MoO₂ for ultra-high mass activity in efficient AEMWE applications.
Collapse
Affiliation(s)
- Goeun Lee
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Eon Jun
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiheon Lim
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeryeon Lee
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Woo Seok Cheon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geun Woong Ryoo
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeong-Gwan Cho
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sooheyong Lee
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Sun Hwa Park
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
- Department of Applied Measurement Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ki Chang Kwon
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea
- Department of Applied Measurement Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
16
|
Cruz‐Martínez H, Rojas‐Chávez H, Santiago‐Silva L, López‐Sosa L, Calaminici P. Metal Dimers-Doped h-BN Structures as Novel Toxic Gases Sensors With Enhanced Sensitivity Properties: An ADFT Study. J Comput Chem 2025; 46:e70062. [PMID: 39932153 PMCID: PMC11827289 DOI: 10.1002/jcc.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
Toxic gases monitoring and detection are fundamental to lessening public health problems. Therefore, in this work, to explore emergent sensor materials, 3d-metal dimers-doped hexagonal boron nitride (h-BN) structures were investigated employing auxiliary density functional theory (ADFT) as novel CO and NO gas sensors. Firstly, the stabilities of Co2, Ni2, and Cu2 dimers deposited on defective h-BN were determined. Then, sensitivities of 3d-metal dimers-doped h-BN structures towards the NO and CO gases were investigated. It was found that the interaction energies of these 3d-metal dimers embedded on defective h-BN are higher than those deposited on pristine h-BN structure, which indicates that the 3d-metal dimers exhibit good stability on defective h-BN. Moreover, this work demonstrated that the CO and NO adsorption energies on 3d-metal dimers-doped h-BN structures are higher than those computed in the literature for pristine h-BN structure. Consequently, the here considered 3d-metal dimers-doped h-BN structures can be good candidates for toxic CO and NO gas detection.
Collapse
Affiliation(s)
- H. Cruz‐Martínez
- Tecnológico Nacional de MéxicoInstituto Tecnológico del Valle de EtlaOaxacaMexico
| | - H. Rojas‐Chávez
- Tecnológico Nacional de MéxicoInstituto Tecnológico de Tláhuac IIMexico CityMexico
| | - L. Santiago‐Silva
- Tecnológico Nacional de MéxicoInstituto Tecnológico del Valle de EtlaOaxacaMexico
| | | | | |
Collapse
|
17
|
Liu H, Huang J, Feng K, Xiong R, Ma S, Wang R, Fu Q, Rafique M, Liu Z, Han J, Hua D, Li J, Zhong J, Wang X, Zhao Z, Yao T, Jiang S, Xu P, Zhang Z, Song B. Reconstructing the Coordination Environment of Fe/Co Dual-atom Sites towards Efficient Oxygen Electrocatalysis for Zn-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202419595. [PMID: 39540704 DOI: 10.1002/anie.202419595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Dual-atom catalysts with nitrogen-coordinated metal sites embedded in carbon can drive the oxygen reduction and evolution reactions (ORR/OER) in rechargeable zinc-air batteries (ZABs), and the further improvement is limited by the linear scaling relationship of intermediate binding energies in the absorbate evolution mechanism (AEM). Triggering the lattice oxygen mechanism (LOM) is promising to overcome this challenge, but has yet been verified since the lacking of bridge oxygen (O) in the rigid coordination environment of the metal centers. Here, we demonstrate that suitably tailored dual-atom catalysts of FeCo-N-C can undergo out-plane and in-plane reconstruction to form the both axial O and bridge O at the metal centers, and thus activate the LOM pathway. The tailored FeCo-N-C with shortened Fe-N bonds also favors the ORR process, therefore is a promising dual-atom oxygen catalyst. The assembled rechargeable ZABs demonstrate a peak power density of 332 mW cm-2, and exhibit no notable decline after ~720 h of continuous cycling.
Collapse
Affiliation(s)
- Hengqi Liu
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, 150001, China
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinzhen Huang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
- Electrochemistry Laboratory, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Rui Xiong
- School of future technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Shengyu Ma
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Ran Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguo Liu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Daxing Hua
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiajie Li
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xianjie Wang
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Tai Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Sida Jiang
- National Key Laboratory of Space Environment and Matter Behaviors, Harbin Institute of Technology, Harbin, 150001, China
| | - Ping Xu
- State Key Laboratory of Space Power-Sources, School of Chemistry, Chemical Engineering Harbin Institute of Technology, Harbin, 150001, China
| | - Zhihua Zhang
- School of Materials Science, Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Bo Song
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, 150001, China
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
- National Key Laboratory of Space Environment and Matter Behaviors, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| |
Collapse
|
18
|
Zhang M, Cao X, Dong J, Zhu X, Zhu Y, Wang L. Unveiling the Mystery of Precision Catalysis: Dual-Atom Catalysts Stealing the Spotlight. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409560. [PMID: 39726322 DOI: 10.1002/smll.202409560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In the era of atomic manufacturing, the precise manipulation of atomic structures to engineer highly active catalytic sites has become a central focus in catalysis research. Dual-atom catalysts (DACs) have garnered significant attention for their superior activity, selectivity, and stability compared to single-atom catalysts (SACs). However, a comprehensive review that integrates geometric and electronic factors influencing DAC performance remains limited. This review systematically explores the structure of DAC, addressing key macroscopic parameters, such as spatial arrangements and interatomic distances, as well as microscopic factors, including local coordination environments and electronic structures. Additionally, metal-support interactions (MSI) and long-range interactions (LSI) are comprehensively analyzed, which play a pivotal yet underexplored role in governing DAC behavior. the integration of tailored functional groups is further discussed to fine-tune DAC properties, thereby optimizing intermediate adsorption, enhancing reaction kinetics, and expanding their multifunctionality in various electrochemical environments. This review offers novel insights into their rational design by elucidating the intricate mechanisms underlying DACs' exceptional performance. Ultimately, DACs are positioned as critical players in precision catalysis, highlighting their potential to drive significant breakthroughs across a broad spectrum of catalytic applications.
Collapse
Affiliation(s)
- Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xiwen Cao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Jie Dong
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Materials Science and Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Jin X, Chang M, Sun H, Chang CW, Sendeku MG, Li Y, Wang M, Fang J, Li Y, Zhu Q, Li B, Yu J, Liu Y, Chang Z, Zhang G, Zhuang Z, Bai L, Ma Q, Feng Z, Liu W, Li J, Sun X. Targeting Synthesis of Diatomic Catalysts by Selective Etching and Sequential Adsorption of Metal Atom. J Am Chem Soc 2025; 147:2689-2698. [PMID: 39779463 DOI: 10.1021/jacs.4c14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M2) geminal to the single atom site (M1-Nx) for constructing diatomic sites (e.g., Fe-Pd, Fe-Pt, Fe-Ru, Fe-Zn, Co-Fe, Co-Ni, and Co-Cu). In this strategy, hydrogen peroxide selectively etches the positively charged carbon atoms near the M1-Nx moiety (denoted as α-C) and produces vacancy, which could trap the M2 at the subsequent adsorption step. These catalysts show optimized electronic structure and enhanced oxygen reduction activity compared to single-site counterparts, and the representative Fe-Pd-NC and Co-Fe-NC catalysts stand as the most active oxygen reduction reaction catalysts (half-wave potential of 0.92 and 0.91 V, respectively). The selective etching of α-C in single-atom catalysts reported here represents a new post-treatment strategy for the targeting synthesis of diatomic sites.
Collapse
Affiliation(s)
- Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyao Chang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chun-Wai Chang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maoyu Wang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jinjie Fang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingyi Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Boyuan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiage Yu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yafei Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Chang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoxin Zhang
- College of Energy, Shandong University of Science and Technology, Tsingtao 266590, PR China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lu Bai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, 100190 Beijing, PR China
| | - Qing Ma
- DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiazhan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Liu C, Li T, Dai X, Zhao J, Zhang L, Cui X. Mechanism regulation over dual-atom catalyst enables high-performance oxidative alcohol esterification. Sci Bull (Beijing) 2025; 70:78-89. [PMID: 39277521 DOI: 10.1016/j.scib.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The development of heterogeneous catalysts with well-defined uniform isolated or multiple active sites is of great importance for understanding catalytic performances and studying reaction mechanisms. Herein, we present a CoCu dual-atom catalyst (CoCu-DAC) where bonded Co-Cu dual-atom sites are embedded in N-doped carbon matrix with a well-defined Co(OH)CuN6 structure. The CoCu-DAC exhibits higher catalytic activity and selectivity than the Co single-atom catalyst (Co-SAC) and Cu single-atom catalyst (Cu-SAC) counterparts in the catalytic oxidative esterification of alcohols and a variety of methyl and alkyl esters have been successfully synthesized. Kinetic studies reveal that the activation energy (29.7 kJ mol-1) over CoCu-DAC is much lower than that over Co-SAC (38.4 kJ mol-1) and density functional theory (DFT) studies disclose that two different mechanisms are regulated over CoCu-DAC and Co-SAC/Cu-SAC in three-step esterification of alcohols. The bonded Co-Cu and adjacent N species efficiently catalyze the elementary reactions of alcohol dehydrogenation, O2 activation and ester formation, respectively. The stepwise alkoxy pathway (O-H and C-H scissions) is preferred for both alcohol dehydrogenation and ester formation over CoCu-DAC, while the progressive hydroxylalkyl pathway (C-H and O-H scissions) for alcohol dehydrogenation and simultaneous hemiacetal dehydrogenation are favored over Co-SAC and Cu-SAC. Characteristic peaks in the Fourier transform infrared spectroscopy analysis may confirm the formation of the metal-C intermediate and the hydroxylalkyl pathway over Co-SAC.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liping Zhang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjiang Cui
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
21
|
Tao G, Wang Z, Liu X, Wang Y, Guo Y. Enhanced Acidic Oxygen Evolution Reaction Performance by Anchoring Iridium Oxide Nanoparticles on Co 3O 4. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1350-1360. [PMID: 39690959 DOI: 10.1021/acsami.4c18974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The sluggish kinetics of the anodic process, known as the oxygen evolution reaction (OER), has posed a significant challenge for the practical application of proton exchange membrane water electrolyzers in industrial settings. This study introduces a high-performance OER catalyst by anchoring iridium oxide nanoparticles (IrO2) onto a cobalt oxide (Co3O4) substrate via a two-step combustion method. The resulting IrO2@Co3O4 catalyst demonstrates a significant enhancement in both catalytic activity and stability in acidic environments. Notably, the overpotential required to attain a current density of 10 mA cm-2, a commonly used benchmark for comparison, is merely 301 mV. Furthermore, stability is maintained over a duration of 80 h, as confirmed by the minimal rise in overpotential. Energy spectrum characterizations and experimental results reveal that the generation of OER-active Ir3+ species on the IrO2@Co3O4 surface is induced by the strong interaction between IrO2 and Co3O4. Theoretical calculations further indicate that IrO2 sites loaded onto Co3O4 have a lower energy barrier for *OOH deprotonation to form desorbed O2. Moreover, this interaction also stabilizes the iridium active sites by maintaining their chemical state, leading to superior long-term stability. These insights could significantly impact the strategies for designing and synthesizing more efficient OER electrocatalysts for broader industrial application.
Collapse
Affiliation(s)
- Gege Tao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaohui Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanqin Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
22
|
Zou S, Liang Y, Zhang X, Gu Q, Wang L, Sun H, Liao X, Huang J, Masri AR. Manufacturing Single-Atom Alloy Catalysts for Selective CO 2 Hydrogenation via Refinement of Isolated-Alloy-Islands. Angew Chem Int Ed Engl 2025; 64:e202412835. [PMID: 39172117 DOI: 10.1002/anie.202412835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Single-atom alloy (SAA) catalysts exhibit huge potential in heterogeneous catalysis. Manufacturing SAAs requires complex and expensive synthesis methods to precisely control the atomic scale dispersion to form diluted alloys with less active sites and easy sintering of host metal, which is still in the early stages of development. Here, we address these limitations with a straightforward strategy from a brand-new perspective involving the 'islanding effect' for manufacturing SAAs without dilution: homogeneous RuNi alloys were continuously refined to highly dispersed alloy-islands (~1 nm) with completely single-atom sites where the relative metal loading was as high as 40 %. Characterized by advanced atomic-resolution techniques, single Ru atoms were bonded with Ni as SAAs with extraordinary long-term stability and no sintering of the host metal. The SAAs exhibited 100 % CO selectivity, over 55 times reverse water-gas shift (RWGS) rate than the alloys with Ru cluster sites, and over 3-4 times higher than SAAs by the dilution strategy. This study reports a one-step manufacturing strategy for SAA's using the wetness impregnation method with durable high atomic efficiency and holds promise for large-scale industrial applications.
Collapse
Affiliation(s)
- Sibei Zou
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Yuhang Liang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Xingmo Zhang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Qinfen Gu
- Institution: Australian Synchrotron, 800 Blackburn Rd, Clayton, Victoria, 3168, Australia
| | - Lizhuo Wang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Haoyue Sun
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Xiaozhou Liao
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Jun Huang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Assaad R Masri
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
23
|
Liu Y, Qing Y, Jiang W, Zhou L, Chen C, Shen L, Li B, Zhou M, Lin H. Strategies for Achieving Carbon Neutrality: Dual-Atom Catalysts in Focus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407313. [PMID: 39558720 DOI: 10.1002/smll.202407313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Carbon neutrality is a fundamental strategy for achieving the sustainable development of human society. Catalyzing CO2 reduction into various high-value-added fuels serves as an effective pathway to achieve this strategic objective. Atom-dispersed catalysts have received extensive attention due to their maximum atomic utilization, high catalytic selectivity, and exceptional catalytic performance. Dual-atom catalysts (DACs), as an extension of single-atom catalysts (SACs), not only retain the advantages of SACs, but also produce many new properties. This review initiates its exploration by elucidating the mechanism of CO2 reduction reaction (CO2RR) from CO2 adsorption and CO2 activation. Then, a comprehensive summary of recently developed preparation methods of DACs is presented. Importantly, the mechanisms underlying the promoted catalytic performance of DACs in comparison to SACs are subjected to a comprehensive analysis from adjustable adsorption capacity, tunable electronic structure, strong synergistic effect, and enhanced spacing effect, elucidating their respective superiorities in CO2RR. Subsequently, the application of DACs in CO2RR is discussed in detail. Conclusively, the prospective trajectories and inherent challenges of CO2RR are expounded upon concerning the continued advancement of DACs. This thorough review not only enhances the comprehension of DACs within CO2RR but also accentuates the prospective developments in the design of sophisticated catalytic materials.
Collapse
Affiliation(s)
- Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenhai Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
24
|
Kalaiyarasan G, Lee D, Lee JW, Ko MJ. Electrochemical Synthesis of Nickel Hexacyanoferrate and Nickel Sulfide on Nickel Foam as Sustainable Electrocatalysts for Hydrogen Generation via Urea Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69142-69152. [PMID: 39644226 DOI: 10.1021/acsami.4c12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
A promising approach to energy-efficient hydrogen production is coupling the hydrogen evolution reaction (HER) with the urea oxidation reaction (UOR), significantly reducing the energy requirements. However, achieving a low-cost yet high-performance electrocatalyst for both HER and UOR remains challenging. Here, we present a facile method for synthesizing nanoporous nickel sulfide (NiS) and nickel hexacyanoferrate (NiHCF) nanocubes directly on nickel foam (NF) without any added nickel source using a cyclic voltammetry technique. In this approach, NF serves simultaneously as the substrate and nickel source, streamlining the synthesis process. The unique nanoarchitecture of NiHCF and NiS promotes highly efficient catalytic activity for both UOR and HER. NiHCF catalyzes urea oxidation by dual active sites of Ni and Fe with its synergistic interaction, without the formation of NiOOH or FeOOH. For hydrogen production, the self-supporting NiHCF/NF||NiS/NF-coupled system achieves a notably low cell voltage of 1.8 V at 100 mA cm-2, which is approximately 487 mV lower than traditional IrO2/NF||Pt/C/NF water electrolysis. This innovative electrochemical method enables the controlled synthesis of Ni-based nanoelectrocatalysts, offering a sustainable, energy-efficient pathway for H2 production from urea-rich wastewater. This environmentally friendly strategy holds significant potential to reduce the global carbon footprint, paving the way for a greener future.
Collapse
Affiliation(s)
- Gopi Kalaiyarasan
- Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Doyeon Lee
- Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
25
|
Tian J, Xia M, Cheng X, Mao C, Chen Y, Zhang Y, Zhou C, Xu F, Yang L, Wang XZ, Wu Q, Hu Z. Understanding Pt Active Sites on Nitrogen-Doped Carbon Nanocages for Industrial Hydrogen Evolution with Ultralow Pt Usage. J Am Chem Soc 2024; 146:33640-33650. [PMID: 39586791 DOI: 10.1021/jacs.4c11445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Engineering microstructures of Pt and understanding the related catalytic mechanism are critical to optimizing the performance for hydrogen evolution reaction (HER). Herein, Pt dispersion and coordination are precisely regulated on hierarchical nitrogen-doped carbon nanocages (hNCNCs) by a thermal-driven Pt migration, from edge-hosted Pt-N2Cl2 single sites in the initial Pt1/hNCNC-70 °C catalyst to Pt clusters/nanoparticles and back to in-plane Pt-NxC4-x single sites. Thereinto, Pt-N2Cl2 presents the optimal HER activity (6 mV@10 mA cm-2) while Pt-NxC4-x shows poor HER activity (321 mV@10 mA cm-2) due to their different Pt coordination. Operando characterizations demonstrate that the low-coordinated Pt-N2 intermediates derived from Pt-N2Cl2 under the working condition are the real active sites for HER, which enable the multi-H adsorption mechanism with an ideal H* adsorption energy of nearly 0 eV, thereby the high activity, as revealed by theoretical calculations. In contrast, the high-coordinated Pt-NxC4-x sites only allow the single-H adsorption with a positive adsorption energy and thereby the low HER activity. Accordingly, with an ultralow Pt loading of only 25 μgPt cm-2, the proton exchange membrane water electrolyzer assembled using Pt1/hNCNC-70 °C as the cathodic catalyst achieves an industrial-level current density of 1.0 A cm-2 at a low cell voltage of 1.66 V and high durability, showing great potential applications.
Collapse
Affiliation(s)
- Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changkai Zhou
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Zhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Huang H, Xu L, Zuo S, Song L, Zou C, García-Melchor M, Li Y, Ren Y, Rueping M, Zhang H. Manipulation of Oxidation States on Phase Boundary via Surface Layer Modification for Enhanced Alkaline Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405128. [PMID: 39072907 DOI: 10.1002/adma.202405128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Indexed: 07/30/2024]
Abstract
In alkaline water electrolysis and anion exchange membrane water electrolysis technologies, the hydrogen evolution reaction (HER) at the cathode is significantly constrained by a high energy barrier during the water dissociation step. This study employs a phase engineering strategy to construct heterostructures composed of crystalline Ni4W and amorphous WOx aiming to enhance catalytic performance in the HER under alkaline conditions. This work systematically modulates the oxidation states of W within the amorphous WOx of the heterostructure to adjust the electronic states of the phase boundary, the energy barriers associated with the water dissociation step, and the adsorption/desorption properties of intermediates during the alkaline HER process. The optimized catalyst, Ni4W/WOx-2, with a quasi-metallic state of W coordinated by a low oxygen content in amorphous WOx, demonstrates exceptional catalytic performance (22 mV@10 mA cm-2), outperforming commercial Pt/C (30 mV@10 mA cm-2). Furthermore, the operando X-ray absorption spectroscopy analysis and theoretical calculations reveal that the optimized W atoms in amorphous WOx serve as active sites for water dissociation and the nearby Ni atoms in crystalline Ni4W facilitated the release of H2. These findings provide valuable insights into designing efficient heterostructured materials for energy conversion.
Collapse
Affiliation(s)
- Huawei Huang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lu Song
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Zou
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, Ireland
| | - Yang Li
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yuafu Ren
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
28
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
29
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
30
|
Long D, Liu Y, Ping X, Chen F, Tao X, Xie Z, Wang M, Wang M, Li L, Guo L, Chen S, Wei Z. Constructing CO-immune water dissociation sites around Pt to achieve stable operation in high CO concentration environment. Nat Commun 2024; 15:8105. [PMID: 39285182 PMCID: PMC11405863 DOI: 10.1038/s41467-024-51562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/06/2024] [Indexed: 09/20/2024] Open
Abstract
The serious problem of carbon monoxide (CO) poisoning on the surface of Pt-based catalysts has long constrained the commercialization of proton exchange membrane fuel cells (PEMFCs). Regeneration of Pt sites by maintaining CO scavenging ability through precise construction of the surface and interface structure of the catalyst is the key to obtaining high-performance CO-resistant catalysts. Here, we used molybdenum carbide (MoCx) as the support for Pt and introduced Ru single atoms (SA-Ru) at the Pt-MoCx interface to jointly decrease the CO adsorption strength on Pt. More importantly, the MoCx and SA-Ru are immune to CO poisoning, which continuously assists in the oxidation of adsorbed CO by generating oxygen species from water dissociation. These two effects combine to confer this anode catalyst (SA-Ru@Pt/MoCx) remarkable CO tolerance and the ability to operate stably in fuel cell with high CO concentration (power output 85.5 mW cm-2@20,000 ppm CO + H2 - O2), making it possible to directly use the cheap reformed hydrogen as the fuel for PEMFCs.
Collapse
Affiliation(s)
- Daojun Long
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Yongduo Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Xinyu Ping
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Fadong Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Xiongxin Tao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Zhenyang Xie
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Minjian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Meng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Li Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Lin Guo
- Research Institute of Petroleum Processing Co., Ltd., SINOPEC, Beijing, China.
| | - Siguo Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China.
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| |
Collapse
|
31
|
Wang B, Yang X, Xie C, Liu H, Ma C, Zhang Z, Zhuang Z, Han A, Zhuang Z, Li L, Wang D, Liu J. A General Metal Ion Recognition Strategy to Mediate Dual-Atomic-Site Catalysts. J Am Chem Soc 2024; 146:24945-24955. [PMID: 39214615 DOI: 10.1021/jacs.4c06173] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Heterogeneous dual-atomic-site catalysts (DACs) hold great potential for diverse applications. However, to date, the synthesis of DACs primarily relies on different atoms freely colliding on the support during synthesis, principally leading to low yields. Herein, we report a general metal ion recognition (MIR) strategy for constructing a series of DACs, including but not limited to Fe1Sn1, Fe1Co1, Fe1Ni1, Fe1Cu1, Fe1Mn1, Co1Ni1, Co1Cu1, Co2, and Cu2. This strategy is achieved by coupling target inorganometallic cations and anions as ion pairs, which are sequentially adsorbed onto a nitrogen-doped carbon substrate as the precursor. Taking the oxygen reduction reaction as an example, we demonstrated that the Fe1Sn1-DAC synthesized through this strategy delivers a record peak power density of 1.218 W cm-2 under 2.0 bar H2-O2 conditions and enhanced stability compared to the single-atom-site FeN4. Further study revealed that the superior performance arises from the synergistic effect of Fe1Sn1 dual vicinal sites, which effectively optimizes the adsorption of *OH and alleviates the troublesome Fenton-like reaction.
Collapse
Affiliation(s)
- Bingqing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chongbao Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zedong Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Prod Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
32
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
33
|
Choi J, Seo S, Kim M, Han Y, Shao X, Lee H. Relationship between Structure and Performance of Atomic-Scale Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304560. [PMID: 37544918 DOI: 10.1002/smll.202304560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.
Collapse
Affiliation(s)
- Jungsue Choi
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yeonsu Han
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
34
|
Bhalothia D, Yan C, Hiraoka N, Ishii H, Liao Y, Dai S, Chen P, Chen T. Iridium Single Atoms to Nanoparticles: Nurturing the Local Synergy with Cobalt-Oxide Supported Palladium Nanoparticles for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404076. [PMID: 38934929 PMCID: PMC11434211 DOI: 10.1002/advs.202404076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Indexed: 06/28/2024]
Abstract
A ternary catalyst comprising Iridium (Ir) single-atoms (SA)s decorated on the Co-oxide supported palladium (Pd) nanoparticles (denoted as CPI-SA) is developed in this work. The CPI-SA with 1 wt.% of Ir exhibits unprecedented high mass activity (MA) of 7173 and 770 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE in alkaline ORR (0.1 m KOH), outperforming the commercial Johnson Matthey Pt catalyst (J.M.-Pt/C; 20 wt.% Pt) by 107-folds. More importantly, the high structural reliability of the Ir single-atoms endows the CPI-SA with outstanding durability, where it shows progressively increasing MA of 13 342 and 1372 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE up to 69 000 cycles (3 months) in the accelerated degradation test (ADT). Evidence from the in situ partial fluorescence yield X-ray absorption spectroscopy (PFY-XAS) and the electrochemical analysis indicate that the Ir single-atoms and adjacent Pd domains synergistically promote the O2 splitting and subsequent desorption of hydroxide ions (OH-), respectively. Whereas the Co-atoms underneath serve as electron injectors to boost the ORR activity of the Ir single-atoms. Besides, a progressive and sharp drop in the ORR performance is observed when Ir-clusters and Ir nanoparticles are decorated on the Co-oxide-supported Pd nanoparticles.
Collapse
Affiliation(s)
- Dinesh Bhalothia
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Che Yan
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Nozomu Hiraoka
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Hirofumi Ishii
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Yen‑Fa Liao
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Sheng Dai
- School of Chemistry & Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Po‐Chun Chen
- Department of Materials and Mineral Resources EngineeringNational Taipei University of TechnologyTaipei10608Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
35
|
Lei L, Guo X, Han X, Fei L, Guo X, Wang DG. From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311434. [PMID: 38377407 DOI: 10.1002/adma.202311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Dual-atom catalysts (DACs) hold a higher metal atom loading and provide greater flexibility in terms of the structural characteristics of their active sites in comparison to single-atom catalysts. Consequently, DACs hold great promise for achieving improved catalytic performance. This article aims to provide a focused overview of the latest advancements in DACs, covering their synthesis and mechanisms in reversible oxygen electrocatalysis, which plays a key role in sustainable energy conversion and storage technologies. The discussion starts by highlighting the structures of DACs and the differences in diatomic coordination induced by various substrates. Subsequently, the state-of-the-art fabrication strategies of DACs for oxygen electrocatalysis are discussed from several different perspectives. It particularly highlights the challenges of increasing the diatomic loading capacity. More importantly, the main focus of this overview is to investigate the correlation between the configuration and activity in DACs in order to gain a deeper understanding of their active roles in oxygen electrocatalysis. This will be achieved through density functional theory calculations and sophisticated in situ characterization technologies. The aim is to provide guidelines for optimizing and upgrading DACs in oxygen electrocatalysis. Additionally, the overview discusses the current challenges and future prospects in this rapidly evolving area of research.
Collapse
Affiliation(s)
- Lei Lei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinghua Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xu Han
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ling Fei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiao Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Gao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
36
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
37
|
Luo Z, Guo Y, He C, Guan Y, Zhang L, Li Y, Zhang Q, He C, Sun X, Ren X. Creating High-entropy Single Atoms on Transition Disulfides through Substrate-induced Redox Dynamics for Efficient Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405017. [PMID: 38749917 DOI: 10.1002/anie.202405017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 07/05/2024]
Abstract
The controllable anchoring of multiple metal single-atoms (SAs) into a single support exhibits scientific and technological opportunities, while marrying the concentration-complex multimetallic SAs and high-entropy SAs (HESAs) into one SAC system remains a substantial challenge. Here, we present a substrate-mediated SAs formation strategy to successfully fabricate a library of multimetallic SAs and HESAs on MoS2 and MoSe2 supports, which can precisely control the doping location of SAs. Specially, the contents of SAs can continuously increase until the accessible Mo atoms on TMDs carriers are completely replaced by SAs, thus allowing the of much higher metal contents. In-depth mechanistic study shows that the well-controlled synthesis of multimetallic SAs and HESAs is realized by controlling the reversible redox reaction occurred on the TMDs/TM ion interface. As a proof-of-concept application, a variety of SAs-TMDs were applied to hydrogen evolution reaction. The optimized HESAs-TMDs (Pt,Ru,Rh,Pd,Re-MoSe2) delivers a much higher activity and durability than state of-the-art Pt. Thus, our work will broaden the family of single-atom catalysts and provide a new guideline for the rational design of high-performance single-atom catalysts.
Collapse
Affiliation(s)
- Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yirun Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Changjie He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yi Guan
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Qiangling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 3150200, China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| |
Collapse
|
38
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
39
|
Wu CY, Hsiao YC, Chen Y, Lin KH, Lee TJ, Chi CC, Lin JT, Hsu LC, Tsai HJ, Gao JQ, Chang CW, Kao IT, Wu CY, Lu YR, Pao CW, Hung SF, Lu MY, Zhou S, Yang TH. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. SCIENCE ADVANCES 2024; 10:eadl3693. [PMID: 39058768 PMCID: PMC11277269 DOI: 10.1126/sciadv.adl3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chong-Chi Chi
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Kao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
40
|
Zhou Q, Xue W, Cui X, Wang P, Zuo S, Mo F, Li C, Liu G, Ouyang S, Zhan S, Chen J, Wang C. Oxygen-bridging Fe, Co dual-metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Proc Natl Acad Sci U S A 2024; 121:e2404013121. [PMID: 39024111 PMCID: PMC11287248 DOI: 10.1073/pnas.2404013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Rechargeable zinc-air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom-bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe-O-Co-N6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential (E1/2) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm-2 for OER, with a potential gap (ΔE) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm-2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Wendan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan430200, People’s Republic of China
| | - Pengfei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Sijin Zuo
- State of Key Laboratory of Natural Medicines School of Engineering, China Pharmaceutical University, Nanjing210009, People’s Republic of China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Chengzhi Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Juan Chen
- College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Chao Wang
- College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| |
Collapse
|
41
|
Wang J, Zhang G, Liu H, Wang L, Li Z. Ru Regulated Electronic Structure of Pd xCu y Nanosheets for Efficient Hydrogen Evolution Reaction in Wide pH Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310277. [PMID: 38431942 DOI: 10.1002/smll.202310277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The development of highly effective catalysts for hydrogen evolution reaction (HER) in a wide pH range is crucial for the sustainable utilization of green energy utilization, while the slow kinetic reaction rate severely hinders the progress of HER. Herein, the reaction kinetic issue is solved by adjusting the electronic structure of the Ru/PdxCuy catalysts. The champion catalyst displays a remarkable performance for HER with the ultralow overpotential (27, 28, and 97 mV) in 1.0 m KOH, 0.5 m H2SO4, and 1.0 m PBS at 10 mA cm-2 and high the mass activity (3036 A g-1), respectively, superior to those of commercial Pt/C benchmarks and most of reported electrocatalysts, mainly due to its low reaction activation energy. Density functional theory (DFT) calculations indicate that Ru doping contributes an electron-deficient 3d band, which promotes water adsorption. Additionally, this also leads to an upward shift of the d-band center of Pd and a downward shift of the d-band center of Cu, further optimizing the adsorption/dissociation of H2O and H*. Results from this work may provide an insight into the design and synthesis of high-performance pH-universal HER electrocatalysts.
Collapse
Affiliation(s)
- Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Guangyang Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Huan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
| |
Collapse
|
42
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
43
|
Cai L, Bai H, Kao CW, Jiang K, Pan H, Lu YR, Tan Y. Platinum-Ruthenium Dual-Atomic Sites Dispersed in Nanoporous Ni 0.85Se Enabling Ampere-Level Current Density Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311178. [PMID: 38224219 DOI: 10.1002/smll.202311178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Alkaline anion-exchange-membrane water electrolyzers (AEMWEs) using earth-abundant catalysts is a promising approach for the generation of green H2. However, the AEMWEs with alkaline electrolytes suffer from poor performance at high current density compared to proton exchange membrane electrolyzers. Here, atomically dispersed Pt-Ru dual sites co-embedded in nanoporous nickel selenides (np/Pt1Ru1-Ni0.85Se) are developed by a rapid melt-quenching approach to achieve highly-efficient alkaline hydrogen evolution reaction. The np/Pt1Ru1-Ni0.85Se catalyst shows ampere-level current density with a low overpotential (46 mV at 10 mA cm-2 and 225 mV at 1000 mA cm-2), low Tafel slope (32.4 mV dec-1), and excellent long-term durability, significantly outperforming the benchmark Pt/C catalyst and other advanced large-current catalysts. The remarkable HER performance of nanoporous Pt1Ru1-Ni0.85Se is attributed to the strong intracrystal electronic metal-support interaction (IEMSI) between Pt-Se-Ru sites and Ni0.85Se support which can greatly enlarge the charge redistribution density, reduce the energy barrier of water dissociation, and optimize the potential determining step. Furthermore, the assembled alkaline AEMWE with an ultralow Pt and Ru loading realizes an industrial-level current density of 1 A cm-2 at 1.84 volts with high durability.
Collapse
Affiliation(s)
- Lebin Cai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Kang Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
44
|
Wang J, Zang W, Liu X, Sun J, Xi S, Liu W, Kou Z, Shen L, Wang J. Switch Volmer-Heyrovsky to Volmer-Tafel Pathway for Efficient Acidic Electrocatalytic Hydrogen Evolution by Correlating Pt Single Atoms with Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309427. [PMID: 38240468 DOI: 10.1002/smll.202309427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Indexed: 06/20/2024]
Abstract
As cost-effective catalysts, platinum (Pt) single-atom catalysts (SACs) have attracted substantial attention. However, most studies indicate that Pt SACs in acidic hydrogen evolution reaction (HER) follow the slow Volmer-Heyrovsky (VH) mechanism instead of the fast kinetic Volmer-Tafel (VT) pathway. Here, this work propose that the VH mechanism in Pt SACs can be switched to the faster VT pathway for efficient HER by correlating Pt single atoms (SAs) with Pt clusters (Cs). Our calculations reveal that the correlation between Pt SAs and Cs significantly impacts the electronic structure of exposed Pt atoms, lowering the adsorption barrier for atomic hydrogen and enabling a faster VT mechanism. To validate these findings, this work purposely synthesize three catalysts: l-Pt@MoS2, m-Pt@MoS2 and h-Pt@MoS2 with low, moderate, and high Pt-loading, having different distributions of Pt SAs and Cs. The m-Pt@MoS2 catalyst with properly correlating Pt SAs and Cs exhibits outstanding performance with an overpotential of 47 mV and Tafel slope of 32 mV dec-1. Further analysis of the Tafel values confirms that the m-Pt@MoS2 sample indeed follows the VT reaction mechanism, aligning with the theoretical findings. This study offers a deep understanding of the synergistic mechanism, paving a way for designing novel-advanced catalysts.
Collapse
Affiliation(s)
- Junhui Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California-Irvine, Irvine, CA, 92617, USA
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Singapore
| | - Weihao Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430074, P. R. China
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| |
Collapse
|
45
|
Yao X, Song Z, Yao X, Guan Y, Hamada N, Zhang J, Huo Z, Zhang L, Singh CV, Sun X. Synergistic Ni-W Dimer Sites Induced Stable Compressive Strain for Boosting the Performance of Pt as Electrocatalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202318872. [PMID: 38503685 DOI: 10.1002/anie.202318872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Alloying Pt catalysts with transition metal elements is an effective pathway to enhance the performance of oxygen reduction reaction (ORR), but often accompanied with severe metal dissolution issue, resulting in poor stability of alloy catalysts. Here, instead of forming traditional alloy structure, we modify Pt surface with a novel Ni-W dimer structure by the atomic layer deposition (ALD) technique. The obtained NiW@PtC catalyst exhibits superior ORR performance both in liquid half-cell and practical fuel cell compared with initial Pt/C. It is discovered that strong synergistic Ni-W dimer structure arising from short atomic distance induced a stable compressive strain on the Pt surface, thus boosting Pt catalytic performance. This surface modification by synergistic dimer sites offers an effective strategy in tailoring Pt with excellent activity and stability, which provides a significant perspective in boosting the performance of commercial Pt catalyst modified with polymetallic atom sites.
Collapse
Affiliation(s)
- Xiaozhang Yao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Yi Guan
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Natalie Hamada
- Canadian Centre for Electron Microscopy, Hamilton, ON, L8S 4M1, Canada
| | - Jingyan Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Ziwei Huo
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 3150200, China
| |
Collapse
|
46
|
Alam M, Ping K, Danilson M, Mikli V, Käärik M, Leis J, Aruväli J, Paiste P, Rähn M, Sammelselg V, Tammeveski K, Haller S, Kramm UI, Starkov P, Kongi N. Iron Triad-Based Bimetallic M-N-C Nanomaterials as Highly Active Bifunctional Oxygen Electrocatalysts. ACS APPLIED ENERGY MATERIALS 2024; 7:4076-4087. [PMID: 38756864 PMCID: PMC11095250 DOI: 10.1021/acsaem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of precious metal electrocatalysts in clean electrochemical energy conversion and storage applications is widespread, but the sustainability of these materials, in terms of their availability and cost, is constrained. In this research, iron triad-based bimetallic nitrogen-doped carbon (M-N-C) materials were investigated as potential bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synthesis of bimetallic FeCo-N-C, CoNi-N-C, and FeNi-N-C catalysts involved a precisely optimized carbonization process of their respective metal-organic precursors. Comprehensive structural analysis was undertaken to elucidate the morphology of the prepared M-N-C materials, while their electrocatalytic performance was assessed through cyclic voltammetry and rotating disk electrode measurements in a 0.1 M KOH solution. All bimetallic catalyst materials demonstrated impressive bifunctional electrocatalytic performance in both the ORR and the OER. However, the FeNi-N-C catalyst proved notably more stable, particularly in the OER conditions. Employed as a bifunctional catalyst for ORR/OER within a customized zinc-air battery, FeNi-N-C exhibited a remarkable discharge-charge voltage gap of only 0.86 V, alongside a peak power density of 60 mW cm-2. The outstanding stability of FeNi-N-C, operational for about 55 h at 2 mA cm-2, highlights its robustness for prolonged application.
Collapse
Affiliation(s)
- Mahboob Alam
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Kefeng Ping
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
| | - Mati Danilson
- Department
of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Valdek Mikli
- Department
of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Maike Käärik
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jaan Leis
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Tartu 50411, Estonia
| | - Päärn Paiste
- Institute
of Ecology and Earth Sciences, University
of Tartu, Tartu 50411, Estonia
| | - Mihkel Rähn
- Institute
of Physics, University of Tartu, Tartu 50411, Estonia
| | | | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Steffen Haller
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Ulrike I. Kramm
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Pavel Starkov
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
| | - Nadezda Kongi
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
47
|
Adofo LA, Kim SJ, Kim HJ, Choi SH, Lee SJ, Won YS, Kirubasankar B, Kim JW, Oh CS, Ben-Smith A, Elorm AE, Jeong HY, Lee YH, Kim YM, Han YK, Kim SM, Kim KK. Universal Platform for Robust Dual-Atom Doped 2D Catalysts with Superior Hydrogen Evolution in Wide pH Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308672. [PMID: 38155506 DOI: 10.1002/smll.202308672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/18/2023] [Indexed: 12/30/2023]
Abstract
Layered 2D transition metal dichalcogenides (TMDs) have been suggested as efficient substitutes for Pt-group metal electrocatalysts in the hydrogen evolution reaction (HER). However, poor catalytic activities in neutral and alkaline electrolytes considerably hinder their practical applications. Furthermore, the weak adhesion between TMDs and electrodes often impedes long-term durability and thus requires a binder. Here, a universal platform is reported for robust dual-atom doped 2D electrocatalysts with superior HER performance over a wide pH range media. V:Co-ReS2 on a wafer scale is directly grown on oxidized Ti foil by a liquid-phase precursor-assisted approach and subsequently used as highly efficient electrocatalysts. The catalytic performance surpasses that of Pt group metals in a high current regime (≥ 100 mA cm-2) at pH ≥ 7, with a high durability of more than 70 h in all media at 200 mA cm-2. First-principles calculations reveal that V:Co dual doping in ReS2 significantly reduces the water dissociation barrier and simultaneously enables the material to achieve the thermoneutral Gibbs free energy for hydrogen adsorption.
Collapse
Affiliation(s)
- Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sookmyung Women's University, Seoul, 14072, Republic of Korea
| | - Seon Je Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyung-Jin Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Su Jin Lee
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yo Seob Won
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Balakrishan Kirubasankar
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Woo Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Seok Oh
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Andrew Ben-Smith
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Anthonio Enoch Elorm
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University, Seoul, 14072, Republic of Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
48
|
Cheng X, Mao C, Tian J, Xia M, Yang L, Wang X, Wu Q, Hu Z. Correlation between Heteroatom Coordination and Hydrogen Evolution for Single-site Pt on Carbon-based Nanocages. Angew Chem Int Ed Engl 2024; 63:e202401304. [PMID: 38465477 DOI: 10.1002/anie.202401304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
The electrocatalytic performance of single-site catalysts (SSCs) is closely correlated with the electronic structure of metal atoms. Herein we construct a series of Pt SSCs on heteroatom-doped hierarchical carbon nanocages, which exhibit increasing hydrogen evolution reaction (HER) activities along S-doped, P-doped, undoped and N-doped supports. Theoretical simulation indicates a multi-H-atom adsorption process on Pt SSCs due to the low coordination, and a reasonable descriptor is figured out to evaluate the HER activities. Relative to C-coordinated Pt, N-coordinated Pt has higher reactivity due to the electron transfer of N-to-Pt, which enriches the density of states of Pt 5d orbital near the Fermi level and facilitates the capturing of protons, just the opposite to the situations for P- and S-coordinated ones. The stable N-coordinated Pt originates from the kinetic stability throughout the multi-H-atom adsorption process. This finding provides a significant guidance for rational design of advanced Pt SSCs on carbon-based supports.
Collapse
Affiliation(s)
- Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
49
|
Qu W, Tang Z, Tang S, Zhong T, Zhao H, Tian S, Shu D, He C. Precisely constructing orbital coupling-modulated iron dinuclear site for enhanced catalytic ozonation performance. Proc Natl Acad Sci U S A 2024; 121:e2319119121. [PMID: 38588435 PMCID: PMC11032441 DOI: 10.1073/pnas.2319119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
The advancement of atomically precise dinuclear heterogeneous catalysts holds great potential in achieving efficient catalytic ozonation performance and contributes to the understanding of synergy mechanisms during reaction conditions. Herein, we demonstrate a "ship-in-a-bottle and pyrolysis" strategy that utilizes Fe2(CO)9 dinuclear-cluster to precisely construct Fe2 site, consisting of two Fe1-N3 units connected by Fe-Fe bonds and firmly bonded to N-doped carbon. Systematic characterizations and theoretical modeling reveal that the Fe-Fe coordination motif markedly reduced the devotion of the antibonding state in the Fe-O bond because of the strong orbital coupling interaction of dual Fe d-d orbitals. This facilitates O-O covalent bond cleavage of O3 and enhances binding strength with reaction intermediates (atomic oxygen species; *O and *OO), thus boosting catalytic ozonation performance. As a result, Fe dinuclear site catalyst exhibits 100% ozonation efficiency for CH3SH elimination, outperforming commercial MnO2 catalysts by 1,200-fold. This research provides insights into the atomic-level structure-activity relationship of ozonation catalysts and extends the use of dinuclear catalysts in catalytic ozonation and beyond.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Su Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
50
|
Zhang Y, Lan J, Xu Y, Yan Y, Liu W, Liu X, Gu S, Zhou J, Wang M. Ultrafine PtCo alloy by pyrolysis etching-confined pyrolysis for enhanced hydrogen evolution. J Colloid Interface Sci 2024; 660:997-1009. [PMID: 38290326 DOI: 10.1016/j.jcis.2024.01.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Zeolitic imidazolate framework-67 (ZIF-67) has been widely used as a precursor to developing efficient PtCo alloy catalysts for hydrogen evolution reaction (HER). However, traditional in-situ pyrolysis strategies involve complicated interface structure modulating processes between ZIF-67 and Pt precursors, challenging large-scale synthesis. Herein, a "pyrolysis etching-confined pyrolysis" approach is developed to design confined PtCo alloy in porous frameworks of onion carbon derived from ZIF-67. The confined PtCo alloy with Pt content of only 5.39 wt% exhibits a distinct HER activity in both acid (η10: 5 mV and Tafel: 9 mV dec-1) and basic (η10: 33 mV and Tafel: 51 mV dec-1) media and a drastic enhancement in stability. Density functional theory calculations reveal that the strong electronic interaction between Pt and Co allows favorable electron redistribution, which affords a favorable hydrogen spillover on PtCo alloy compared with that of pristine Pt(111). Operational electrochemical impedance spectroscopy demonstrates that the Faraday reaction process is facilitated under acidic conditions, while the transfer of intermediates through the electric double-layer region under alkaline conditions is accelerated. This work not only offers a universal route for high-performance Pt-based alloy catalysts with metal-organic framework (MOF) precursors but also provides experimental evidence for the role of the electric double layer in electrocatalysis reactions.
Collapse
Affiliation(s)
- Yi Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianhong Lan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yike Xu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuanyuan Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|