1
|
Nguyen NYT, Liu X, Dutta A, Su Z. The Secret Life of N 1-methyladenosine: A Review on its Regulatory Functions. J Mol Biol 2025:169099. [PMID: 40139310 DOI: 10.1016/j.jmb.2025.169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
N1-methyladenosine (m1A) is a conserved modification on house-keeping RNAs, including tRNAs and rRNAs. With recent advancement on m1A detection and mapping, m1A is revealed to have a secret life with regulatory functions. This includes the regulation of its canonical substrate tRNAs, and expands into new territories such as tRNA fragments, mRNAs and repeat RNAs. The dynamic regulation of m1A has been shown in different biological contexts, including stress response, diet, T cell activation and aging. Interestingly, m1A can also be installed by non-enzymatic mechanisms. However, technical challenges remain in m1A site mapping; as a result, controversies have been observed across different labs or different methods. In this review we will summarize the recent development of m1A detection, its dynamic regulation, and its biological functions on diverse RNA substrates.
Collapse
Affiliation(s)
- Nhi Yen Tran Nguyen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Xisheng Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
2
|
Stejskal S, Rájecká V, Covelo-Molares H, Sinigaglia K, Brožinová K, Kašiarová L, Dohnálková M, Reyes-Gutierrez PE, Cahová H, Keegan LP, O'Connell MA, Vaňáčová Š. Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence. RNA (NEW YORK, N.Y.) 2025; 31:514-528. [PMID: 39746750 PMCID: PMC11912911 DOI: 10.1261/rna.080324.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is, however, not quantitative and still presents detection limits. One of the biggest remaining challenges in the field is still the detection and quantification of m6A, m6Am, inosine, and m1A modifications of adenosine. The second intriguing and timely question remaining to be addressed is the extent to which individual marks are coregulated or potentially can affect each other. Here, we present a methodological approach to detect and quantify several key mRNA modifications in human total RNA and in mRNA, which is difficult to purify away from contaminating tRNA. We show that the adenosine demethylase FTO primarily targets m6Am marks in noncoding RNAs in HEK293T cells. Surprisingly, we observe little effect of FTO or ALKBH5 depletion on the m6A mRNA levels. Interestingly, the upregulation of ALKBH5 is accompanied by an increase in inosine level in overall mRNA.
Collapse
Affiliation(s)
- Stanislav Stejskal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Helena Covelo-Molares
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ketty Sinigaglia
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Květoslava Brožinová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Linda Kašiarová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Michaela Dohnálková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | | | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
3
|
Angelo M, Zhang W, Vilseck J, Aoki S. In silico λ-dynamics predicts protein binding specificities to modified RNAs. Nucleic Acids Res 2025; 53:gkaf166. [PMID: 40066880 PMCID: PMC11894534 DOI: 10.1093/nar/gkaf166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
RNA modifications shape gene expression through a variety of chemical changes to canonical RNA bases. Although numbering in the hundreds, only a few RNA modifications are well characterized, in part due to the absence of methods to identify modification sites. Antibodies remain a common tool to identify modified RNA and infer modification sites through straightforward applications. However, specificity issues can result in off-target binding and confound conclusions. This work utilizes in silico λ-dynamics to efficiently estimate binding free energy differences of modification-targeting antibodies between a variety of naturally occurring RNA modifications. Crystal structures of inosine and N6-methyladenosine (m6A) targeting antibodies bound to their modified ribonucleosides were determined and served as structural starting points. λ-Dynamics was utilized to predict RNA modifications that permit or inhibit binding to these antibodies. In vitro RNA-antibody binding assays supported the accuracy of these in silico results. High agreement between experimental and computed binding propensities demonstrated that λ-dynamics can serve as a predictive screen for antibody specificity against libraries of RNA modifications. More importantly, this strategy is an innovative way to elucidate how hundreds of known RNA modifications interact with biological molecules without the limitations imposed by in vitro or in vivo methodologies.
Collapse
Affiliation(s)
- Murphy Angelo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Scott T Aoki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Diensthuber G, Novoa EM. Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing. Mol Cell 2025; 85:276-289. [PMID: 39824168 DOI: 10.1016/j.molcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution. Here, we review recent efforts pioneering the use of DRS to better understand the epitranscriptomic landscape. We highlight how DRS can be applied to investigate different RNA biotypes, emphasizing the use of specialized library preparation protocols and downstream bioinformatic workflows to detect both natural and synthetic RNA modifications. Finally, we provide a perspective on the future role of DRS in epitranscriptomic research, highlighting remaining challenges and emerging opportunities from improved sequencing yields and accuracy enabled by the latest DRS chemistry.
Collapse
Affiliation(s)
- Gregor Diensthuber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
5
|
Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M. Epigenetic Mechanisms in Osteoporosis: Exploring the Power of m 6A RNA Modification. J Cell Mol Med 2025; 29:e70344. [PMID: 39779466 PMCID: PMC11710941 DOI: 10.1111/jcmm.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning m6A RNA modification. m6A is the most prevalent dynamic and reversible modification in eukaryotes, mediating various metabolic processes of mRNAs, including splicing, structural conversion, translation, translocation and degradation and serves as a crucial component of epigenetic modification. Research has increasingly validated that m6A plays a vital role in the proliferation, differentiation, migration, invasion,and repair of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts, all of which impact the whole process of osteoporosis pathogenesis. Continuous efforts have been made to target m6A regulators and natural products derived from traditional medicine, which exhibit multiple biological activities such as anti-inflammatory and anticancer effects, have emerged as a valuable resources for m6A drug discovery. This paper elaborates on m6A methylation and its regulatory role in osteoporosis, emphasising its implications for diagnosis and treatment, thereby providing theoretical references.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Yagang Song
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Lin Guo
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Hui Zhao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Ming Bai
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Mingsan Miao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| |
Collapse
|
6
|
Delgado-Tejedor A, Medina R, Begik O, Cozzuto L, López J, Blanco S, Ponomarenko J, Novoa EM. Native RNA nanopore sequencing reveals antibiotic-induced loss of rRNA modifications in the A- and P-sites. Nat Commun 2024; 15:10054. [PMID: 39613750 PMCID: PMC11607429 DOI: 10.1038/s41467-024-54368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The biological relevance and dynamics of mRNA modifications have been extensively studied; however, whether rRNA modifications are dynamically regulated, and under which conditions, remains unclear. Here, we systematically characterize bacterial rRNA modifications upon exposure to diverse antibiotics using native RNA nanopore sequencing. To identify significant rRNA modification changes, we develop NanoConsensus, a novel pipeline that is robust across RNA modification types, stoichiometries and coverage, with very low false positive rates, outperforming all individual algorithms tested. We then apply NanoConsensus to characterize the rRNA modification landscape upon antibiotic exposure, finding that rRNA modification profiles are altered in the vicinity of A and P-sites of the ribosome, in an antibiotic-specific manner, possibly contributing to antibiotic resistance. Our work demonstrates that rRNA modification profiles can be rapidly altered in response to environmental exposures, and provides a robust workflow to study rRNA modification dynamics in any species, in a scalable and reproducible manner.
Collapse
Affiliation(s)
- Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
7
|
Wen J, Zhu Q, Liu Y, Gou LT. RNA modifications: emerging players in the regulation of reproduction and development. Acta Biochim Biophys Sin (Shanghai) 2024; 57:33-58. [PMID: 39574165 PMCID: PMC11802351 DOI: 10.3724/abbs.2024201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/05/2024] [Indexed: 01/25/2025] Open
Abstract
The intricate world of RNA modifications, collectively termed the epitranscriptome, covers over 170 identified modifications and impacts RNA metabolism and, consequently, almost all biological processes. In this review, we focus on the regulatory roles and biological functions of a panel of dominant RNA modifications (including m 6A, m 5C, Ψ, ac 4C, m 1A, and m 7G) on three RNA types-mRNA, tRNA, and rRNA-in mammalian development, particularly in the context of reproduction as well as embryonic development. We discuss in detail how those modifications, along with their regulatory proteins, affect RNA processing, structure, localization, stability, and translation efficiency. We also highlight the associations among dysfunctions in RNA modification-related proteins, abnormal modification deposition and various diseases, emphasizing the roles of RNA modifications in critical developmental processes such as stem cell self-renewal and cell fate transition. Elucidating the molecular mechanisms by which RNA modifications influence diverse developmental processes holds promise for developing innovative strategies to manage developmental disorders. Finally, we outline several unexplored areas in the field of RNA modification that warrant further investigation.
Collapse
Affiliation(s)
- Junfei Wen
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qifan Zhu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yong Liu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Lan-Tao Gou
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
8
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 PMCID: PMC11572933 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B. Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Assael A. Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Isaac A. Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
9
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
10
|
Liu JF, Jaffrey SR. Dinoflagellate mRNA is pervasively modified with m 1A. EMBO Rep 2024; 25:4634-4635. [PMID: 39304776 PMCID: PMC11549392 DOI: 10.1038/s44319-024-00263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
Unlike the scarce presence in typical eukaryotes, m1A is prevalent in dinoflagellate mRNA, m1A levels correlate with the expression of metabolism-related genes and respond to nitrogen starvation.
Collapse
Affiliation(s)
- Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Li C, Li Y, Guo J, Wang Y, Shi X, Zhang Y, Liang N, Ma H, Yuan J, Xu J, Chen H. Abundant mRNA m 1A modification in dinoflagellates: a new layer of gene regulation. EMBO Rep 2024; 25:4655-4673. [PMID: 39223385 PMCID: PMC11549093 DOI: 10.1038/s44319-024-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Dinoflagellates, a class of unicellular eukaryotic phytoplankton, exhibit minimal transcriptional regulation, representing a unique model for exploring gene expression. The biosynthesis, distribution, regulation, and function of mRNA N1-methyladenosine (m1A) remain controversial due to its limited presence in typical eukaryotic mRNA. This study provides a comprehensive map of m1A in dinoflagellate mRNA and shows that m1A, rather than N6-methyladenosine (m6A), is the most prevalent internal mRNA modification in various dinoflagellate species, with an asymmetric distribution along mature transcripts. In Amphidinium carterae, we identify 6549 m1A sites characterized by a non-tRNA T-loop-like sequence motif within the transcripts of 3196 genes, many of which are involved in regulating carbon and nitrogen metabolism. Enriched within 3'UTRs, dinoflagellate mRNA m1A levels negatively correlate with translation efficiency. Nitrogen depletion further decreases mRNA m1A levels. Our data suggest that distinctive patterns of m1A modification might influence the expression of metabolism-related genes through translational control.
Collapse
Affiliation(s)
- Chongping Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Ying Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Shenzhen People's Hospital, 3046 Shennan E Rd, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jia Guo
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, 450000, China
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Xiaoyan Shi
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Yangyi Zhang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Nan Liang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Honghui Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, 200000, China
| | - Jie Yuan
- Shenzhen People's Hospital, 3046 Shennan E Rd, Shenzhen, 518020, China.
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China.
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, 450000, China.
| | - Hao Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China.
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518000, China.
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, 450000, China.
| |
Collapse
|
12
|
Lu X, He Y, Guo JQ, Wang Y, Yan Q, Xiong Q, Shi H, Hou Q, Yin J, An YB, Chen YD, Yang CS, Mao Y, Zhu X, Tang Y, Liu J, Bi Y, Song L, Wang L, Yang Y, He M, Li W, Chen X, Wang J. Dynamics of epitranscriptomes uncover translational reprogramming directed by ac4C in rice during pathogen infection. NATURE PLANTS 2024; 10:1548-1561. [PMID: 39317771 DOI: 10.1038/s41477-024-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Messenger RNA modifications play pivotal roles in RNA biology, but comprehensive landscape changes of epitranscriptomes remain largely unknown in plant immune response. Here we report translational reprogramming directed by ac4C mRNA modification upon pathogen challenge. We first investigate the dynamics of translatomes and epitranscriptomes and uncover that the change in ac4C at single-base resolution promotes translational reprogramming upon Magnaporthe oryzae infection. Then by characterizing the specific distributions of m1A, 2'O-Nm, ac4C, m5C, m6A and m7G, we find that ac4Cs, unlike other modifications, are enriched at the 3rd position of codons, which stabilizes the Watson-Crick base pairing. Importantly, we demonstrate that upon pathogen infection, the increased expression of the ac4C writer OsNAT10/OsACYR (N-ACETYLTRANSFERASE FOR CYTIDINE IN RNA) promotes translation to facilitate rapid activation of immune responses, including the enhancement of jasmonic acid biosynthesis. Our study provides an atlas of mRNA modifications and insights into ac4C function in plant immunity.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- MOE Key Laboratory of Agricultural Bioinformatics, Sichuan Agricultural University, Chengdu, China.
| | - Yao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jin-Qiao Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Bang An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Cheng-Shuang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ye Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
13
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
14
|
Fang D, Babich JM, Dangelmaier EA, Wall V, Nachtergaele S. A user guide to RT-based mapping of RNA modifications. Methods Enzymol 2024; 705:51-79. [PMID: 39389673 DOI: 10.1016/bs.mie.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical modifications to RNA nucleotides are both a naturally occurring layer of biological regulation and an increasingly prevalent approach to synthetically alter RNA function in therapeutic applications. Detection of their presence, prevalence, and stoichiometry across different RNAs is critical to understanding their underlying functions. However, this remains challenging due to the technical barriers involved in differentiating chemically similar modification species, and in detecting rare or low stoichiometry modifications. Reverse transcription-based techniques rely on the introduction of a predictable mutation, truncation, or deletion signature when a reverse transcriptase encounters a modified nucleotide of interest. Previous studies have shown promise in detecting modifications to single nucleotide resolution, but the low efficiency and processivity of many commercially available reverse transcriptases has resulted in discordant conclusions in some cases. Here, we present guidelines and best practices for applying the highly processive MarathonRT enzyme to reverse transcription-based modification sequencing. These guidelines include recommendations for controls and example protocols to help users plan robust experiments for mapping modification(s) of choice, as well as discussion of the limitations for the methods described.
Collapse
Affiliation(s)
- Dorthy Fang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - John M Babich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Emily A Dangelmaier
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Veronica Wall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Sigrid Nachtergaele
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States.
| |
Collapse
|
15
|
Relier S, Schiffers S, Beiki H, Oberdoerffer S. Enhanced ac4C detection in RNA via chemical reduction and cDNA synthesis with modified dNTPs. RNA (NEW YORK, N.Y.) 2024; 30:938-953. [PMID: 38697668 PMCID: PMC11182010 DOI: 10.1261/rna.079863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
The functional analysis of epitranscriptomic modifications in RNA is constrained by a lack of methods that accurately capture their locations and levels. We previously demonstrated that the RNA modification N4-acetylcytidine (ac4C) can be mapped at base resolution through sodium borohydride reduction to tetrahydroacetylcytidine (tetrahydro-ac4C), followed by cDNA synthesis to misincorporate adenosine opposite reduced ac4C sites, culminating in C:T mismatches at acetylated cytidines (RedaC:T). However, this process is relatively inefficient, resulting in <20% C:T mismatches at a fully modified ac4C site in 18S rRNA. Considering that ac4C locations in other substrates including mRNA are unlikely to reach full penetrance, this method is not ideal for comprehensive mapping. Here, we introduce "RetraC:T" (reduction to tetrahydro-ac4C and reverse transcription with amino-dATP to induce C:T mismatches) as a method with enhanced ability to detect ac4C in cellular RNA. In brief, RNA is reduced through NaBH4 or the closely related reagent sodium cyanoborohydride (NaCNBH3) followed by cDNA synthesis in the presence of a modified DNA nucleotide, 2-amino-dATP, that preferentially binds to tetrahydro-ac4C. Incorporation of the modified dNTP substantially improved C:T mismatch rates, reaching stoichiometric detection of ac4C in 18S rRNA. Importantly, 2-amino-dATP did not result in truncated cDNA products nor increase mismatches at other locations. Thus, modified dNTPs are introduced as a new addition to the toolbox for detecting ac4C at base resolution.
Collapse
Affiliation(s)
- Sebastien Relier
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sarah Schiffers
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hamid Beiki
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Baquero-Pérez B, Bortoletto E, Rosani U, Delgado-Tejedor A, Medina R, Novoa EM, Venier P, Díez J. Elucidation of the Epitranscriptomic RNA Modification Landscape of Chikungunya Virus. Viruses 2024; 16:945. [PMID: 38932237 PMCID: PMC11209572 DOI: 10.3390/v16060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The genomes of positive-sense (+) single-stranded RNA (ssRNA) viruses are believed to be subjected to a wide range of RNA modifications. In this study, we focused on the chikungunya virus (CHIKV) as a model (+) ssRNA virus to study the landscape of viral RNA modification in infected human cells. Among the 32 distinct RNA modifications analysed by mass spectrometry, inosine was found enriched in the genomic CHIKV RNA. However, orthogonal validation by Illumina RNA-seq analyses did not identify any inosine modification along the CHIKV RNA genome. Moreover, CHIKV infection did not alter the expression of ADAR1 isoforms, the enzymes that catalyse the adenosine to inosine conversion. Together, this study highlights the importance of a multidisciplinary approach to assess the presence of RNA modifications in viral RNA genomes.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Enrico Bortoletto
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (E.B.); (U.R.)
| | - Umberto Rosani
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (E.B.); (U.R.)
| | - Anna Delgado-Tejedor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.D.-T.); (R.M.); (E.M.N.)
| | - Rebeca Medina
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.D.-T.); (R.M.); (E.M.N.)
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.D.-T.); (R.M.); (E.M.N.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Paola Venier
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (E.B.); (U.R.)
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
17
|
Teng C, Song X, Fan C, Man S, Hu Y, Hou Y, Xin T. Breast cancer clinical outcomes and tumor immune microenvironment: cross-dialogue of multiple epigenetic modification profiles. Aging (Albany NY) 2024; 16:8998-9022. [PMID: 38796789 PMCID: PMC11164499 DOI: 10.18632/aging.205853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024]
Abstract
The discovery of RNA methylation alterations associated with cancer holds promise for their utilization as potential biomarkers in cancer diagnosis, prognosis, and prediction. RNA methylation has been found to impact the immunological microenvironment of tumors, but the specific role of methylation-related genes (MRGs), particularly in breast cancer (BC), the most common cancer among women globally, within the tumor microenvironment remains unknown. In this study, we obtained data from TCGA and GEO databases to investigate the expression patterns of MRGs in both genomic and transcriptional domains in BC. By analyzing the data, we identified two distinct genetic groupings that were correlated with clinicopathological characteristics, prognosis, degree of TME cell infiltration, and other abnormalities in MRGs among patients. Subsequently, an MRG model was developed to predict overall survival (OS) and its accuracy was evaluated in BC patients. Additionally, a highly precise nomogram was created to enhance the practical usability of the MRG model. In low-risk groups, we observed lower TBM values and higher TIDE scores. We further explored how MRGs influence a patient's prognosis, clinically significant characteristics, response to therapy, and the TME. These risk signatures have the potential to improve treatment strategies for BC patients and could be applied in future clinical settings. Moreover, they may also be utilized to determine prognosis and biological features in these patients.
Collapse
Affiliation(s)
- Chong Teng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaowei Song
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengjuan Fan
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Siqi Man
- Oncology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuanyuan Hu
- Oncology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifei Hou
- School of Nursing, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Xin
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Jörg M, Plehn JE, Kristen M, Lander M, Walz L, Lietz C, Wijns J, Pichot F, Rojas-Charry L, Wirtz Martin KM, Ruffini N, Kreim N, Gerber S, Motorin Y, Endres K, Rossmanith W, Methner A, Helm M, Friedland K. N1-methylation of adenosine (m 1A) in ND5 mRNA leads to complex I dysfunction in Alzheimer's disease. Mol Psychiatry 2024; 29:1427-1439. [PMID: 38287100 PMCID: PMC11189808 DOI: 10.1038/s41380-024-02421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid β (Aβ). Aβ mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aβ-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Marko Jörg
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Johanna E Plehn
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marco Kristen
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lukas Walz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christine Lietz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Julie Wijns
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Florian Pichot
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Liliana Rojas-Charry
- Institute of Molecular Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katja M Wirtz Martin
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Nicolas Ruffini
- Institute for Human Genetics, University Medical Center Johannes Gutenberg University, 55131, Mainz, Germany
| | - Nastasja Kreim
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center Johannes Gutenberg University, 55131, Mainz, Germany
| | - Yuri Motorin
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UMS2008 IBSLor CNRS, Université de Lorraine-INSERM, Biopôle, 9 Avenue de la Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France
- IMoPA, UMR7365 CNRS, Université de Lorraine, Biopôle, 9 Avenue de la Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straβe 13, 1090, Vienna, Austria
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Zhang M, Zhang X, Ma Y, Yi C. New directions for Ψ and m 1A decoding in mRNA: deciphering the stoichiometry and function. RNA (NEW YORK, N.Y.) 2024; 30:537-547. [PMID: 38531648 PMCID: PMC11019747 DOI: 10.1261/rna.079950.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, advancements in epitranscriptomics have significantly enhanced our understanding of mRNA metabolism and its role in human development and diseases. This period has witnessed breakthroughs in sequencing technologies and the identification of key proteins involved in RNA modification processes. Alongside the well-studied m6A, Ψ and m1A have emerged as key epitranscriptomic markers. Initially identified through transcriptome-wide profiling, these modifications are now recognized for their broad impact on RNA metabolism and gene expression. In this Perspective, we focus on the detections and functions of Ψ and m1A modifications in mRNA and discuss previous discrepancies and future challenges. We summarize recent advances and highlight the latest sequencing technologies for stoichiometric detection and their mechanistic investigations for functional unveiling in mRNA as the new research directions.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yichen Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Baquero-Pérez B, Yonchev ID, Delgado-Tejedor A, Medina R, Puig-Torrents M, Sudbery I, Begik O, Wilson SA, Novoa EM, Díez J. N 6-methyladenosine modification is not a general trait of viral RNA genomes. Nat Commun 2024; 15:1964. [PMID: 38467633 PMCID: PMC10928186 DOI: 10.1038/s41467-024-46278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of m6A in CHIKV and DENV RNAs. For this, we combine m6A-Seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we find no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery does not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection has no effect on the m6A machinery's localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivaylo D Yonchev
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Delgado-Tejedor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Puig-Torrents
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ian Sudbery
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Stuart A Wilson
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
21
|
Smoczynski J, Yared MJ, Meynier V, Barraud P, Tisné C. Advances in the Structural and Functional Understanding of m 1A RNA Modification. Acc Chem Res 2024; 57. [PMID: 38331425 PMCID: PMC10882958 DOI: 10.1021/acs.accounts.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
ConspectusRNA modification is a co- or post-transcriptional process by which specific nucleotides are chemically altered by enzymes after their initial incorporation into the RNA chain, expanding the chemical and functional diversity of RNAs. Our understanding of RNA modifications has changed dramatically in recent years. In the past decade, RNA methyltransferases (MTases) have been highlighted in numerous clinical studies and disease models, modifications have been found to be dynamically regulated by demodification enzymes, and significant technological advances have been made in the fields of RNA sequencing, mass spectrometry, and structural biology. Among RNAs, transfer RNAs (tRNAs) exhibit the greatest diversity and density of post-transcriptional modifications, which allow for potential cross-talks and regulation during their incorporation. N1-methyladenosine (m1A) modification is found in tRNAs at positions 9, 14, 16, 22, 57, and 58, depending on the tRNA and organism.Our laboratory has used and developed a large panel of tools to decipher the different mechanisms used by m1A tRNA MTases to recognize and methylate tRNA. We have solved the structures of TrmI from Thermus thermophilus (m1A58), TrmK from Bacillus subtilis (m1A22), and human TRMT10C (m1A9). These MTases do not share the same structure or organization to recognize tRNAs, but they all modify an adenosine, forming a non-Watson-Crick (WC) interaction. For TrmK, nuclear magnetic resonance (NMR) chemical shift mapping of the binding interface between TrmK and tRNASer was invaluable to build a TrmK/tRNA model, where both domains of TrmK participate in the binding of a full-length L-shaped tRNA and where the non-WC purine 13-A22 base pair positions the A22 N1-atom close to the methyl of the S-adenosyl-l-methionine (SAM) TrmK cofactor. For TRMT10C, cryoEM structures showed the MTase poised to N1-methylate A9 or G9 in tRNA and revealed different steps of tRNA maturation, where TRMT10C acts as a tRNA binding platform for sequential docking of each maturation enzyme. This work confers a role for TRMT10C in tRNA quality control and provides a framework to understand the link between mitochondrial tRNA maturation dysfunction and diseases.Methods to directly detect the incorporation of modifications during tRNA biosynthesis are rare and do not provide easy access to the temporality of their introduction. To this end, we have introduced time-resolved NMR to monitor tRNA maturation in the cellular environment. Combined with genetic and biochemical approaches involving the synthesis of specifically modified tRNAs, our methodology revealed that some modifications are incorporated in a defined sequential order, controlled by cross-talks between modification events. In particular, a strong modification circuit, namely Ψ55 → m5U54 → m1A58, controls the modification process in the T-arm of yeast elongator tRNAs. Conversely, we showed that m1A58 is efficiently introduced on unmodified initiator tRNAiMet without the need of any prior modification. Two distinct pathways are therefore followed for m1A58 incorporation in elongator and initiator tRNAs.We are undoubtedly entering an exciting period for the elucidation of the functions of RNA modifications and the intricate mechanisms by which modification enzymes identify and alter their RNA substrates. These are promising directions for the field of epitranscriptomics.
Collapse
Affiliation(s)
| | | | | | - Pierre Barraud
- Université Paris
Cité, CNRS, Institut de Biologie Physico-Chimique, IBPC, Expression
Génétique Microbienne, Paris 75005, France
| | - Carine Tisné
- Université Paris
Cité, CNRS, Institut de Biologie Physico-Chimique, IBPC, Expression
Génétique Microbienne, Paris 75005, France
| |
Collapse
|
22
|
Angelo M, Zhang W, Vilseck JZ, Aoki ST. In silico λ-dynamics predicts protein binding specificities to modified RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577511. [PMID: 38328125 PMCID: PMC10849657 DOI: 10.1101/2024.01.26.577511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
RNA modifications shape gene expression through a smorgasbord of chemical changes to canonical RNA bases. Although numbering in the hundreds, only a few RNA modifications are well characterized, in part due to the absence of methods to identify modification sites. Antibodies remain a common tool to identify modified RNA and infer modification sites through straightforward applications. However, specificity issues can result in off-target binding and confound conclusions. This work utilizes in silico λ-dynamics to efficiently estimate binding free energy differences of modification-targeting antibodies between a variety of naturally occurring RNA modifications. Crystal structures of inosine and N6-methyladenosine (m6A) targeting antibodies bound to their modified ribonucleosides were determined and served as structural starting points. λ-Dynamics was utilized to predict RNA modifications that permit or inhibit binding to these antibodies. In vitro RNA-antibody binding assays supported the accuracy of these in silico results. High agreement between experimental and computed binding propensities demonstrated that λ-dynamics can serve as a predictive screen for antibody specificity against libraries of RNA modifications. More importantly, this strategy is an innovative way to elucidate how hundreds of known RNA modifications interact with biological molecules without the limitations imposed by in vitro or in vivo methodologies.
Collapse
Affiliation(s)
- Murphy Angelo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott T. Aoki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Helm M, Bohnsack MT, Carell T, Dalpke A, Entian KD, Ehrenhofer-Murray A, Ficner R, Hammann C, Höbartner C, Jäschke A, Jeltsch A, Kaiser S, Klassen R, Leidel SA, Marx A, Mörl M, Meier JC, Meister G, Rentmeister A, Rodnina M, Roignant JY, Schaffrath R, Stadler P, Stafforst T. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2441-2449. [PMID: 37962075 DOI: 10.1021/acschembio.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | | | - Ralf Ficner
- Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Christian Hammann
- Department of Medicine, HMU Health and Medical University, 14471 Potsdam, Germany
| | - Claudia Höbartner
- Institute for Organic Chemistry, Julius-Maximilians-University of Würzburg, 97074 Würzburg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefanie Kaiser
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Roland Klassen
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andreas Marx
- Department of Chemistry - Organic/Cellular Chemistry, University of Constance, 78457 Constance, Germany
| | - Mario Mörl
- Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Jochen C Meier
- Department of Cell Physiology, Technical University of Braunschweig, 38106 Brunswick, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology - Biochemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Rentmeister
- Institute for Biochemistry, Westphalian Wilhelms University Münster, 48149 Münster, Germany
| | - Marina Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raffael Schaffrath
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Peter Stadler
- Institute for Computer Science - Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Thorsten Stafforst
- Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
24
|
Araujo Tavares RDC, Mahadeshwar G, Wan H, Pyle AM. MRT-ModSeq - Rapid Detection of RNA Modifications with MarathonRT. J Mol Biol 2023; 435:168299. [PMID: 37802215 DOI: 10.1016/j.jmb.2023.168299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Chemical modifications are essential regulatory elements that modulate the behavior and function of cellular RNAs. Despite recent advances in sequencing-based RNA modification mapping, methods combining accuracy and speed are still lacking. Here, we introduce MRT-ModSeq for rapid, simultaneous detection of multiple RNA modifications using MarathonRT. MRT-ModSeq employs distinct divalent cofactors to generate 2-D mutational profiles that are highly dependent on nucleotide identity and modification type. As a proof of concept, we use the MRT fingerprints of well-studied rRNAs to implement a general workflow for detecting RNA modifications. MRT-ModSeq rapidly detects positions of diverse modifications across a RNA transcript, enabling assignment of m1acp3Y, m1A, m3U, m7G and 2'-OMe locations through mutation-rate filtering and machine learning. m1A sites in sparsely modified targets, such as MALAT1 and PRUNE1 could also be detected. MRT-ModSeq can be trained on natural and synthetic transcripts to expedite detection of diverse RNA modification subtypes across targets of interest.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA. https://twitter.com/gandzmakerdance
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA. https://twitter.com/HanWan19744358
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
25
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
27
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
28
|
Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, Han L, Li C, Xue J, Zhao Z, Li W, Qing Y, Shen C, Tan B, Chen Z, Leung K, Wang K, Swaminathan S, Li L, Wunderlich M, Mulloy JC, Li X, Chen H, Zhang B, Horne D, Rosen ST, Marcucci G, Xu M, Li Z, Wei M, Tian J, Shen B, Su R, Chen J. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30:1072-1090.e10. [PMID: 37541212 PMCID: PMC11166201 DOI: 10.1016/j.stem.2023.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.
Collapse
Affiliation(s)
- Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, Zhejiang, China
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Steven T Rosen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Abstract
Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
30
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
31
|
Kong Y, Mead EA, Fang G. Navigating the pitfalls of mapping DNA and RNA modifications. Nat Rev Genet 2023; 24:363-381. [PMID: 36653550 PMCID: PMC10722219 DOI: 10.1038/s41576-022-00559-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
Chemical modifications to nucleic acids occur across the kingdoms of life and carry important regulatory information. Reliable high-resolution mapping of these modifications is the foundation of functional and mechanistic studies, and recent methodological advances based on next-generation sequencing and long-read sequencing platforms are critical to achieving this aim. However, mapping technologies may have limitations that sometimes lead to inconsistent results. Some of these limitations are technical in nature and specific to certain types of technology. Here, however, we focus on common (yet not always widely recognized) pitfalls that are shared among frequently used mapping technologies and discuss strategies to help technology developers and users mitigate their effects. Although the emphasis is primarily on DNA modifications, RNA modifications are also discussed.
Collapse
Affiliation(s)
- Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Prall W, Ganguly DR, Gregory BD. The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future. THE PLANT CELL 2023; 35:1801-1816. [PMID: 36794718 PMCID: PMC10226571 DOI: 10.1093/plcell/koad044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 05/30/2023]
Abstract
Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Diep R Ganguly
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Tavares RDCA, Mahadeshwar G, Wan H, Pyle AM. MRT-ModSeq - Rapid detection of RNA modifications with MarathonRT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542276. [PMID: 37292902 PMCID: PMC10245971 DOI: 10.1101/2023.05.25.542276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical modifications are essential regulatory elements that modulate the behavior and function of cellular RNAs. Despite recent advances in sequencing-based RNA modification mapping, methods combining accuracy and speed are still lacking. Here, we introduce MRT- ModSeq for rapid, simultaneous detection of multiple RNA modifications using MarathonRT. MRT-ModSeq employs distinct divalent cofactors to generate 2-D mutational profiles that are highly dependent on nucleotide identity and modification type. As a proof of concept, we use the MRT fingerprints of well-studied rRNAs to implement a general workflow for detecting RNA modifications. MRT-ModSeq rapidly detects positions of diverse modifications across a RNA transcript, enabling assignment of m1acp3Y, m1A, m3U, m7G and 2'-OMe locations through mutation-rate filtering and machine learning. m1A sites in sparsely modified targets, such as MALAT1 and PRUNE1 could also be detected. MRT-ModSeq can be trained on natural and synthetic transcripts to expedite detection of diverse RNA modification subtypes across targets of interest.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| |
Collapse
|
34
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
35
|
Abstract
N6-Methyladenosine (m6A) is one of the most abundant modifications of the epitranscriptome and is found in cellular RNAs across all kingdoms of life. Advances in detection and mapping methods have improved our understanding of the effects of m6A on mRNA fate and ribosomal RNA function, and have uncovered novel functional roles in virtually every species of RNA. In this Review, we explore the latest studies revealing roles for m6A-modified RNAs in chromatin architecture, transcriptional regulation and genome stability. We also summarize m6A functions in biological processes such as stem-cell renewal and differentiation, brain function, immunity and cancer progression.
Collapse
Affiliation(s)
- Konstantinos Boulias
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
36
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
37
|
Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications. Int J Mol Sci 2022; 23:13851. [PMID: 36430347 PMCID: PMC9695239 DOI: 10.3390/ijms232213851] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules. Together, these modifications form the epitranscriptome, an essential layer of cellular biochemistry. As of the time of writing this review, more than 300 distinct RNA modifications from all three life domains have been identified. However, only a few of the most well-established modifications are included in most reviews on this topic. To provide a complete overview of the current state of research on the epitranscriptome, we analyzed the extent of the available information for all known RNA modifications. We selected 25 modifications to describe in detail. Summarizing our findings, we describe the current status of research on most RNA modifications and identify further developments in this field.
Collapse
Affiliation(s)
- Viktoriia A. Arzumanian
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | - Georgii V. Dolgalev
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | | | | | | |
Collapse
|
38
|
Begik O, Mattick JS, Novoa EM. Exploring the epitranscriptome by native RNA sequencing. RNA (NEW YORK, N.Y.) 2022; 28:1430-1439. [PMID: 36104106 PMCID: PMC9745831 DOI: 10.1261/rna.079404.122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chemical RNA modifications, collectively referred to as the "epitranscriptome," are essential players in fine-tuning gene expression. Our ability to analyze RNA modifications has improved rapidly in recent years, largely due to the advent of high-throughput sequencing methodologies, which typically consist of coupling modification-specific reagents, such as antibodies or enzymes, to next-generation sequencing. Recently, it also became possible to map RNA modifications directly by sequencing native RNAs using nanopore technologies, which has been applied for the detection of a number of RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). However, the signal modulations caused by most RNA modifications are yet to be determined. A global effort is needed to determine the signatures of the full range of RNA modifications to avoid the technical biases that have so far limited our understanding of the epitranscriptome.
Collapse
Affiliation(s)
- Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Barcelona 08002, Spain
| |
Collapse
|
39
|
Nie F, Tang Q, Liu Y, Qin H, Liu S, Wu M, Feng P, Chen W. RNAME: a comprehensive database of RNA modification enzymes. Comput Struct Biotechnol J 2022; 20:6244-6249. [DOI: 10.1016/j.csbj.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|
40
|
Caldwell RM, Flynn RA. Discovering glycoRNA: Traditional and Non‐Canonical Approaches to Studying RNA Modifications. Isr J Chem 2022. [DOI: 10.1002/ijch.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reese M. Caldwell
- Stem Cell Program, Boston Children's Hospital Boston 02115 Massachusetts United States
- Stem Cell and Regenerative Biology Department, Harvard University Cambridage 02138 Massachusetts United States
| | - Ryan A. Flynn
- Stem Cell Program, Boston Children's Hospital Boston 02115 Massachusetts United States
- Stem Cell and Regenerative Biology Department, Harvard University Cambridage 02138 Massachusetts United States
| |
Collapse
|
41
|
Felix AS, Quillin AL, Mousavi S, Heemstra JM. Harnessing Nature's Molecular Recognition Capabilities to Map and Study RNA Modifications. Acc Chem Res 2022; 55:2271-2279. [PMID: 35900335 PMCID: PMC9388579 DOI: 10.1021/acs.accounts.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA editing or "epitranscriptomic modification" refers to the processing of RNA that occurs after transcription to alter the sequence or structure of the nucleic acid. These chemical alterations can be found on either the ribose sugar or the nucleobase, and although many are "silent" and do not change the Watson-Crick-Franklin code of the RNA, others result in recoding events. More than 170 RNA modifications have been identified so far, each having a specific biological purpose. Additionally, dysregulated RNA editing has been linked to several types of diseases and disorders. As new modifications are discovered and our understanding of their functional impact grows, so does the need for selective methods of identifying and mapping editing sites in the transcriptome.The most common methods for studying RNA modifications rely on antibodies as affinity reagents; however, antibodies can be difficult to generate and often have undesirable off-target binding. More recently, selective chemical labeling has advanced the field by offering techniques that can be used for the detection, enrichment, and quantification of RNA modifications. In our method using acrylamide for inosine labeling, we demonstrated the versatility with which this approach enables pull-down or downstream functionalization with other tags or affinity handles. Although this method did enable the quantitative analysis of A-to-I editing levels, we found that selectivity posed a significant limitation, likely because of the similar reactivity profiles of inosine and pseudouridine or other nucleobases.Seeking to overcome the inherent limitations of antibodies and chemical labeling methods, a more recent approach to studying the epitranscriptome is through the repurposing of proteins and enzymes that recognize modified RNA. Our laboratory has used Endonuclease V, a repair enzyme that cleaves inosine-containing RNAs, and reprogrammed it to instead bind inosine. We first harnessed EndoV to develop a preparative technique for RNA sequencing that we termed EndoVIPER-seq. This method uses EndoV to enrich inosine-edited RNAs, providing better coverage in RNA sequencing and leading to the discovery of previously undetected A-to-I editing sites. We also leveraged EndoV to create a plate-based immunoassay (EndoVLISA) to quantify inosine in cellular RNA. This approach can detect differential A-to-I editing levels across tissue types or disease states while being independent of RNA sequencing, making it cost-effective and high-throughput. By harnessing the molecular recognition capabilities of this enzyme, we show that EndoV can be repurposed as an "anti-inosine antibody" to develop new methods of detecting and enriching inosine from cellular RNA.Nature has evolved a plethora of proteins and enzymes that selectively recognize and act on RNA modifications, and exploiting the affinity of these biomolecules offers a promising new direction for the field of epitranscriptomics.
Collapse
Affiliation(s)
- Ansley S. Felix
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Alexandria L. Quillin
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shikufa Mousavi
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
42
|
Yang X, Patil S, Joshi S, Jamla M, Kumar V. Exploring epitranscriptomics for crop improvement and environmental stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:56-71. [PMID: 35567875 DOI: 10.1016/j.plaphy.2022.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change and stressful environmental conditions severely hamper crop growth, development and yield. Plants respond to environmental perturbations, through their plasticity provided by key-genes, governed at post-/transcriptional levels. Gene-regulation in plants is a multilevel process controlled by diverse cellular entities that includes transcription factors (TF), epigenetic regulators and non-coding RNAs beside others. There are successful studies confirming the role of epigenetic modifications (DNA-methylation/histone-modifications) in gene expression. Recent years have witnessed emergence of a highly specialized field the "Epitranscriptomics". Epitranscriptomics deals with investigating post-transcriptional RNA chemical-modifications present across the life forms that change structural, functional and biological characters of RNA. However, deeper insights on of epitranscriptomic modifications, with >140 types known so far, are to be understood fully. Researchers have identified epitranscriptome marks (writers, erasers and readers) and mapped the site-specific RNA modifications (m6A, m5C, 3' uridylation, etc.) responsible for fine-tuning gene expression in plants. Simultaneous advancement in sequencing platforms, upgraded bioinformatic tools and pipelines along with conventional labelled techniques have further given a statistical picture of these epitranscriptomic modifications leading to their potential applicability in crop improvement and developing climate-smart crops. We present herein the insights on epitranscriptomic machinery in plants and how epitranscriptome and epitranscriptomic modifications underlying plant growth, development and environmental stress responses/adaptations. Third-generation sequencing technology, advanced bioinformatics tools and databases being used in plant epitranscriptomics are also discussed. Emphasis is given on potential exploration of epitranscriptome engineering for crop-improvement and developing environmental stress tolerant plants covering current status, challenges and future directions.
Collapse
Affiliation(s)
- Xiangbo Yang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, 132101, PR China.
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
| |
Collapse
|
43
|
Abstract
Studies on biological functions of RNA modifications such as N6-methyladenosine (m6A) in mRNA have sprung up in recent years, while the roles of N1-methyladenosine (m1A) in cancer progression remain largely unknown. We find m1A demethylase ALKBH3 can regulate the glycolysis of cancer cells via a demethylation activity dependent manner. Specifically, sequencing and functional studies confirm that ATP5D, one of the most important subunit of adenosine 5'-triphosphate synthase, is involved in m1A demethylase ALKBH3-regulated glycolysis of cancer cells. The m1A modified A71 at the exon 1 of ATP5D negatively regulates its translation elongation via increasing the binding with YTHDF1/eRF1 complex, which facilitates the release of message RNA (mRNA) from ribosome complex. m1A also regulates mRNA stability of E2F1, which directly binds with ATP5D promoter to initiate its transcription. Targeted specific demethylation of ATP5D m1A by dm1ACRISPR system can significantly increase the expression of ATP5D and glycolysis of cancer cells. In vivo data confirm the roles of m1A/ATP5D in tumor growth and cancer progression. Our study reveals a crosstalk of mRNA m1A modification and cell metabolism, which expands the understanding of such interplays that are essential for cancer therapeutic application.
Collapse
|
44
|
Ramakrishnan M, Rajan KS, Mullasseri S, Palakkal S, Kalpana K, Sharma A, Zhou M, Vinod KK, Ramasamy S, Wei Q. The plant epitranscriptome: revisiting pseudouridine and 2'-O-methyl RNA modifications. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1241-1256. [PMID: 35445501 PMCID: PMC9241379 DOI: 10.1111/pbi.13829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2023]
Abstract
There is growing evidence that post-transcriptional RNA modifications are highly dynamic and can be used to improve crop production. Although more than 172 unique types of RNA modifications have been identified throughout the kingdom of life, we are yet to leverage upon the understanding to optimize RNA modifications in crops to improve productivity. The contributions of internal mRNA modifications such as N6-methyladenosine (m6 A) and 5-methylcytosine (m5 C) methylations to embryonic development, root development, leaf morphogenesis, flowering, fruit ripening and stress response are sufficiently known, but the roles of the two most abundant RNA modifications, pseudouridine (Ψ) and 2'-O-methylation (Nm), in the cell remain unclear due to insufficient advances in high-throughput technologies in plant development. Therefore, in this review, we discuss the latest methods and insights gained in mapping internal Ψ and Nm and their unique properties in plants and other organisms. In addition, we discuss the limitations that remain in high-throughput technologies for qualitative and quantitative mapping of these RNA modifications and highlight future challenges in regulating the plant epitranscriptome.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingJiangsuChina
- Bamboo Research InstituteNanjing Forestry UniversityNanjingJiangsuChina
| | - K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology InstituteBar‐Ilan University52900Ramat‐GanIsrael
- Department of Chemical and Structural BiologyWeizmann Institute7610001RehovotIsrael
| | - Sileesh Mullasseri
- School of Ocean Science and TechnologyKerala University of Fisheries and Ocean StudiesCochinIndia
| | - Sarin Palakkal
- The Institute for Drug ResearchSchool of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
| | - Krishnan Kalpana
- Department of Plant PathologyAgricultural College and Research InstituteTamilnadu Agricultural University625 104MaduraiTamil NaduIndia
| | - Anket Sharma
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouZhejiangChina
| | - Mingbing Zhou
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouZhejiangChina
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency UtilizationZhejiang A&F UniversityHangzhouZhejiangChina
| | | | - Subbiah Ramasamy
- Cardiac Metabolic Disease LaboratoryDepartment of BiochemistrySchool of Biological SciencesMadurai Kamaraj UniversityMaduraiTamil NaduIndia
| | - Qiang Wei
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingJiangsuChina
- Bamboo Research InstituteNanjing Forestry UniversityNanjingJiangsuChina
| |
Collapse
|
45
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
46
|
Shafik AM, Zhou H, Lim J, Dickinson B, Jin P. Dysregulated mitochondrial and cytosolic tRNA m1A methylation in Alzheimer's disease. Hum Mol Genet 2022; 31:1673-1680. [PMID: 34897434 PMCID: PMC9122638 DOI: 10.1093/hmg/ddab357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
RNA modifications affect many aspects of RNA metabolism and are involved in the regulation of many different biological processes. Mono-methylation of adenosine in the N1 position, N1-methyladensoine (m1A), is a reversible modification that is known to target rRNAs and tRNAs. m1A has been shown to increase tRNA structural stability and induce correct tRNA folding. Recent studies have begun to associate the dysregulation of epitranscriptomic control with age-related disorders such as Alzheimer's disease. Here, we applied the newly developed m1A-quant-seq approach to map the brain abundant m1A RNA modification in the cortex of an Alzheimer's disease mouse model, 5XFAD. We observed hypomethylation in both mitochondrial and cytosolic tRNAs in 5XFAD mice compared with wild type. Furthermore, the main enzymes responsible for the addition of m1A in mitochondrial (TRMT10C, HSD17B10) and cytosolic tRNAs (TRMT61A) displayed decreased expression in 5XFAD compared with wild-type mice. Knockdown of these enzymes results in a more severe phenotype in a Drosophila tau model, and differential m1A methylation is correlated with differences in mature mitochondrial tRNA expression. Collectively, this work suggests that hypo m1A modification in tRNAs may play a role in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 3032, USA
| | - Huiqing Zhou
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Junghwa Lim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 3032, USA
| | - Bryan Dickinson
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 3032, USA
| |
Collapse
|
47
|
Su Z, Monshaugen I, Wilson B, Wang F, Klungland A, Ougland R, Dutta A. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun 2022; 13:2165. [PMID: 35444240 PMCID: PMC9021294 DOI: 10.1038/s41467-022-29790-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
RNA modifications are important regulatory elements of RNA functions. However, most genome-wide mapping of RNA modifications has focused on messenger RNAs and transfer RNAs, but such datasets have been lacking for small RNAs. Here we mapped N1-methyladenosine (m1A) in the cellular small RNA space. Benchmarked with synthetic m1A RNAs, our workflow identified specific groups of m1A-containing small RNAs, which are otherwise disproportionally under-represented. In particular, 22-nucleotides long 3' tRNA-fragments are highly enriched for TRMT6/61A-dependent m1A located within the seed region. TRMT6/61A-dependent m1A negatively affects gene silencing by tRF-3s. In urothelial carcinoma of the bladder, where TRMT6/61A is over-expressed, higher m1A modification on tRFs is detected, correlated with a dysregulation of tRF targetome. Lastly, TRMT6/61A regulates tRF-3 targets involved in unfolded protein response. Together, our results reveal a mechanism of regulating gene expression via base modification of small RNA.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Ida Monshaugen
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. 10 Box 1066 Blindern, 0316, Oslo, Norway
| | - Rune Ougland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, 1346, Gjettum, Norway.
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
48
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
49
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
50
|
Worpenberg L, Paolantoni C, Roignant JY. Functional interplay within the epitranscriptome: Reality or fiction? Bioessays 2021; 44:e2100174. [PMID: 34873719 DOI: 10.1002/bies.202100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/11/2022]
Abstract
RNA modifications have recently emerged as an important regulatory layer of gene expression. The most prevalent and reversible modification on messenger RNA (mRNA), N6-methyladenosine, regulates most steps of RNA metabolism and its dysregulation has been associated with numerous diseases. Other modifications such as 5-methylcytosine and N1-methyladenosine have also been detected on mRNA but their abundance is lower and still debated. Adenosine to inosine RNA editing is widespread on coding and non-coding RNA and can alter mRNA decoding as well as protect against autoimmune diseases. 2'-O-methylation of the ribose and pseudouridine are widespread on ribosomal and transfer RNA and contribute to proper RNA folding and stability. While the understanding of the individual role of RNA modifications has now reached an unprecedented stage, still little is known about their interplay in the control of gene expression. In this review we discuss the examples where such interplay has been observed and speculate that with the progress of mapping technologies more of those will rapidly accumulate.
Collapse
Affiliation(s)
- Lina Worpenberg
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chiara Paolantoni
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|