1
|
Yang R, Celino-Brady FT, Dunleavy JEM, Vigh-Conrad KA, Atkins GR, Hvasta RL, Pombar CRX, Yatsenko AN, Orwig KE, O'Bryan MK, Lima AC, Conrad DF. SATINN v2: automated image analysis for mouse testis histology with multi-laboratory data integration†. Biol Reprod 2025; 112:996-1014. [PMID: 39961022 DOI: 10.1093/biolre/ioaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 02/16/2025] [Indexed: 03/21/2025] Open
Abstract
Analysis of testis histology is fundamental to the study of male fertility, but it is a slow task with a high skill threshold. Here, we describe new neural network models for the automated classification of cell types and tubule stages from whole-slide brightfield images of mouse testis. The cell type classifier recognizes 14 cell types, including multiple steps of meiosis I prophase, with an external validation accuracy of 96%. The tubule stage classifier distinguishes all 12 canonical tubule stages with external validation accuracy of 63%, which increases to 96% when allowing for ±1 stage tolerance. We addressed generalizability of SATINN, through extensive training diversification and testing on external (non-training population) wildtype and mutant datasets. This allowed us to use SATINN to successfully process data generated in multiple laboratories. We used SATINN to analyze testis images from eight different mutant lines, generated from three different labs with a range of tissue processing protocols. Finally, we show that it is possible to use SATINN output to cluster histology images in latent space, which, when applied to the eight mutant lines, reveals known relationships in their pathology. This work represents significant progress towards a tool for robust, automated testis histopathology that can be used by multiple labs.
Collapse
Affiliation(s)
- Ran Yang
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Fritzie T Celino-Brady
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Jessica E M Dunleavy
- School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Georgia R Atkins
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel L Hvasta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher R X Pombar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander N Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Moira K O'Bryan
- School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, Chen S, Zhao T, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Gan M. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Commun Signal 2025; 23:84. [PMID: 39948590 PMCID: PMC11827146 DOI: 10.1186/s12964-025-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Stress granules (SGs) are conserved messenger ribonucleoprotein (mRNP) granules that form through rapid coalescence in the cytoplasm of eukaryotic cells under stressful environments. These dynamic membrane-free organelles can respond to a variety of both intracellular and extracellular stressors. Studies have shown that stress conditions such as heat stress, arsenite exposure, and hypoxic stress can induce SGs formation. The formation of SGs helps mitigates the effects of environmental stimuli on cells, protects them from damage, and promotes cell survival. This paper focuses on the biogenesis of SGs and summarizes the role in regulating environmental stress-induced male reproductive disorders, with the aim of exploring SGs as a potential means of mitigating male reproduction disorders. Numerous studies have demonstrated that the detrimental effects of environmental stress on germ cells can be effectively suppressed by regulating the formation and timely disassembly of SGs. Therefore, regulating the phosphorylation of eIF2α and the assembly and disassembly of SGs could offer a promising therapeutic strategy to alleviate the impacts of environmental stress on male reproduction health.
Collapse
Affiliation(s)
- Jiaxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Cao Y, Wang S, Liu J, Xu J, Liang Y, Ao F, Wei Z, Wang L. CARF regulates the alternative splicing and piwi/piRNA complexes during mouse spermatogenesis through PABPC1. Acta Biochim Biophys Sin (Shanghai) 2024; 57:656-666. [PMID: 39696987 PMCID: PMC12040762 DOI: 10.3724/abbs.2024224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 12/20/2024] Open
Abstract
ADP-ribosylation factor collaborator (CARF), which is also known as CDKN2AIP, was first recognized as an ADP-ribosylation factor-interacting protein that participates in the activation of the ARF-p53-p21 (WAF1) signaling pathway under different conditions, such as oxidative and oncogenic stresses. The activation of this pathway often leads to cell growth arrest and apoptosis as well as senescence. Previous studies revealed that CARF, an RNA-binding protein, is critical for maintaining stem cell pluripotency and somatic differentiation. Nevertheless, its involvement in spermatogenesis has not been well examined. In this study, we show that male mice deficient in Carf expression present impaired spermatogenesis and fertility. IP-MS and RNA-seq analyses reveal that CARF/ Carf interacts with multiple key splicing factors, such as PABPC1, and directly targets 356 different types of mRNAs in spermatocytes. Carf-associated mRNAs display aberrant splicing patterns when Carf expression is deficient. In addition, our results demonstrate that PIWIL1 expression and localization are altered in the Carf -/ - mouse model through the downregulation of PABPC1, which further affects the ratio of pachytene-piRNA. Our study suggests that CARF is critical for regulating alternative splicing in mammalian spermatogenesis and determining infertility in male mice.
Collapse
Affiliation(s)
- Yuming Cao
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Shengnan Wang
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Jie Liu
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Jinfeng Xu
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Yan Liang
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Fei Ao
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Zexiao Wei
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Li Wang
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| |
Collapse
|
4
|
Feng S, Gui Y, Yin S, Xiong X, Liu K, Li J, Dong J, Ma X, Zhou S, Zhang B, Yang S, Wang F, Wang X, Jiang X, Yuan S. Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression. EMBO J 2024; 43:4197-4227. [PMID: 39160277 PMCID: PMC11448500 DOI: 10.1038/s44318-024-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi Yin
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixiang Ma
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shunchang Zhou
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bingqian Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Wei H, Wang Z, Huang Y, Gao L, Wang W, Liu S, Sun Y, Liu H, Weng Y, Fan H, Zhang M. DCAF2 regulates the proliferation and differentiation of mouse progenitor spermatogonia by targeting p21 and thymine DNA glycosylase. Cell Prolif 2024; 57:e13676. [PMID: 38837535 PMCID: PMC11471390 DOI: 10.1111/cpr.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
DDB1-Cullin-4-associated factor-2 (DCAF2, also known as DTL or CDT2), a conserved substrate recognition protein of Cullin-RING E3 ligase 4 (CRL4), recognizes and degrades several substrate proteins during the S phase to maintain cell cycle progression and genome stability. Dcaf2 mainly expressed in germ cells of human and mouse. Our study found that Dcaf2 was expressed in mouse spermatogonia and spermatocyte. The depletion of Dcaf2 in germ cells by crossing Dcaf2fl/fl mice with stimulated by retinoic acid gene 8(Stra8)-Cre mice caused a reduction in progenitor spermatogonia and differentiating spermatogonia, eventually leading to the failure of meiosis initiation and male infertility. Further studies showed that depletion of Dcaf2 in germ cells caused abnormal accumulation of the substrate proteins, cyclin-dependent kinase inhibitor 1A (p21) and thymine DNA glycosylase (TDG), decreasing of cell proliferation, increasing of DNA damage and apoptosis. Overexpression of p21 or TDG attenuates proliferation and increases DNA damage and apoptosis in GC-1 cells, which is exacerbated by co-overexpression of p21 and TDG. The findings indicate that DCAF2 maintains the proliferation and differentiation of progenitor spermatogonia by targeting the substrate proteins p21 and TDG during the S phase.
Collapse
Affiliation(s)
- Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Zhijuan Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yating Huang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yan‐Li Sun
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
6
|
Asmat MS, Zheng XY, Nauman M, Zheng D, Stanley P. Deletion of Mgat2 in spermatogonia blocks spermatogenesis. Front Cell Dev Biol 2024; 12:1428715. [PMID: 39364139 PMCID: PMC11447316 DOI: 10.3389/fcell.2024.1428715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024] Open
Abstract
Identifying factors required for spermatogenesis is important for understanding mechanisms of male fertility. Inactivation of either the Mgat1 or Man2a2 gene leads to a block in spermatogenesis causing infertility in male mice. MGAT1 GlcNAc-transferase initiates complex N-glycan synthesis and MAN2A2 mannosidase generates the substrate for MGAT2 GlcNAc-transferase to form a biantennary complex N-glycan. In this paper, we show that conditional deletion of Mgat2 in spermatogonia via Stra8-iCre caused a novel block in spermatogenesis, largely prior to the formation of round spermatids. Mgat2[-/-] germ cells did not bind the lectins Phaseolus vulgaris leucoagglutinin (L-PHA) or Griffonia simplicifolia II (GSA-II), similar to germ cells lacking MGAT1 and complex N-glycans. However, overall spermatogenic defects were distinct in germ cells with deleted Mgat2 versus Mgat1. In addition, RNA-seq analysis at 15 days after birth revealed a unique transcriptomic landscape in Mgat2[-/-] germ cells with genes required for sperm formation and functions being most downregulated. Bioinformatic analyses using the ingenuity pathway analysis (IPA) algorithm identified ERK and AKT as central activities. Western blot analyses of 15-day germ cell lysates confirmed that both AKT and ERK1/2 signaling were increased by loss of MGAT2 in germ cells. By contrast, Mgat1[-/-] germ cells were previously shown to have reduced ERK signaling and unchanged AKT activity. Therefore, since the loss of all complex N-glycans is common to each mutant model, the different immature N-glycans that accumulate in Mgat2[-/-] versus Mgat1[-/-] germ cells are proposed to be the basis of their unique spermatogenic phenotypes.
Collapse
Affiliation(s)
- Mohd Shamoon Asmat
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Mohd Nauman
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
- Department of Neurology and Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Tan J, Li Y, Li X, Zhu X, Liu L, Huang H, Wei J, Wang H, Tian Y, Wang Z, Zhang Z, Zhu B. Pramel15 facilitates zygotic nuclear DNMT1 degradation and DNA demethylation. Nat Commun 2024; 15:7310. [PMID: 39181896 PMCID: PMC11344788 DOI: 10.1038/s41467-024-51614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
In mammals, global passive demethylation contributes to epigenetic reprogramming during early embryonic development. At this stage, the majority of DNA-methyltransferase 1 (DNMT1) protein is excluded from nucleus, which is considered the primary cause. However, whether the remaining nuclear activity of DNMT1 is regulated by additional mechanisms is unclear. Here, we report that nuclear DNMT1 abundance is finetuned through proteasomal degradation in mouse zygotes. We identify a maternal factor, Pramel15, which targets DNMT1 for degradation via Cullin-RING E3 ligases. Loss of Pramel15 elevates DNMT1 levels in the zygote pronuclei, impairs zygotic DNA demethylation, and causes a stochastic gain of DNA methylation in early embryos. Thus, Pramel15 can modulate the residual level of DNMT1 in the nucleus during zygotic DNA replication, thereby ensuring efficient DNA methylation reprogramming in early embryos.
Collapse
Affiliation(s)
- Jiajun Tan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Liping Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiahua Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hailing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Jia H, Wang W, Zhou Z, Chen Z, Lan Z, Bo H, Fan L. Single-cell RNA sequencing technology in human spermatogenesis: Progresses and perspectives. Mol Cell Biochem 2024; 479:2017-2033. [PMID: 37659974 DOI: 10.1007/s11010-023-04840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Spermatogenesis, a key part of the spermiation process, is regulated by a combination of key cells, such as primordial germ cells, spermatogonial stem cells, and somatic cells, such as Sertoli cells. Abnormal spermatogenesis can lead to azoospermia, testicular tumors, and other diseases related to male infertility. The application of single-cell RNA sequencing (scRNA-seq) technology in male reproduction is gradually increasing with its unique insight into deep mining and analysis. The data cover different periods of neonatal, prepubertal, pubertal, and adult stages. Different types of male infertility diseases including obstructive and non-obstructive azoospermia (NOA), Klinefelter Syndrome (KS), Sertoli Cell Only Syndrome (SCOS), and testicular tumors are also covered. We briefly review the principles and application of scRNA-seq and summarize the research results and application directions in spermatogenesis in different periods and pathological states. Moreover, we discuss the challenges of applying this technology in male reproduction and the prospects of combining it with other technologies.
Collapse
Affiliation(s)
- Hanbo Jia
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wei Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaowen Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhiyi Chen
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zijun Lan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| |
Collapse
|
9
|
Ma Q, Gui Y, Ma X, Zhang B, Xiong W, Yang S, Cao C, Mo S, Shu G, Ye J, Liu K, Wang X, Gui Y, Wang F, Yuan S. N6-methyladenosine writer METTL16-mediated alternative splicing and translation control are essential for murine spermatogenesis. Genome Biol 2024; 25:193. [PMID: 39030605 PMCID: PMC11264951 DOI: 10.1186/s13059-024-03332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The mitosis-to-meiosis switch during spermatogenesis requires dynamic changes in gene expression. However, the regulation of meiotic transcriptional and post-transcriptional machinery during this transition remains elusive. RESULTS We report that methyltransferase-like protein 16 (METTL16), an N6-methyladenosine (m6A) writer, is required for mitosis-to-meiosis transition during spermatogenesis. Germline conditional knockout of Mettl16 in male mice impairs spermatogonial differentiation and meiosis initiation. Mechanistically, METTL16 interacts with splicing factors to regulate the alternative splicing of meiosis-related genes such as Stag3. Ribosome profiling reveals that the translation efficiency of many meiotic genes is dysregulated in METTL16-deficient testes. m6A-sequencing shows that ablation of METTL16 causes upregulation of the m6A-enriched transcripts and downregulation of the m6A-depleted transcripts, similar to Meioc and/or Ythdc2 mutants. Further in vivo and in vitro experiments demonstrate that the methyltransferase activity site (PP185-186AA) of METTL16 is necessary for spermatogenesis. CONCLUSIONS Our findings support a molecular model wherein the m6A writer METTL16-mediated alternative splicing and translation efficiency regulation are required to control the mitosis-to-meiosis germ cell fate decision in mice, with implications for understanding meiosis-related male fertility disorders.
Collapse
Affiliation(s)
- Qian Ma
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xixiang Ma
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bingqian Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Xiong
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congcong Cao
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Shaomei Mo
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Ge Shu
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jing Ye
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoting Gui
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
10
|
Wang Z, Wu D, Xu X, Yu G, Li N, Wang X, Li JL, Dean J. DIS3 ribonuclease is essential for spermatogenesis and male fertility in mice. Development 2024; 151:dev202579. [PMID: 38953252 PMCID: PMC11266750 DOI: 10.1242/dev.202579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.
Collapse
Affiliation(s)
- Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Li J, Zhong J, Tang A, Yin J, Li S. PRAMEF12, a novel cancer/testis gene, regulates proliferation and apoptosis to promote progression of glioma. Biomark Med 2024; 18:385-397. [PMID: 38913622 PMCID: PMC11285353 DOI: 10.2217/bmm-2023-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/17/2023] [Indexed: 06/26/2024] Open
Abstract
Aim: To evaluate whether PRAMEF12 can serve as a diagnostic biomarker for glioma. Methods: We examined PRAMEF12 expression in multiple normal and glioma tissues. The diagnostic value of PRAMEF12 was evaluated using receiver operating characteristic curve analysis. The effect of PRAMEF12 ablation on proliferation, cell cycle and apoptosis was investigated. Database analyses were utilized for functional enrichment analysis. Results: PRAMEF12 expression in normal tissue was restricted to the human testis. PRAMEF12 displayed significant diagnostic value in glioma. PRAMEF12 knockdown inhibited cell proliferation, induced apoptosis and resulted in induction of S-phase cell cycle arrest. Pathway enrichment analysis indicated that PRAMEF12 may participate in cancer. Conclusion: PRAMEF12, a novel cancer/testis gene, may be a potential new diagnostic biomarker for glioma.
Collapse
Affiliation(s)
- Jiaqiang Li
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| | - Jianhua Zhong
- Department of Science & Education, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Aifa Tang
- Department of Science & Education, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Jianchun Yin
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| | - Shoulin Li
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| |
Collapse
|
12
|
Wen Y, Zhou S, Gui Y, Li Z, Yin L, Xu W, Feng S, Ma X, Gan S, Xiong M, Dong J, Cheng K, Wang X, Yuan S. hnRNPU is required for spermatogonial stem cell pool establishment in mice. Cell Rep 2024; 43:114113. [PMID: 38625792 DOI: 10.1016/j.celrep.2024.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.
Collapse
Affiliation(s)
- Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zeqing Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenchao Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keren Cheng
- Center for Reproductive Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
13
|
Feng YQ, Liu X, Zuo N, Yu MB, Bian WM, Han BQ, Sun ZY, De Felici M, Shen W, Li L. NAD + precursors promote the restoration of spermatogenesis in busulfan-treated mice through inhibiting Sirt2-regulated ferroptosis. Theranostics 2024; 14:2622-2636. [PMID: 38646657 PMCID: PMC11024856 DOI: 10.7150/thno.92416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Mu-Bin Yu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen-Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao-Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zhong-Yi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Sun L, Lv Z, Chen X, Ye R, Tian S, Wang C, Xie X, Yan L, Yao X, Shao Y, Cui S, Chen J, Liu J. Splicing factor SRSF1 is essential for homing of precursor spermatogonial stem cells in mice. eLife 2024; 12:RP89316. [PMID: 38271475 PMCID: PMC10945694 DOI: 10.7554/elife.89316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for continuous spermatogenesis and male fertility. The underlying mechanisms of alternative splicing (AS) in mouse SSCs are still largely unclear. We demonstrated that SRSF1 is essential for gene expression and splicing in mouse SSCs. Crosslinking immunoprecipitation and sequencing data revealed that spermatogonia-related genes (e.g. Plzf, Id4, Setdb1, Stra8, Tial1/Tiar, Bcas2, Ddx5, Srsf10, Uhrf1, and Bud31) were bound by SRSF1 in the mouse testes. Specific deletion of Srsf1 in mouse germ cells impairs homing of precursor SSCs leading to male infertility. Whole-mount staining data showed the absence of germ cells in the testes of adult conditional knockout (cKO) mice, which indicates Sertoli cell-only syndrome in cKO mice. The expression of spermatogonia-related genes (e.g. Gfra1, Pou5f1, Plzf, Dnd1, Stra8, and Taf4b) was significantly reduced in the testes of cKO mice. Moreover, multiomics analysis suggests that SRSF1 may affect survival of spermatogonia by directly binding and regulating Tial1/Tiar expression through AS. In addition, immunoprecipitation mass spectrometry and co-immunoprecipitation data showed that SRSF1 interacts with RNA splicing-related proteins (e.g. SART1, RBM15, and SRSF10). Collectively, our data reveal the critical role of SRSF1 in spermatogonia survival, which may provide a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying homing of precursor SSCs.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou UniversityJiangsuChina
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China, Agricultural UniversityBeijingChina
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Feng Y, Wu J, Lei R, Zhang Y, Qiao M, Zhou J, Xu Z, Li Z, Sun H, Peng X, Mei S. N-Acetyl-L-Cysteine Ameliorates BPAF-Induced Porcine Sertoli Cell Apoptosis and Cell Cycle Arrest via Inhibiting the ROS Level. TOXICS 2023; 11:923. [PMID: 37999575 PMCID: PMC10675769 DOI: 10.3390/toxics11110923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol AF (BPAF) is a newly identified contaminant in the environment that has been linked to impairment of the male reproductive system. However, only a few studies have systematically studied the mechanisms underlying BPAF-induced toxicity in testicular Sertoli cells. Hence, this study primarily aims to explore the toxic mechanism of BPAF on the porcine Sertoli cell line (ST cells). The effects of various concentrations of BPAF on ST cell viability and cytotoxicity were evaluated using the Counting Kit-8 (CCK-8) assay. The results demonstrated that exposure to a high concentration of BPAF (above 50 μM) significantly inhibited ST cell viability due to marked cytotoxicity. Flow cytometry analysis further confirmed that BPAF facilitated apoptosis and induced cell cycle arrest in the G2/M phase. Moreover, BPAF exposure upregulated the expression of pro-apoptotic markers BAD and BAX while downregulating anti-apoptotic and cell proliferation markers BCL-2, PCNA, CDK2, and CDK4. BPAF exposure also resulted in elevated intracellular levels of reactive oxygen species (ROS) and malondialdehyde (MDA), alongside reduced activities of the antioxidants glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Furthermore, the ROS scavenger N-acetyl-L-cysteine (NAC) effectively blocked BPAF-triggered apoptosis and cell cycle arrest. Therefore, this study suggests that BPAF induces apoptosis and cell cycle arrest in ST cells by activating ROS-mediated pathways. These findings enhance our understanding of BPAF's role in male reproductive toxicity and provide a foundation for future toxicological assessments.
Collapse
Affiliation(s)
- Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Runyu Lei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
16
|
Zhang X, Cao Q, Rajachandran S, Grow EJ, Evans M, Chen H. Dissecting mammalian reproduction with spatial transcriptomics. Hum Reprod Update 2023; 29:794-810. [PMID: 37353907 PMCID: PMC10628492 DOI: 10.1093/humupd/dmad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Mammalian reproduction requires the fusion of two specialized cells: an oocyte and a sperm. In addition to producing gametes, the reproductive system also provides the environment for the appropriate development of the embryo. Deciphering the reproductive system requires understanding the functions of each cell type and cell-cell interactions. Recent single-cell omics technologies have provided insights into the gene regulatory network in discrete cellular populations of both the male and female reproductive systems. However, these approaches cannot examine how the cellular states of the gametes or embryos are regulated through their interactions with neighboring somatic cells in the native tissue environment owing to tissue disassociations. Emerging spatial omics technologies address this challenge by preserving the spatial context of the cells to be profiled. These technologies hold the potential to revolutionize our understanding of mammalian reproduction. OBJECTIVE AND RATIONALE We aim to review the state-of-the-art spatial transcriptomics (ST) technologies with a focus on highlighting the novel biological insights that they have helped to reveal about the mammalian reproductive systems in the context of gametogenesis, embryogenesis, and reproductive pathologies. We also aim to discuss the current challenges of applying ST technologies in reproductive research and provide a sneak peek at what the field of spatial omics can offer for the reproduction community in the years to come. SEARCH METHODS The PubMed database was used in the search for peer-reviewed research articles and reviews using combinations of the following terms: 'spatial omics', 'fertility', 'reproduction', 'gametogenesis', 'embryogenesis', 'reproductive cancer', 'spatial transcriptomics', 'spermatogenesis', 'ovary', 'uterus', 'cervix', 'testis', and other keywords related to the subject area. All relevant publications until April 2023 were critically evaluated and discussed. OUTCOMES First, an overview of the ST technologies that have been applied to studying the reproductive systems was provided. The basic design principles and the advantages and limitations of these technologies were discussed and tabulated to serve as a guide for researchers to choose the best-suited technologies for their own research. Second, novel biological insights into mammalian reproduction, especially human reproduction revealed by ST analyses, were comprehensively reviewed. Three major themes were discussed. The first theme focuses on genes with non-random spatial expression patterns with specialized functions in multiple reproductive systems; The second theme centers around functionally interacting cell types which are often found to be spatially clustered in the reproductive tissues; and the thrid theme discusses pathological states in reproductive systems which are often associated with unique cellular microenvironments. Finally, current experimental and computational challenges of applying ST technologies to studying mammalian reproduction were highlighted, and potential solutions to tackle these challenges were provided. Future directions in the development of spatial omics technologies and how they will benefit the field of human reproduction were discussed, including the capture of cellular and tissue dynamics, multi-modal molecular profiling, and spatial characterization of gene perturbations. WIDER IMPLICATIONS Like single-cell technologies, spatial omics technologies hold tremendous potential for providing significant and novel insights into mammalian reproduction. Our review summarizes these novel biological insights that ST technologies have provided while shedding light on what is yet to come. Our review provides reproductive biologists and clinicians with a much-needed update on the state of art of ST technologies. It may also facilitate the adoption of cutting-edge spatial technologies in both basic and clinical reproductive research.
Collapse
Affiliation(s)
- Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie Evans
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Yang M, Ma W, Oatley J, Liu WS. Mouse Pramel1 regulates spermatogonial development by inhibiting retinoic acid signaling during spermatogenesis. Development 2023; 150:dev201907. [PMID: 37781892 DOI: 10.1242/dev.201907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Spermatogenesis begins when cell fate-committed prospermatogonia migrate to the basement membrane and initiate spermatogenesis in response to retinoic acid (RA) in the neonatal testis. The underlying cellular and molecular mechanisms in this process are not fully understood. Here, we report findings on the involvement of a cancer/testis antigen, PRAMEL1, in the initiation and maintenance of spermatogenesis. By analyzing mouse models with either global or conditional Pramel1 inactivation, we found that PRAMEL1 regulates the RA responsiveness of the subtypes of prospermatogonia in the neonatal testis, and affects their homing process during the initiation of spermatogenesis. Pramel1 deficiency led to increased fecundity in juvenile males and decreased fecundity in mature males. In addition, Pramel1 deficiency resulted in a regional Sertoli cell-only phenotype during the first round of spermatogenesis, which was rescued by administration of the RA inhibitor WIN18,446, suggesting that PRAMEL1 functions as an inhibitor of RA signaling in germ cells. Overall, our findings suggest that PRAMEL1 fine-tunes RA signaling, playing a crucial role in the proper establishment of the first and subsequent rounds of spermatogenesis.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University,University Park, PA 16803, USA
| | - Wenzhi Ma
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University,University Park, PA 16803, USA
| | - Jon Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University,University Park, PA 16803, USA
| |
Collapse
|
18
|
Li N, Yu J, Zhou M, Qiu F, Wang X, Wang Z. MAGE-B4, a binding partner of PRAMEF12, is dispensable for spermatogenesis and male fertility in mice. Biochem Biophys Res Commun 2023; 675:46-53. [PMID: 37451217 DOI: 10.1016/j.bbrc.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Melanoma antigen (MAGE)-B4 belongs to the MAGE-B family genes, which are located on the X chromosome. The MAGE-B family genes are classified as cancer-testis antigens, as they are primarily expressed in the testis and are aberrantly expressed in most cancers. Although a no-stop mutation in MAGE-B4 causes rare X-linked azoospermia and oligozoospermia phenotype in humans, the specific function of MAGE-B4 on spermatogenesis in mice remains unclear. In this study, we identified MAGE-B4 as a binding partner of PRAME family member 12, which plays an important role in the maintenance of mouse spermatogenic lineage in juvenile testes. Additionally, we found that Mage-b4 transcripts were restricted to the testis and that Mage-b4 was specifically expressed in spermatogonia. To explore the function of MAGE-B4 in spermatogenesis, we generated a Mage-b4 knockout (KO) mouse model using CRISPR/Cas9 technology. However, we found that Mage-b4 KO males displayed normal testicular morphology and fertility. Further histological analysis revealed that all stages of spermatogenic cells were present in the seminiferous tubules of the Mage-b4 KO mice. Altogether, our data suggest that Mage-b4 is dispensable for mouse spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Junjie Yu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Meiyang Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Fanyi Qiu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Zhengpin Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
19
|
Gao S, Chen Z, Shi J, Chen Z, Yun D, Li X, Wu X, Sun F. Sperm immotility is associated with epididymis metabolism disorder in mice under obstructive azoospermia. FASEB J 2023; 37:e23081. [PMID: 37410071 DOI: 10.1096/fj.202201862rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Obstructive azoospermia (OA) accounts for approximately 40% of males who suffer from azoospermia of male infertility. Currently, available treatment for OA consists of reproductive tract surgical reconstruction and sperm retrieval from the testis. However, both treatments result in low fertility compared to normal pregnancy, and the main reason remains largely unknown. Previous studies have shown that the quality of sperm retrieved from OA patients is poor compared with normal adult males but without an in-depth study. Herein, we generated a mouse OA model with vasectomy to evaluate sperm quality systematically. Our results showed that the testis had normal spermatogenesis but increased apoptotic activity in both OA patients and mice. More importantly, epididymal morphology was abnormal, with swollen epididymal tubules and vacuole-like principal cells. Especially, sperm retrieved from the epididymis of OA mice showed poor motility and low fertilization ability in vitro. Using mass spectrometry in epididymal fluid, we found differences in the expression of key proteins for sperm maturation, such as Angiotensinogen (AGT), rhophilin-associated tail protein 1 (ROPN1), NPC intracellular cholesterol transporter 2 (NPC2), and prominin 1 (PROM1). Furthermore, our results demonstrated that AGT, secreted by epididymal principal cells, could regulate sperm motility by managing PKCα expression to modify sperm phosphorylation. In conclusion, our data evaluate sperm quality systematically in OA mice and contribute to the understanding between the sperm and epididymis, which may provide novel insight into treating male infertility.
Collapse
Affiliation(s)
- Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
20
|
Yang Y, Qin S, Wu H, Zhang J, Tian Q, Zhao Z, Wei B, Hallak J, Mao X. Identification of PDCL2 as a candidate marker in Sertoli cell-only syndrome by chromatin immunoprecipitation-sequencing and bioinformatics analysis. Transl Androl Urol 2023; 12:1127-1136. [PMID: 37554526 PMCID: PMC10406544 DOI: 10.21037/tau-23-304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Sertoli cell-only syndrome (SCOS) or germ cell aplasia is one of the most serious histopathological subtypes within the scope of non-obstructive azoospermia (NOA). Understanding the molecular mechanism of SCOS and identifying new non-invasive markers for clinical application is crucial to guide proper sperm procurement and avoid unnecessary interventions. This study sought to identify the differentially expressed genes (DEGs) of SCOS by using gene sequencing identity and verify the key marker genes to provide basic data for subsequent research on SCOS. METHODS A total of 50 testicular samples were collected in this study from 25 patients with SCOS and 25 patients with normal spermatogenesis. In total, 5 pairs of testis samples were used for the RNA-sequencing (RNA-seq). We identified the DEGs between the SCOS and normal spermatogenesis patients and conducted a Gene Ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The expression of the main target gene phosducin-like 2 (PDCL2) was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). RESULTS In total, 3,133 upregulated DEGs and 1,406 downregulated DEGs were identified by the RNA-seq. The highly enriched processes involved in spermatogenesis included the mitotic cell cycle, cell cycle, and oocyte maturation. The expression of PDCL2 was verified as a downregulation marker in SCOS by qRT-PCR and IHC. CONCLUSIONS This study identified the DEGs of SCOS, and the bioinformatics analysis results identified the potential target key genes and pathways for SCOS. PDCL2 is a key gene involved in SCOS and may serve as a non-invasive downregulation marker of SCOS.
Collapse
Affiliation(s)
- Yu Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Si Qin
- Department of Dermatology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hongwei Wu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiahao Zhang
- Department of Urology, Shenzhen Baoan People’s Hospital (Group), Shenzhen, China
| | - Qiao Tian
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhengping Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Benlin Wei
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, Sao Paulo, Brazil
- Division of Urology, Hospital das Clinicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Reproductive Toxicology Unit, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Institute of Advanced Studies, University of Sao Paulo, Sao Paulo, Brazil
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Yang G, Xin Q, Feng I, Wu D, Dean J. Germ cell-specific eIF4E1b regulates maternal mRNA translation to ensure zygotic genome activation. Genes Dev 2023; 37:418-431. [PMID: 37257918 PMCID: PMC10270193 DOI: 10.1101/gad.350400.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Translation of maternal mRNAs is detected before transcription of zygotic genes and is essential for mammalian embryo development. How certain maternal mRNAs are selected for translation instead of degradation and how this burst of translation affects zygotic genome activation remain unknown. Using gene-edited mice, we document that the oocyte-specific eukaryotic translation initiation factor 4E family member 1b (eIF4E1b) is the regulator of maternal mRNA expression that ensures subsequent reprogramming of the zygotic genome. In oocytes, eIF4E1b binds to transcripts encoding translation machinery proteins, chromatin remodelers, and reprogramming factors to promote their translation in zygotes and protect them from degradation. The protein products are thought to establish an open chromatin landscape in one-cell zygotes to enable transcription of genes required for cleavage stage development. Our results define a program for rapid resetting of the zygotic epigenome that is regulated by maternal mRNA expression and provide new insights into the mammalian maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Guanghui Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qiliang Xin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Iris Feng
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Di Wu
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Lai F, Wang H, Zhao X, Yang K, Cai L, Hu M, Lin L, Xia X, Li W, Cheng H, Zhou R. RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells. Cell Biosci 2023; 13:71. [PMID: 37024990 PMCID: PMC10080854 DOI: 10.1186/s13578-023-01018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Spermatogenesis depends on the supporting of the Sertoli cells and their communications with germ cells. However, the regulation of crosstalk between the Sertoli cells and germ cells remains unclear. RESULTS In this report, we used conditional knockout technology to generate the Sertoli cells-specific knockout of Rnf20 in mice. The Amh-Rnf20-/- male mice were infertile owing to spermatogenic failure that mimic the Sertoli cell-only syndrome (SCOS) in humans. Knockout of Rnf20 resulted in the H2BK120ub loss in the Sertoli cells and impaired the transcription elongation of the Cldn11, a gene encoding a component of tight junction. Notably, RNF20 deficiency disrupted the cell adhesion, caused disorganization of the seminiferous tubules, and led to the apoptotic cell death of both spermatogonia and spermatocytes in the seminiferous tubules. CONCLUSIONS This study describes a Rnf20 knockout mouse model that recapitulates the Sertoli cell-only syndrome in humans and demonstrates that RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells.
Collapse
Affiliation(s)
- Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Haoyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xinyue Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xizhong Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Peng YJ, Tang XT, Shu HS, Dong W, Shao H, Zhou BO. Sertoli cells are the source of stem cell factor for spermatogenesis. Development 2023; 150:297262. [PMID: 36861441 PMCID: PMC10112922 DOI: 10.1242/dev.200706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells. Both undifferentiated and differentiating spermatogonia were associated with Scf-expressing Sertoli cells in the seminiferous tubule. Conditional deletion of Scf from Sertoli cells, but not any other Scf-expressing cells, blocked the differentiation of spermatogonia, leading to complete male infertility. Conditional overexpression of Scf in Sertoli cells, but not endothelial cells, significantly increased spermatogenesis. Our data reveal the importance of anatomical localization for Sertoli cells in regulating spermatogenesis and that SCF produced specifically by Sertoli cells is essential for spermatogenesis.
Collapse
Affiliation(s)
- Yi Jacky Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Xinyu Thomas Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hui Sophie Shu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Wenjie Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hongfang Shao
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, Shanghai Jiao Tong University School of Medicine-Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People's Republic of China
| |
Collapse
|
24
|
Arnold AP, Chen X, Grzybowski MN, Ryan JM, Sengelaub DR, Mohanroy T, Furlan VA, Grisham W, Malloy L, Takizawa A, Wiese CB, Vergnes L, Skaletsky H, Page DC, Reue K, Harley VR, Dwinell MR, Geurts AM. A "Four Core Genotypes" rat model to distinguish mechanisms underlying sex-biased phenotypes and diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527738. [PMID: 36798326 PMCID: PMC9934672 DOI: 10.1101/2023.02.09.527738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.
Collapse
|
25
|
Wen Z, Zhu H, Wang J, Wu B, Zhang A, Zhao H, Song C, Liu S, Cheng Y, Wang H, Li J, Sun D, Fu X, Gao J, Liu M. Conditional deletion of Hspa5 leads to spermatogenesis failure and male infertility in mice. Life Sci 2023; 314:121319. [PMID: 36574945 DOI: 10.1016/j.lfs.2022.121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
Heat shock proteins (HSPs) have important roles in different developmental stages of spermatogenesis. The heat shock 70 kDa protein 5 (HSPA5) is an important component of the unfolded protein response that promotes cell survival under endoplasmic reticulum (ER) stress conditions. In this study, we explored the function of HSPA5 in spermatogenesis, by generating a germ cell-specific deletion mutant of the Hspa5 gene (conditional knockout of the Hspa5 gene, Hspa5-cKO) using CRISPR/Cas9 technology and the Cre/Loxp system. Hspa5 knockout resulted in severe germ cell loss and vacuolar degeneration of seminiferous tubules, leading to complete arrest of spermatogenesis, testicular atrophy, and male infertility in adult mice. Furthermore, defects occurred in the spermatogenic epithelium of Hspa5-cKO mice as early as Cre recombinase expression. Germ cell ablation of Hspa5 impaired spermatogonia proliferation and differentiation from post-natal day 7 (P7) to P10, which led to a dramatic reduction of differentiated spermatogonia, compromised meiosis, and led to impairment of testis development and the disruption of the first wave of spermatogenesis. Consistent with these results, single-cell RNA sequencing (scRNA-seq) analysis showed that germ cells, especially differentiated spermatogonia, were dramatically reduced in Hspa5-cKO testes compared with controls at P10, further confirming that HSPA5 is crucial for germ cell development. These results suggest that HSPA5 is indispensable for normal spermatogenesis and male reproduction in mice.
Collapse
Affiliation(s)
- Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Jing Wang
- Department of Basic Medicine, Jinan Vacational College of Nursing, Jinan 250102, PR China
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Hui Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Chenyang Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Shuangyuan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Jianyuan Li
- Key Laboratory of Male Reproductive Health, Institute of Science and Technology, National Health Commission, Beijing 100081, PR China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300041, PR China
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China.
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China; School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China.
| | - Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China.
| |
Collapse
|
26
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
27
|
Huang L, Zhang J, Zhang P, Huang X, Yang W, Liu R, Sun Q, Lu Y, Zhang M, Fu Q. Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo spermatogenesis. iScience 2022; 26:105733. [PMID: 36582818 PMCID: PMC9793287 DOI: 10.1016/j.isci.2022.105733] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide interspecies differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3-month-old) and pubertal (24-month-old) buffalo testes were analyzed by using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding.
Collapse
Affiliation(s)
- Liangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Junjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Pengfei Zhang
- Institute of Medical and Health, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Runfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qinqiang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| |
Collapse
|
28
|
Sertoli cell survival and barrier function are regulated by miR-181c/d-Pafah1b1 axis during mammalian spermatogenesis. Cell Mol Life Sci 2022; 79:498. [PMID: 36008729 PMCID: PMC9411099 DOI: 10.1007/s00018-022-04521-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Sertoli cells contribute to the formation of the blood-testis barrier (BTB), which is necessary for normal spermatogenesis. Recently, microRNAs (miRNAs) have emerged as posttranscriptional regulatory elements in BTB function during spermatogenesis. Our previous study has shown that miR-181c or miR-181d (miR-181c/d) is highly expressed in testes from boars at 60 days old compared with at 180 days old. Herein, we found that overexpression of miR-181c/d via miR-181c/d mimics in murine Sertoli cells (SCs) or through injecting miR-181c/d-overexpressing lentivirus in murine testes perturbs BTB function by altering BTB-associated protein distribution at the Sertoli cell-cell interface and F-actin organization, but this in vivo perturbation disappears approximately 6 weeks after the final treatment. We also found that miR-181c/d represses Sertoli cell proliferation and promotes its apoptosis. Moreover, miR-181c/d regulates Sertoli cell survival and barrier function by targeting platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (Pafah1b1) gene. Furthermore, miR-181c/d suppresses PAFAH1B1 expression, reduces the complex of PAFAH1B1 with IQ motif-containing GTPase activating protein 1, and inhibits CDC42/PAK1/LIMK1/Cofilin pathway which is required for F-actin stabilization. In total, our results reveal the regulatory axis of miR-181c/d-Pafah1b1 in cell survival and barrier function of Sertoli cells and provide additional insights into miRNA functions in mammalian spermatogenesis.
Collapse
|
29
|
Connexin43 represents an important regulator for Sertoli cell morphology, Sertoli cell nuclear ultrastructure, and Sertoli cell maturation. Sci Rep 2022; 12:12898. [PMID: 35902708 PMCID: PMC9334284 DOI: 10.1038/s41598-022-16919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The Sertoli cell (SC)-specific knockout (KO) of connexin43 (Cx43) was shown to be an effector of multiple histological changes in tubular morphology, resulting in germ cell loss through to a Sertoli-cell-only (SCO) phenotype and vacuolated seminiferous tubules containing SC-clusters. Our present study focused on the effects of Cx43 loss on SC ultrastructure. Using serial block-face scanning electron microscopy (SBF-SEM), we could confirm previous results. Ultrastructural analysis of Sertoli cell nuclei (SCN) revealed that these appear in clusters with a phenotype resembling immature/proliferating SCs in KO mice. Surprisingly, SCs of fertile wild type (WT) mice contained SCN with a predominantly smooth surface instead of deep indentations of the nuclear envelope, suggesting that these indentations do not correlate with germ cell support or spermatogenesis. SBF-SEM facilitated the precise examination of clustered SCs. Even if the exact maturation state of mutant SCs remained unclear, our study could detect indications of cellular senescence as well as immaturity, emphasising that Cx43 affects SC maturation. Moreover, Sudan III staining and transmission electron microscopy (TEM) demonstrated an altered lipid metabolism in SCs of Cx43 deficient mice.
Collapse
|
30
|
Zhou S, Dong J, Xiong M, Gan S, Wen Y, Zhang J, Wang X, Yuan S, Gui Y. UHRF1 interacts with snRNAs and regulates alternative splicing in mouse spermatogonial stem cells. Stem Cell Reports 2022; 17:1859-1873. [PMID: 35905740 PMCID: PMC9391524 DOI: 10.1016/j.stemcr.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Life-long male fertility relies on exquisite homeostasis and the development of spermatogonial stem cells (SSCs); however, the underlying molecular genetic and epigenetic regulation in this equilibrium process remains unclear. Here, we document that UHRF1 interacts with snRNAs to regulate pre-mRNA alternative splicing in SSCs and is required for the homeostasis of SSCs in mice. Genetic deficiency of UHRF1 in mouse prospermatogonia results in gradual loss of spermatogonial stem cells, eventually leading to Sertoli-cell-only syndrome (SCOS) and male infertility. Comparative RNA-seq data provide evidence that Uhrf1 ablation dysregulates previously reported SSC maintenance- and differentiation-related genes. We further found that UHRF1 could act as an alternative RNA splicing regulator and interact with Tle3 transcripts to regulate its splicing event in spermatogonia. Collectively, our data reveal a multifunctional role for UHRF1 in regulating gene expression programs and alternative splicing during SSC homeostasis, which may provide clues for treating human male infertility.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
31
|
Yun D, Zhou L, Shi J, Li X, Wu X, Sun F. G3BP2, a stress granule assembly factor, is dispensable for spermatogenesis in mice. PeerJ 2022; 10:e13532. [PMID: 35782098 PMCID: PMC9248785 DOI: 10.7717/peerj.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023] Open
Abstract
Background Spermatogenesis is a complex process that includes mitosis, meiosis, and spermiogenesis. During spermatogenesis, genetic factors play a vital role inthe formation of properly functioning sperm. GTPase-activating protein (SH3 domain)-binding protein 2 (G3BP2) is known to take part in immune responses, mRNA transport, and stress-granule assembly. However, its role in male fertility is unclear. Here, we generated a G3bp2 conditional knockout (cKO) mouse model to explore the function of G3BP2 in male fertility. Methods Polymerase chain reaction (PCR) and western blotting (WB) were used to confirm testis-specific G3bp2 knockout. Hematoxylin-eosin (HE) staining to observe testicular morphology and epididymal structure. Computer-aided sperm analysis (CASA) to detect sperm concentration and motility. Terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) assay was used to detect apoptotic cells. Results We found that cKO male mice are fertile with the normal morphology of the testis and sperm. Additionally, CASA of the semen from cKO mice showed that they all had a similar sperm concentration and motility. In addition, sperm from these mice exhibited a similar morphology. But the tunnel assay revealed increased apoptosis in their testes relative to the level in the wild type (WT). Conclusion Together, our data demonstrate that G3BP2 is dispensable for spermatogenesis and male fertility in mice albeit with the increased germ-cell apoptosis.
Collapse
|
32
|
Lin H, Cheng K, Kubota H, Lan Y, Riedel SS, Kakiuchi K, Sasaki K, Bernt KM, Bartolomei MS, Luo M, Wang PJ. Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells. Genes Dev 2022; 36:752-763. [PMID: 35738678 PMCID: PMC9296001 DOI: 10.1101/gad.349550.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022]
Abstract
Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China;,Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Simone S. Riedel
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Kazue Kakiuchi
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
34
|
Sun S, Jiang Y, Zhang Q, Pan H, Li X, Yang L, Huang M, Wei W, Wang X, Qiu M, Cao L, He H, Yu M, Liu H, Zhao B, Jiang N, Li R, Lin X. Znhit1 controls meiotic initiation in male germ cells by coordinating with Stra8 to activate meiotic gene expression. Dev Cell 2022; 57:901-913.e4. [PMID: 35413238 DOI: 10.1016/j.devcel.2022.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
The switch from mitosis to meiosis ensures the successive formation of gametes. However, it remains unclear how meiotic initiation occurs within the context of chromatin. Recent studies have shown that zinc finger HIT-type containing 1 (Znhit1), a subunit of the SRCAP chromatin remodeling complex, plays essential roles in modulating the chromatin structure. Herein, we report that the germline-conditional deletion of Znhit1 in male mice specifically blocks meiotic initiation. We show that Znhit1 is required for meiotic prophase events, including synapsis, DNA double-strand break formation, and meiotic DNA replication. Mechanistically, Znhit1 controls the histone variant H2A.Z deposition, which facilitates the expression of meiotic genes, such as Meiosin, but not the expression of Stra8. Interestingly, Znhit1 deficiency disrupts the transcription bubbles of meiotic genes. Thus, our findings identify the essential role of Znhit1-dependent H2A.Z deposition in allowing activation of meiotic gene expression, thereby controlling the initiation of meiosis.
Collapse
Affiliation(s)
- Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yamei Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qiaoli Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Meina Huang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Wei Wei
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Xiaoye Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Lihuan Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hua He
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Miao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hanmin Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Runsheng Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China.
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Kern CH, Feitosa WB, Liu WS. The Dynamic of PRAMEY Isoforms in Testis and Epididymis Suggests Their Involvement in Spermatozoa Maturation. Front Genet 2022; 13:846345. [PMID: 35386283 PMCID: PMC8979061 DOI: 10.3389/fgene.2022.846345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The preferentially expressed antigen in melanoma, Y-linked (PRAMEY) is a cancer/testis antigen expressed predominantly in bovine spermatogenic cells, playing an important role in germ cell formation. To better understand PRAMEY’s function during spermatogenesis, we studied the dynamics of PRAMEY isoforms by Western blotting (WB) with PRAMEY-specific antibodies. The PRAMEY protein was assessed in the bovine testicular and epididymal spermatozoa, fluid and tissues, and as well as in ejaculated semen. The protein was further examined, at a subcellular level in sperm head and tail, as well as in the subcellular components, including the cytosol, nucleus, membrane, and mitochondria. RNA expression of PRAMEY was also evaluated in testis and epididymal tissues. Our WB results confirmed the previously reported four isoforms of PRAMEY (58, 30, 26, and 13 kDa) in the bovine testis and spermatozoa. We found that testicular spermatozoa expressed the 58 and 30 kDa isoforms. As spermatozoa migrated to the epididymis, they expressed two additional isoforms, 26 and 13 kDa. Similarly, the 58 and 30 kDa isoforms were detected only in the testis fluid, while all four isoforms were detected in fluid from the cauda epididymis. Tissue evaluation indicated a significantly higher expression of the 58 and 13 kDa isoforms in the cauda tissue when compared to both the testis and caput tissue (p < 0.05). These results indicated that testis samples (spermatozoa, fluid, and tissue) expressed predominantly the 58 and 30 kDa PRAMEY isoforms, suggesting their involvement in spermatogenesis. In contrast, the 26 kDa isoform was specific to epididymal sperm and the 13 kDa isoform was marked in samples derived from the cauda epididymis, suggesting their involvement in sperm maturation. Results from the sperm head and tail experiments indicated that the 13 kDa isoform increased 4-fold in sperm tails from caput to cauda, suggesting this isoform may have a significant role in tail function. Additionally, the 13 kDa isoform increased significantly (p < 0.05) in the cytosol during epididymal passage and tended to increase in other subcellular components. The expression of PRAMEY in the sperm subcellular components during epididymal maturation suggests the involvement of PRAMEY, especially the 13 kDa isoform, in sperm motility.
Collapse
Affiliation(s)
- Chandlar H Kern
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Weber B Feitosa
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
36
|
Wu D. Mouse Oocytes, A Complex Single Cell Transcriptome. Front Cell Dev Biol 2022; 10:827937. [PMID: 35321242 PMCID: PMC8935041 DOI: 10.3389/fcell.2022.827937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal vesicle (GV) stage is a critical transition point from growth to maturation in mammalian oocyte development. During the following meiotic maturation, active RNA degradation and absence of transcription significantly reprofile the oocyte transcriptome to determine oocyte quality. Oocyte RNA-seq has revealed transcriptome differences between two defined phases of GV stage, namely non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) phases. In addition, oocyte RNA-seq has identified a variety of dysregulated genes upon genetic mutation or environmental perturbation. Historically, due to the low amount of RNA per oocyte, a few (20–200) oocytes were needed for a regular library construction in bulk RNA-seq. In recent years, development of single cell sequencing allows detailing the transcriptome of individual oocytes. Here in this study, different RNA-seq datasets from single and bulk of mouse oocytes are compared, and single oocyte RNA-seq (soRNA-seq) shows higher reproducibility. In addition, soRNA-seq better illustrates developmental progression of GV oocytes, revealing more complex gene changes than traditional views. Specially, an elevated level of ribosomal RNA 5′-ETS (5′ external transcribed spacer) has been shown to highly correlate with SN property. This study further demonstrates that UMI (unique molecular identifiers) based and other deduplication methods are limited in their ability to improve the precision of the soRNA-seq datasets. Finally, this study proposes that external spike-in molecules are useful for normalizing samples of different transcriptome sizes. A list of stable genes has been identified during oocyte maturation that are comparable to external spike-in molecules. These findings highlight the advantage of soRNA-seq, and have established ways for better clustering and cross-stage normalization, which can provide more insight into the biological features of oocyte maturation.
Collapse
|
37
|
Anchang B, Mendez-Giraldez R, Xu X, Archer TK, Chen Q, Hu G, Plevritis SK, Motsinger-Reif AA, Li JL. Visualization, benchmarking and characterization of nested single-cell heterogeneity as dynamic forest mixtures. Brief Bioinform 2022; 23:6534382. [PMID: 35192692 PMCID: PMC8921621 DOI: 10.1093/bib/bbac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
A major topic of debate in developmental biology centers on whether development is continuous, discontinuous, or a mixture of both. Pseudo-time trajectory models, optimal for visualizing cellular progression, model cell transitions as continuous state manifolds and do not explicitly model real-time, complex, heterogeneous systems and are challenging for benchmarking with temporal models. We present a data-driven framework that addresses these limitations with temporal single-cell data collected at discrete time points as inputs and a mixture of dependent minimum spanning trees (MSTs) as outputs, denoted as dynamic spanning forest mixtures (DSFMix). DSFMix uses decision-tree models to select genes that account for variations in multimodality, skewness and time. The genes are subsequently used to build the forest using tree agglomerative hierarchical clustering and dynamic branch cutting. We first motivate the use of forest-based algorithms compared to single-tree approaches for visualizing and characterizing developmental processes. We next benchmark DSFMix to pseudo-time and temporal approaches in terms of feature selection, time correlation, and network similarity. Finally, we demonstrate how DSFMix can be used to visualize, compare and characterize complex relationships during biological processes such as epithelial-mesenchymal transition, spermatogenesis, stem cell pluripotency, early transcriptional response from hormones and immune response to coronavirus disease. Our results indicate that the expression of genes during normal development exhibits a high proportion of non-uniformly distributed profiles that are mostly right-skewed and multimodal; the latter being a characteristic of major steady states during development. Our study also identifies and validates gene signatures driving complex dynamic processes during somatic or germline differentiation.
Collapse
Affiliation(s)
- Benedict Anchang
- Corresponding author: Benedict Anchang, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences. 111 T W Alexander Dr, Research Triangle Park, NC 27709, USA and Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. Tel +1 984-287-3350; E-mail:
| | - Raul Mendez-Giraldez
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Stanford, California, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Stanford, California, USA
| | - Trevor K Archer
- Epigenetics & Stem Cell Biology Laboratory/Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Stanford, California, USA
| | - Qing Chen
- Epigenetics & Stem Cell Biology Laboratory/Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Stanford, California, USA
| | - Guang Hu
- Epigenetics & Stem Cell Biology Laboratory/Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Stanford, California, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Center for Cancer Systems Biology, Stanford University, Stanford, California, USA
| | - Alison Anne Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Stanford, California, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Stanford, California, USA
| |
Collapse
|
38
|
Liu W, Zhang L, Gao A, Khawar MB, Gao F, Li W. Food-Derived High Arginine Peptides Promote Spermatogenesis Recovery in Busulfan Treated Mice. Front Cell Dev Biol 2021; 9:791471. [PMID: 34993200 PMCID: PMC8724571 DOI: 10.3389/fcell.2021.791471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Food-derived peptides with high arginine content have important applications in medicine and food industries, but their potential application in the treatment of oligoasthenospermia remains elusive. Here, we report that high-arginine peptides, such as Oyster peptides and Perilla purple peptides were able to promote spermatogenesis recovery in busulfan-treated mice. We found that both Opp and Ppp could increase sperm concentration and motility after busulfan-induced testicular damage in mice. Further research revealed that Opp and Ppp might promote spermatogonia proliferation, which improved blood-testis barrier recovery between Sertoli cells. Taken together, these high-arginine peptides might be used as a medication or therapeutic component of a diet prescription to improve the fertility of some oligoasthenospermia patients.
Collapse
Affiliation(s)
- Wenwen Liu
- College of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lingfeng Zhang
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Anning Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Muhammad Babar Khawar
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- *Correspondence: Fengyi Gao, ; Wei Li,
| | - Wei Li
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fengyi Gao, ; Wei Li,
| |
Collapse
|
39
|
Liu WS, Lu C, Mistry BV. Subcellular localization of the mouse PRAMEL1 and PRAMEX1 reveals multifaceted roles in the nucleus and cytoplasm of germ cells during spermatogenesis. Cell Biosci 2021; 11:102. [PMID: 34074333 PMCID: PMC8170798 DOI: 10.1186/s13578-021-00612-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal gametogenic tissues and a variety of tumors. Members of the PRAME gene family encode leucine-rich repeat (LRR) proteins that provide a versatile structural framework for the formation of protein-protein interactions. As a nuclear receptor transcriptional regulator, PRAME has been extensively studied in cancer biology and is believed to play a role in cancer cell proliferation by suppressing retinoic acid (RA) signaling. The role of the PRAME gene family in germline development and spermatogenesis has been recently confirmed by a gene knockout approach. To further understand how PRAME proteins are involved in germ cell development at a subcellular level, we have conducted a systematic immunogold electron microscopy (IEM) analysis on testis sections of adult mice with gene-specific antibodies from two members of the mouse Prame gene family: Pramel1 and Pramex1. Pramel1 is autosomal, while Pramex1 is X-linked, both genes are exclusively expressed in the testis. RESULTS Our IEM data revealed that both PRAMEL1 and PRAMEX1 proteins were localized in various cell organelles in different development stages of spermatogenic cells, including the nucleus, rER, Golgi, mitochondria, germ granules [intermitochondrial cement (IMC) and chromatoid body (CB)], centrioles, manchette, and flagellum. Unlike other germ cell-specific makers, such as DDX4, whose proteins are evenly distributed in the expressed-organelle(s), both PRAMEL1 and PRAMEX1 proteins tend to aggregate together to form clusters of protein complexes. These complexes were highly enriched in the nucleus and cytoplasm (especially in germ granules) of spermatocytes and spermatids. Furthermore, dynamic distribution of the PRAMEL1 protein complexes were observed in the microtubule-based organelles, such as acroplaxome, manchette, and flagellum, as well as in the nuclear envelope and nuclear pore. Dual staining with PRAMEL1 and KIF17B antibodies further revealed that the PRAMEL1 and KIF17B proteins were co-localized in germ granules. CONCLUSION Our IEM data suggest that the PRAMEL1 and PRAMEX1 proteins are not only involved in transcriptional regulation in the nucleus, but may also participate in nucleocytoplasmic transport, and in the formation and function of germ cell-specific organelles during spermatogenesis.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
| | - Chen Lu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
- Present Address: Fudan University, Shanghai, People’s Republic of China
| | - Bhavesh V. Mistry
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
- Present Address: Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Gamallat Y, Fang X, Mai H, Liu X, Li H, Zhou P, Han D, Zheng S, Liao C, Yang M, Li Y, Zuo L, Sun L, Hu H, Li N. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice. Redox Biol 2021; 43:101969. [PMID: 33901807 PMCID: PMC8099781 DOI: 10.1016/j.redox.2021.101969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Fibrous sheath interacting protein 1 (Fsip1) is a cytoskeletal structural protein of the sperm flagellar proteome. A few studies have reported that it plays a vital role in the tumorigenesis and cancer progression. However, little is known about the role of Fsip1 in spermatogenesis and mammalian sperm flagellogenesis. Fsip1 protein showed the highest expression in round spermatids, and was translocated from nucleus to the anterior region of the elongating spermatid head. To investigate its role we constructed homozygous Fsip1 null (Fsip1−/−) mice. We found that the homozygous Fsip1−/− mutant mice were infertile, with a low sperm count and impaired motility. Interestingly, a subtle phenotype characterized by abnormal head shape, and flagella deformities was observed in the sperm of Fsip1−/− mutant mice similar to the partial globozoospermia phenotype. Electron microscopy analysis of Fsip1−/− sperm revealed abnormal accumulation of mitochondria, disrupted axoneme and retained cytoplasm. Testicular sections showed increased cytoplasmic vacuoles in the elongated spermatid of Fsip1–/–mice, which indicated an intraflagellar transport (IFT) defect. Using proteomic approaches, we characterized the cellular components and the mechanism underlying this subtle phenotype. Our result indicated that Fsip1–/–downregulates the formation of acrosomal membrane and vesicles proteins, intraflagellar transport particles B, and sperm flagellum components. Our results suggest that Fsip1 is essential for normal spermiogenesis, and plays an essential role in the acrosome biogenesis and flagellogenesis by attenuating intraflagellar transport proteins. Disruption of Fsip1 leads to infertility with partial globozoospermia phenotype. Homozygous deletion of Fsip1 alters spermiogenesis. Fsip1 Knockout disrupts acrosome vesicle formation. Fsip1 motif analysis involves in internal fertilization.
Collapse
Affiliation(s)
- Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaonan Liu
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China; Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
41
|
Novel Gene Regulation in Normal and Abnormal Spermatogenesis. Cells 2021; 10:cells10030666. [PMID: 33802813 PMCID: PMC8002376 DOI: 10.3390/cells10030666] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Spermatogenesis is a complex and dynamic process which is precisely controlledby genetic and epigenetic factors. With the development of new technologies (e.g., single-cell RNA sequencing), increasingly more regulatory genes related to spermatogenesis have been identified. In this review, we address the roles and mechanisms of novel genes in regulating the normal and abnormal spermatogenesis. Specifically, we discussed the functions and signaling pathways of key new genes in mediating the proliferation, differentiation, and apoptosis of rodent and human spermatogonial stem cells (SSCs), as well as in controlling the meiosis of spermatocytes and other germ cells. Additionally, we summarized the gene regulation in the abnormal testicular microenvironment or the niche by Sertoli cells, peritubular myoid cells, and Leydig cells. Finally, we pointed out the future directions for investigating the molecular mechanisms underlying human spermatogenesis. This review could offer novel insights into genetic regulation in the normal and abnormal spermatogenesis, and it provides new molecular targets for gene therapy of male infertility.
Collapse
|
42
|
Li K, Xu J, Luo Y, Zou D, Han R, Zhong S, Zhao Q, Mang X, Li M, Si Y, Lu Y, Li P, Jin C, Wang Z, Wang F, Miao S, Wen B, Wang L, Ma Y, Yu J, Song W. Panoramic transcriptome analysis and functional screening of long noncoding RNAs in mouse spermatogenesis. Genome Res 2020; 31:13-26. [PMID: 33328167 PMCID: PMC7849387 DOI: 10.1101/gr.264333.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as diverse functional regulators involved in mammalian development; however, large-scale functional investigation of lncRNAs in mammalian spermatogenesis in vivo is lacking. Here, we delineated the global lncRNA expression landscape in mouse spermatogenesis and identified 968 germ cell signature lncRNAs. By combining bioinformatics and functional screening, we identified three functional lncRNAs (Gm4665, 1700027A15Rik, and 1700052I22Rik) that directly influence spermatogenesis in vivo. Knocking down Gm4665 hampered the development of round spermatids into elongating spermatids and disrupted key spermatogenic gene expression. Mechanistically, lncRNA Gm4665 localized in the nucleus of round spermatids and occupied the genomic regulatory region of important spermatogenic genes including Ip6k1 and Akap3. These findings provide a valuable resource and framework for future functional analysis of lncRNAs in spermatogenesis and their potential roles in other biological processes.
Collapse
Affiliation(s)
- Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jiayue Xu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanyun Luo
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ruiqin Han
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shunshun Zhong
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qing Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanmin Si
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Bo Wen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
43
|
Du X, Wu S, Wei Y, Yu X, Ma F, Zhai Y, Yang D, Zhang M, Liu W, Zhu H, Wu J, Liao M, Li N, Bai C, Li G, Hua J. PAX7 promotes CD49f-positive dairy goat spermatogonial stem cells' self-renewal. J Cell Physiol 2020; 236:1481-1493. [PMID: 32692417 DOI: 10.1002/jcp.29954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process that originates from and depends on the spermatogonial stem cells (SSCs). The number of SSCs is rare, which makes the separation and enrichment of SSCs difficult and inefficient. The transcription factor PAX7 maintains fertility in normal spermatogenesis in mice. However, for large animals, much less is known about the SSCs' self-renewal regulation, especially in dairy goats. We isolated and enriched the CD49f-positive and negative dairy goat testicular cells by magnetic-activated cell sorting strategies. The RNA- sequencing and experimental data revealed that cells with a high CD49f and PAX7 expression are undifferentiated spermatogonia in goat testis. Our findings indicated that ZBTB16 (PLZF), PAX7, LIN28A, BMPR1B, FGFR1, and FOXO1 were expressed higher in CD49f-positive cells as compared to negative cells and goat fibroblasts cells. The expression and distribution of PAX7 in dairy goat also have been detected, which gradually decreased in testis tissue along with the increasing age. When the PAX7 gene was overexpressed in dairy goat immortal mGSCs-I-SB germ cell lines, the expression of PLZF, GFRα1, ID4, and OCT4 was upregulated. Together, our data demonstrated that there is a subset of spermatogonial stem cells with a high expression of PAX7 among the CD49f+ spermatogonia, and PAX7 can maintain the self-renewal of CD49f-positive SSCs.
Collapse
Affiliation(s)
- Xiaomin Du
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Siyu Wu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Yudong Wei
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Fanglin Ma
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Donghui Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Wenqing Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Haijing Zhu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China.,Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Jiang Wu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| |
Collapse
|
44
|
EZH2 expression and its role in spermatogonial stem cell self-renewal in goats. Theriogenology 2020; 155:222-231. [PMID: 32731005 DOI: 10.1016/j.theriogenology.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone H3 lysine 27 (H3K27) methyltransferase that plays vital roles in mouse spermatogenesis. However, the expression pattern and role of EZH2 in goat spermatogonial stem cells (SSCs) is unknown. In the present study, we investigated EZH2 expression in the testis of postpubertal goats and its effect on the biological characteristics of goat SSCs. We found that EZH2 mRNA (P < 0.01) and protein (P < 0.05) expression was increased in the testes of postpubertal goats compared to that of prepubertal goats. Moreover, EZH2 was more highly expressed in goat SSCs than in Leydig cells (P < 0.01) and Sertoli cells (P < 0.01) as determined by qPCR, Western blot, and immunofluorescence. Compared to a negative control (NC), cell proliferation (P < 0.01) and viability (P < 0.01) were decreased in SSCs in which EZH2 was knocked down, and the G2/M phase of the cell cycle was blocked (P < 0.01), as determined by Edu staining, CCK-8 assay, and flow cytometry analysis. Additionally, the expression of CASP3, CASP9, and BAX was significantly increased (P < 0.01) while BCL2 expression was decreased (P < 0.01) in EZH2 knockdown SSCs. Notably, the expression of GDNF, a SSCs marker gene, and DAZL, a spermatogenesis-related gene, were significantly decreased (P < 0.01) while GFRA1 expression was significantly up-regulated (P < 0.01) in EZH2 knockdown SSCs. Our data suggest that EZH2 plays a pivotal role in the self-renewal of goat SSCs, and knockdown of EZH2 might impair spermatogenesis in goats.
Collapse
|