1
|
Zhang H, Xue Y, Jiang C, Liu D, Zhang L, Lang G, Mao T, Effrem DB, Iimaa T, Surenjav U, Liu M. 3-Dimentional printing of polysaccharides for water-treatment: A review. Int J Biol Macromol 2024; 265:131117. [PMID: 38522684 DOI: 10.1016/j.ijbiomac.2024.131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Biological polysaccharides such as cellulose, chitin, chitosan, sodium alginate, etc., serve as excellent substrates for 3D printing due to their inherent advantages of biocompatibility, biodegradability, non-toxicity, and absence of secondary pollution. In this review we comprehensively overviewed the principles and processes involved in 3D printing of polysaccharides. We then delved into the diverse application of 3D printed polysaccharides in wastewater treatment, including their roles as adsorbents, photocatalysts, biological carriers, micro-devices, and solar evaporators. Furthermore, we assessed the technical superiority and future potential of polysaccharide 3D prints, envisioning its widespread application. Lastly, we remarked the challenging scientific and engineering aspects that require attention in the scientific research, industrial production, and engineering utilization. By addressing these key points, we aimed to advance the field and facilitate the practical implementation of polysaccharide-based 3D printing technologies in wastewater treatment and beyond.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongjun Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenyu Jiang
- Suzhou Key Laboratory of Biophotonics, School of Optical and Electrical Information, Suzhou City University, Suzhou, Jiangsu Province 215104, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Lu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Gaoyuan Lang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tingting Mao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dally Bozi Effrem
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tuyajargal Iimaa
- Department of Science and Bio-Innovation, National Center for Public Health, Ministry of Health, Ulaanbaatar 13381, Mongolia
| | - Unursaikhan Surenjav
- Department of Science and Bio-Innovation, National Center for Public Health, Ministry of Health, Ulaanbaatar 13381, Mongolia
| | - Ming Liu
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Dessau-Rosslau 06844, Germany
| |
Collapse
|
2
|
Malcolm D, Vilà-Nadal L. Computational Study into the Effects of Countercations on the [P 8W 48O 184] 40- Polyoxometalate Wheel. ACS ORGANIC & INORGANIC AU 2023; 3:274-282. [PMID: 37810411 PMCID: PMC10557121 DOI: 10.1021/acsorginorgau.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
Porous metal oxide materials have been obtained from a ring-shaped macrocyclic polyoxometalate (POM) structural building unit, [P8W48O184]40-. This is a tungsten oxide building block with an integrated "pore" of 1 nm in diameter, which, when connected with transition metal linkers, can assemble frameworks across a range of dimensions and which are generally referred to as POMzites. Our investigation proposes to gain a better understanding into the basic chemistry of this POM, specifically local electron densities and locations of countercations within and without the aforementioned pore. Through a rigorous benchmarking process, we discovered that 8 potassium cations, located within the pore, provided us with the most accurate model in terms of mimicking empirical properties to a sufficient degree of accuracy while also requiring a relatively small number of computer cores and hours to successfully complete a calculation. Additionally, we analyzed two other similar POMs from the literature, [As8W48O184]40- and [Se8W48O176]32-, in the hopes of determining whether they could be similarly incorporated into a POMzite network; given their close semblance in terms of local electron densities and interaction with potassium cations, we judge these POMs to be theoretically suitable as POMzite building blocks. Finally, we experimented with substituting different cations into the [P8W48O184]40- pore to observe the effect on pore dimensions and overall reactivity; we observed that the monocationic structures, particularly the Li8[P8W48O184]32- framework, yielded the least polarized structures. This correlates with the literature, validating our methodology for determining general POM characteristics and properties moving forward.
Collapse
Affiliation(s)
- Daniel Malcolm
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Laia Vilà-Nadal
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Salley D, Manzano JS, Kitson PJ, Cronin L. Robotic Modules for the Programmable Chemputation of Molecules and Materials. ACS CENTRAL SCIENCE 2023; 9:1525-1537. [PMID: 37637738 PMCID: PMC10450877 DOI: 10.1021/acscentsci.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Indexed: 08/29/2023]
Abstract
Before leveraging big data methods like machine learning and artificial intelligence (AI) in chemistry, there is an imperative need for an affordable, universal digitization standard. This mirrors the foundational requisites of the digital revolution, which demanded standard architectures with precise specifications. Recently, we have developed automated platforms tailored for chemical AI-driven exploration, including the synthesis of molecules, materials, nanomaterials, and formulations. Our focus has been on designing and constructing affordable standard hardware and software modules that serve as a blueprint for chemistry digitization across varied fields. Our platforms can be categorized into four types based on their applications: (i) discovery systems for the exploration of chemical space and novel reactivity, (ii) systems for the synthesis and manufacture of fine chemicals, (iii) platforms for formulation discovery and exploration, and (iv) systems for materials discovery and synthesis. We also highlight the convergent evolution of these platforms through shared hardware, firmware, and software alongside the creation of a unique programming language for chemical and material systems. This programming approach is essential for reliable synthesis, designing experiments, discovery, optimization, and establishing new collaboration standards. Furthermore, it is crucial for verifying literature findings, enhancing experimental outcome reliability, and fostering collaboration and sharing of unsuccessful experiments across different research labs.
Collapse
Affiliation(s)
- Daniel Salley
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - J. Sebastián Manzano
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Philip J. Kitson
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Leroy Cronin
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
4
|
Bubliauskas A, Blair DJ, Powell‐Davies H, Kitson PJ, Burke MD, Cronin L. Digitizing Chemical Synthesis in 3D Printed Reactionware. Angew Chem Int Ed Engl 2022; 61:e202116108. [PMID: 35257447 PMCID: PMC9186708 DOI: 10.1002/anie.202116108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Chemistry digitization requires an unambiguous link between experiments and the code used to generate the experimental conditions and outcomes, yet this process is not standardized, limiting the portability of any chemical code. What is needed is a universal approach to aid this process using a well-defined standard that is composed of syntheses that are employed in modular hardware. Herein we present a new approach to the digitization of organic synthesis that combines process chemistry principles with 3D printed reactionware. This approach outlines the process for transforming unit operations into digitized hardware and well-defined instructions that ensure effective synthesis. To demonstrate this, we outline the process for digitizing 3 MIDA boronate building blocks, an ester hydrolysis, a Wittig olefination, a Suzuki-Miyaura coupling reaction, and synthesis of the drug sulfanilamide.
Collapse
Affiliation(s)
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical SciencesUniversity of IllinoisUrbana-ChampaignIL 61801USA
| | | | | | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical SciencesUniversity of IllinoisUrbana-ChampaignIL 61801USA
| | - Leroy Cronin
- School of ChemistryThe University of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
5
|
Göttert S, Salomatov I, Eder S, Seyfang BC, Sotelo DC, Osma JF, Weiss CK. Continuous Nanoprecipitation of Polycaprolactone in Additively Manufactured Micromixers. Polymers (Basel) 2022; 14:polym14081509. [PMID: 35458259 PMCID: PMC9032806 DOI: 10.3390/polym14081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The polymeric ouzo effect is an energy-efficient and robust method to create nanoparticles with biologically degradable polymers. Usually, a discontinuous or semi-continuous process is employed due to its low technical effort and the fact that the amount of dispersions needed in a laboratory is relatively small. However, the number of particles produced in this method is not enough to make this process economically feasible. Therefore, it is necessary to improve the productivity of the process and create a controllable and robust continuous process with the potential to control parameters, such as the particle size or surface properties. In this study, nanoparticles were formulated from polycaprolactone (PCL) in a continuous process using additively manufactured micromixers. The main goal was to be able to exert control on the particle parameters in terms of size and zeta potential. The results showed that particle size could be adjusted in the range of 130 to 465 nm by using different flow rates of the organic and aqueous phase and varying concentrations of PCL dissolved in the organic phase. Particle surface charge was successfully shifted from a slightly negative potential of −14.1 mV to a negative, positive, or neutral value applying the appropriate surfactant. In summary, a continuous process of nanoprecipitation not only improves the cost of the method, but furthermore increases the control over the particle’s parameters.
Collapse
Affiliation(s)
- Simeon Göttert
- Technische Hochschule Bingen, Life Sciences and Engineering, Berlinstrasse 109, 55411 Bingen, Germany; (S.G.); (I.S.); (S.E.); (B.C.S.)
| | - Irina Salomatov
- Technische Hochschule Bingen, Life Sciences and Engineering, Berlinstrasse 109, 55411 Bingen, Germany; (S.G.); (I.S.); (S.E.); (B.C.S.)
| | - Stephan Eder
- Technische Hochschule Bingen, Life Sciences and Engineering, Berlinstrasse 109, 55411 Bingen, Germany; (S.G.); (I.S.); (S.E.); (B.C.S.)
| | - Bernhard C. Seyfang
- Technische Hochschule Bingen, Life Sciences and Engineering, Berlinstrasse 109, 55411 Bingen, Germany; (S.G.); (I.S.); (S.E.); (B.C.S.)
| | - Diana C. Sotelo
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19A-40, Bogotá 111711, Colombia; (D.C.S.); (J.F.O.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19A-40, Bogotá 111711, Colombia; (D.C.S.); (J.F.O.)
| | - Clemens K. Weiss
- Technische Hochschule Bingen, Life Sciences and Engineering, Berlinstrasse 109, 55411 Bingen, Germany; (S.G.); (I.S.); (S.E.); (B.C.S.)
- Correspondence: ; Tel.: +49-6721-409270
| |
Collapse
|
6
|
Bubliauskas A, Blair DJ, Powell‐Davies H, Kitson PJ, Burke MD, Cronin L, Acknow. Digitizing Chemical Synthesis in 3D Printed Reactionware. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical Sciences University of Illinois Urbana-Champaign IL 61801 USA
| | | | - Philip J. Kitson
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical Sciences University of Illinois Urbana-Champaign IL 61801 USA
| | - Leroy Cronin
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
7
|
Hammer AS, Leonov AI, Bell NL, Cronin L. Chemputation and the Standardization of Chemical Informatics. JACS AU 2021; 1:1572-1587. [PMID: 34723260 PMCID: PMC8549037 DOI: 10.1021/jacsau.1c00303] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/11/2023]
Abstract
The explosion in the use of machine learning for automated chemical reaction optimization is gathering pace. However, the lack of a standard architecture that connects the concept of chemical transformations universally to software and hardware provides a barrier to using the results of these optimizations and could cause the loss of relevant data and prevent reactions from being reproducible or unexpected findings verifiable or explainable. In this Perspective, we describe how the development of the field of digital chemistry or chemputation, that is the universal code-enabled control of chemical reactions using a standard language and ontology, will remove these barriers allowing users to focus on the chemistry and plug in algorithms according to the problem space to be explored or unit function to be optimized. We describe a standard hardware (the chemical processing programming architecture-the ChemPU) to encompass all chemical synthesis, an approach which unifies all chemistry automation strategies, from solid-phase peptide synthesis, to HTE flow chemistry platforms, while at the same time establishing a publication standard so that researchers can exchange chemical code (χDL) to ensure reproducibility and interoperability. Not only can a vast range of different chemistries be plugged into the hardware, but the ever-expanding developments in software and algorithms can also be accommodated. These technologies, when combined will allow chemistry, or chemputation, to follow computation-that is the running of code across many different types of capable hardware to get the same result every time with a low error rate.
Collapse
|
8
|
Isakovskaya KL, Nikovskii IA, Nelyubina YV. New Low-Dimensional Perovskites Based on Lead Bromide. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Daley SK, Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The profound interconnectedness of the sciences and technologies embodied in the Fourth Industrial Revolution is discussed in terms of the global role of natural products, and how that interplays with the development of sustainable and climate-conscious practices of cyberecoethnopharmacolomics within the Quintuple Helix for the promotion of a healthier planet and society.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Seifrid M, Aspuru-Guzik A. You Wouldn't Download a Molecule! Now, ChemSCAD Makes It Possible. ACS CENTRAL SCIENCE 2021; 7:228-230. [PMID: 33655062 PMCID: PMC7908020 DOI: 10.1021/acscentsci.1c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Martin Seifrid
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Computer
Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Computer
Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Vector
Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada
- Canadian Institute
for Advanced Research (CIFAR) Senior Fellow, Toronto, Ontario M5S 1M1, Canada
| |
Collapse
|
11
|
Hou W, Bubliauskas A, Kitson PJ, Francoia JP, Powell-Davies H, Gutierrez JMP, Frei P, Manzano JS, Cronin L. Automatic Generation of 3D-Printed Reactionware for Chemical Synthesis Digitization using ChemSCAD. ACS CENTRAL SCIENCE 2021; 7:212-218. [PMID: 33655058 PMCID: PMC7908023 DOI: 10.1021/acscentsci.0c01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We describe a system, ChemSCAD, for the creation of digital reactors based on the chemical operations, physical parameters, and synthetic sequence to produce a given target compound, to show that the system can translate the gram-scale batch synthesis of the antiviral compound Ribavirin (yield 43% over three steps), the narcolepsy drug Modafinil (yield 60% over three steps), and both batch and flow instances of the synthesis of the anticancer agent Lomustine (batch yield 65% over two steps) in purities greater than or equal to 96%. The syntheses of compounds developed using the ChemSCAD system, including reactor designs and analytical data, can be stored in a database repository, with the information necessary to critically evaluate and improve upon reactionware syntheses being easily shared and versioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Przemyslaw Frei
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
12
|
Hou W, Bubliauskas A, Kitson PJ, Francoia JP, Powell-Davies H, Gutierrez JMP, Frei P, Manzano JS, Cronin L. Automatic Generation of 3D-Printed Reactionware for Chemical Synthesis Digitization using ChemSCAD. ACS CENTRAL SCIENCE 2021; 7:212-218. [PMID: 33655058 DOI: 10.26434/chemrxiv.13070588.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe a system, ChemSCAD, for the creation of digital reactors based on the chemical operations, physical parameters, and synthetic sequence to produce a given target compound, to show that the system can translate the gram-scale batch synthesis of the antiviral compound Ribavirin (yield 43% over three steps), the narcolepsy drug Modafinil (yield 60% over three steps), and both batch and flow instances of the synthesis of the anticancer agent Lomustine (batch yield 65% over two steps) in purities greater than or equal to 96%. The syntheses of compounds developed using the ChemSCAD system, including reactor designs and analytical data, can be stored in a database repository, with the information necessary to critically evaluate and improve upon reactionware syntheses being easily shared and versioned.
Collapse
Affiliation(s)
- Wenduan Hou
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| | | | - Philip J Kitson
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| | | | | | | | - Przemyslaw Frei
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| | | | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
13
|
Gordeev EG, Ananikov VP. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4980] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Chang CW, Lin MH, Wang CC. Statistical Analysis of Glycosylation Reactions. Chemistry 2020; 27:2556-2568. [PMID: 32939892 DOI: 10.1002/chem.202003105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Indexed: 12/27/2022]
Abstract
Chemical synthesis is one of the practical approaches to access carbohydrate-based natural products and their derivatives with high quality and in a large quantity. However, stereoselectivity during the glycosylation reaction is the main challenge because the reaction can generate both α- and β-glycosides. The main focus of the present article is the concept of recent mechanistic studies that have applied statistical analysis and quantitation for defining stereoselective changes during the reaction process. Based on experimental evidence, a detailed discussion associated with the mechanism and degree of influence affecting the stereoselective outcome of glycosylation is included.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program (Taiwan), International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
15
|
Clayson IG, Hewitt D, Hutereau M, Pope T, Slater B. High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002780. [PMID: 32954550 DOI: 10.1002/adma.202002780] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 05/14/2023]
Abstract
Porous materials are widely employed in a large range of applications, in particular, for storage, separation, and catalysis of fine chemicals. Synthesis, characterization, and pre- and post-synthetic computer simulations are mostly carried out in a piecemeal and ad hoc manner. Whilst high throughput approaches have been used for more than 30 years in the porous material fields, routine integration of experimental and computational processes is only now becoming more established. Herein, important developments are highlighted and emerging challenges for the community identified, including the need to work toward more integrated workflows.
Collapse
Affiliation(s)
- Ivan G Clayson
- Department of Chemistry, University College London, 20 Gower Street, London, WC1E 6BT, UK
| | - Daniel Hewitt
- Department of Chemistry, University College London, 20 Gower Street, London, WC1E 6BT, UK
| | - Martin Hutereau
- Department of Chemistry, University College London, 20 Gower Street, London, WC1E 6BT, UK
| | - Tom Pope
- Department of Chemistry, University College London, 20 Gower Street, London, WC1E 6BT, UK
| | - Ben Slater
- Department of Chemistry, University College London, 20 Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
16
|
Tully JJ, Meloni GN. A Scientist’s Guide to Buying a 3D Printer: How to Choose the Right Printer for Your Laboratory. Anal Chem 2020; 92:14853-14860. [DOI: 10.1021/acs.analchem.0c03299] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joshua J. Tully
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N. Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|