1
|
Piccolo P, Brunetti-Pierri N. Current and Emerging Issues in Adeno-Associated Virus Vector-Mediated Liver-Directed Gene Therapy. Hum Gene Ther 2025; 36:77-87. [PMID: 39714937 DOI: 10.1089/hum.2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| |
Collapse
|
2
|
Sharabati I, Qafesha RM, Mustafa MMM, Hindawi MD, Rasras H, Bannoura S, Abdulrazzak M, Shamasneh I. Novel ABCB4 mutation in a female patient with progressive familial intrahepatic cholestasis type 3: a case report and literature review. Ann Med Surg (Lond) 2025; 87:953-963. [PMID: 40110281 PMCID: PMC11918558 DOI: 10.1097/ms9.0000000000002813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Introduction and importance Progressive familial intrahepatic cholestasis (PFIC) is an uncommon disorder inherited in an autosomal recessive manner. PFIC type 3 (PFIC-3) results from mutations in the ABCB4 gene. This type typically advances from chronic cholestasis, which may occur with or without jaundice. Case presentation A 16-year-old female presented with abdominal pain, later developing liver complications. Genetic testing revealed a novel ABCB4 gene mutation linked to cholestasis. Diagnosed with PFIC-3, she was treated with ursodeoxycholic acid (UDCA) and vitamins, leading to improved liver function. Despite uncertain clinical significance of the mutation, predictions suggested it was damaging. Her liver function fully recovered, and she remained in remission during follow-up visits. Clinical discussion PFIC3 is a rare, autosomal recessive disorder causing cholestasis and liver damage. Our study reported a young female with a novel ABCB4 mutation who responded well to UDCA. Diagnosis relies on comprehensive evaluation, and treatment options include UDCA, surgery, and liver transplantation. Conclusion PFIC-3 gene must be considered while evaluating a young female with symptoms of cholestasis.
Collapse
Affiliation(s)
- Israa Sharabati
- Faculty of medicine, Al-Quds University, Jerusalem, Palestine
- Medical research group of Egypt, Negida Academy, Arlington, MA, USA
| | - Ruaa Mustafa Qafesha
- Faculty of medicine, Al-Quds University, Jerusalem, Palestine
- Medical research group of Egypt, Negida Academy, Arlington, MA, USA
| | - Mohamed M M Mustafa
- Medical research group of Egypt, Negida Academy, Arlington, MA, USA
- Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mahmoud Diaa Hindawi
- Medical research group of Egypt, Negida Academy, Arlington, MA, USA
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Heba Rasras
- Faculty of medicine, Al-Quds University, Jerusalem, Palestine
| | - Sami Bannoura
- Department of Pathology, Al-Ahli Hospital, Hebron, Palestine
| | | | | |
Collapse
|
3
|
Chen Y, van Til NP, Bosma PJ. Gene Therapy for Inherited Liver Disease: To Add or to Edit. Int J Mol Sci 2024; 25:12514. [PMID: 39684224 DOI: 10.3390/ijms252312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Patients suffering from an inherited severe liver disorder require lifelong treatment to prevent premature death. Until recently, the only curative treatment option was liver transplantation, which requires lifelong immune suppression. Now, liver-directed gene therapy, which is a much less invasive procedure, has become a market-approved treatment for hemophilia A and B. This may pave the way for it to become the treatment of choice for many other recessive inherited liver disorders with loss-of-function mutations. Inherited liver disease with toxic-gain-of-function or intrinsic hepatocyte damage may require alternative applications, such as integrating vectors or genome editing technologies, that can provide permanent or specific modification of the genome. We present an overview of currently available gene therapy strategies, i.e., gene supplementation, gene editing, and gene repair investigated in preclinical and clinical studies to treat inherited severe liver disorders. The advantages and limitations of these gene therapy applications are discussed in relation to the underlying disease mechanism.
Collapse
Affiliation(s)
- Yue Chen
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| |
Collapse
|
4
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Hua H, Zhao QQ, Kalagbor MN, Yu GZ, Liu M, Bian ZR, Zhang BB, Yu Q, Xu YH, Tang RX, Zheng KY, Yan C. Recombinant adeno-associated virus 8-mediated inhibition of microRNA let-7a ameliorates sclerosing cholangitis in a clinically relevant mouse model. World J Gastroenterol 2024; 30:471-484. [PMID: 38414587 PMCID: PMC10895596 DOI: 10.3748/wjg.v30.i5.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options. Recombinant adeno-associated virus (rAAV) provides a promising platform for gene therapy on such kinds of diseases. A microRNA (miRNA) let-7a has been reported to be associated with the progress of PSC but the potential therapeutic implication of inhibition of let-7a on PSC has not been evaluated. AIM To investigate the therapeutic effects of inhibition of a miRNA let-7a transferred by recombinant adeno-associated virus 8 (rAAV8) on a xenobiotic-induced mouse model of sclerosing cholangitis. METHODS A xenobiotic-induced mouse model of sclerosing cholangitis was induced by 0.1% 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC) feeding for 2 wk or 6 wk. A single dose of rAAV8-mediated anti-let-7a-5p sponges or scramble control was injected in vivo into mice onset of DDC feeding. Upon sacrifice, the liver and the serum were collected from each mouse. The hepatobiliary injuries, hepatic inflammation and fibrosis were evaluated. The targets of let-7a-5p and downstream molecule NF-κB were detected using Western blot. RESULTS rAAV8-mediated anti-let-7a-5p sponges can depress the expression of let-7a-5p in mice after DDC feeding for 2 wk or 6 wk. The reduced expression of let-7a-5p can alleviate hepato-biliary injuries indicated by serum markers, and prevent the proliferation of cholangiocytes and biliary fibrosis. Furthermore, inhibition of let-7a mediated by rAAV8 can increase the expression of potential target molecules such as suppressor of cytokine signaling 1 and Dectin1, which consequently inhibit of NF-κB-mediated hepatic inflammation. CONCLUSION Our study demonstrates that a rAAV8 vector designed for liver-specific inhibition of let-7a-5p can potently ameliorate symptoms in a xenobiotic-induced mouse model of sclerosing cholangitis, which provides a possible clinical translation of PSC of human.
Collapse
Affiliation(s)
- Hui Hua
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qian-Qian Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Miriam Nkesichi Kalagbor
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Guo-Zhi Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Zheng-Rui Bian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yin-Hai Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
6
|
Chuecos MA, Lagor WR. Liver directed adeno-associated viral vectors to treat metabolic disease. J Inherit Metab Dis 2024; 47:22-40. [PMID: 37254440 PMCID: PMC10687323 DOI: 10.1002/jimd.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
The liver is the metabolic center of the body and an ideal target for gene therapy of inherited metabolic disorders (IMDs). Adeno-associated viral (AAV) vectors can deliver transgenes to the liver with high efficiency and specificity and a favorable safety profile. Recombinant AAV vectors contain only the transgene cassette, and their payload is converted to non-integrating circular double-stranded DNA episomes, which can provide stable expression from months to years. Insights from cellular studies and preclinical animal models have provided valuable information about AAV capsid serotypes with a high liver tropism. These vectors have been applied successfully in the clinic, particularly in trials for hemophilia, resulting in the first approved liver-directed gene therapy. Lessons from ongoing clinical trials have identified key factors affecting efficacy and safety that were not readily apparent in animal models. Circumventing pre-existing neutralizing antibodies to the AAV capsid, and mitigating adaptive immune responses to transduced cells are critical to achieving therapeutic benefit. Combining the high efficiency of AAV delivery with genome editing is a promising path to achieve more precise control of gene expression. The primary safety concern for liver gene therapy with AAV continues to be the small risk of tumorigenesis from rare vector integrations. Hepatotoxicity is a key consideration in the safety of neuromuscular gene therapies which are applied at substantially higher doses. The current knowledge base and toolkit for AAV is well developed, and poised to correct some of the most severe IMDs with liver-directed gene therapy.
Collapse
Affiliation(s)
- Marcel A. Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
7
|
Jeyaraj R, Maher ER, Kelly D. Paediatric research sets new standards for therapy in paediatric and adult cholestasis. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:75-84. [PMID: 38006895 DOI: 10.1016/s2352-4642(23)00259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/27/2023]
Abstract
Children with Alagille syndrome and progressive familial intrahepatic cholestasis (PFIC) experience debilitating pruritus, for which there have been few effective treatment options. In the past 2 years, the ileal bile acid transporter (IBAT) inhibitors maralixibat and odevixibat have been approved for the management of cholestatic pruritus in these individuals, representing an important step forward in improving their quality of life. Emerging data suggest these drugs might also improve event-free survival, therefore potentially altering the typical disease course currently seen in these disorders. This Review will discuss how genetic advances have clarified the molecular basis of cholestatic disorders, facilitating the development of new therapeutic options that have only been evaluated in children. We focus specifically on the newly licensed IBAT inhibitors for patients with Alagille syndrome and PFIC and explore the next steps for these drugs in relation to other paediatric and adult cholestatic disorders, recognising that they have the potential to benefit a wider group of patients with gastrointestinal and liver disease.
Collapse
Affiliation(s)
- Rebecca Jeyaraj
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Deirdre Kelly
- The Liver Unit, Birmingham Women's and Children's Hospital, Birmingham, UK; University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Gómez-Moreno A, San Sebastian E, Moya J, Gomollón-Zueco P, Isola S, Vales Á, González-Aseguinolaza G, Unzu C, Garaigorta U. Topoisomerase Inhibitors Increase Episomal DNA Expression by Inducing the Integration of Episomal DNA in Hepatic Cells. Pharmaceutics 2023; 15:2459. [PMID: 37896219 PMCID: PMC10610421 DOI: 10.3390/pharmaceutics15102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Gene therapy is a promising strategy to treat and cure most inherited metabolic liver disorders. Viral vectors such as those based on adeno-associated viruses (AAVs) and lentiviruses (LVs) are used as vehicles to deliver functional genes to affected hepatocytes. Adverse events associated with the use of high vector doses have motivated the use of small molecules as adjuvants to reduce the dose. In this study, we showed that a one-hour treatment with topoisomerase inhibitors (camptothecin and etoposide) prior to viral transduction is enough to increase AAV and LV reporter expression in non-dividing hepatic cells in culture. Topoisomerase inhibitors increased both integration-competent (ICLV) and integration-deficient (IDLV) LV-derived expression, with a much stronger increase in the IDLV transduction system. In agreement with that, topoisomerase inhibitors increased viral genome integration in both strains, with a greater impact on the IDLV strain, supporting the idea that topoisomerase inhibitors increased episomal DNA integration, especially when viral integrase activity is abolished. These effects correlated with an increase in the DNA damage response produced by the treatments. Our study highlights the need to monitor DNA damage and undesired integration of viral episomal DNAs into the host genome when studying chemical compounds that increase viral transduction.
Collapse
Affiliation(s)
- Andoni Gómez-Moreno
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain; (E.S.S.); (J.M.); (P.G.-Z.)
| | - Enara San Sebastian
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain; (E.S.S.); (J.M.); (P.G.-Z.)
| | - Jennifer Moya
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain; (E.S.S.); (J.M.); (P.G.-Z.)
| | - Pilar Gomollón-Zueco
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain; (E.S.S.); (J.M.); (P.G.-Z.)
| | - Sergio Isola
- DNA & RNA Medicine Division, CIMA, Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain; (S.I.); (Á.V.); (G.G.-A.); (C.U.)
| | - África Vales
- DNA & RNA Medicine Division, CIMA, Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain; (S.I.); (Á.V.); (G.G.-A.); (C.U.)
| | - Gloria González-Aseguinolaza
- DNA & RNA Medicine Division, CIMA, Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain; (S.I.); (Á.V.); (G.G.-A.); (C.U.)
| | - Carmen Unzu
- DNA & RNA Medicine Division, CIMA, Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain; (S.I.); (Á.V.); (G.G.-A.); (C.U.)
| | - Urtzi Garaigorta
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain; (E.S.S.); (J.M.); (P.G.-Z.)
| |
Collapse
|
9
|
Gonzales E, Gardin A, Almes M, Darmellah-Remil A, Seguin H, Mussini C, Franchi-Abella S, Duché M, Ackermann O, Thébaut A, Habes D, Hermeziu B, Lapalus M, Falguières T, Combal JP, Benichou B, Valero S, Davit-Spraul A, Jacquemin E. Outcomes of 38 patients with PFIC3: Impact of genotype and of response to ursodeoxycholic acid therapy. JHEP Rep 2023; 5:100844. [PMID: 37701337 PMCID: PMC10494458 DOI: 10.1016/j.jhepr.2023.100844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.
Collapse
Affiliation(s)
- Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Antoine Gardin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Marion Almes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Amaria Darmellah-Remil
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Hanh Seguin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Charlotte Mussini
- Pathology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stéphanie Franchi-Abella
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mathieu Duché
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Oanez Ackermann
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Alice Thébaut
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Dalila Habes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Bogdan Hermeziu
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Martine Lapalus
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | | | | | | | | | - Anne Davit-Spraul
- Biochemistry; Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| |
Collapse
|
10
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
11
|
Alsohaibani FI, Peedikayil MC, Alfadley AF, Aboueissa MK, Abaalkhail FA, Alqahtani SA. Progressive Familial Intrahepatic Cholestasis: A Descriptive Study in a Tertiary Care Center. Int J Hepatol 2023; 2023:1960152. [PMID: 37520499 PMCID: PMC10374379 DOI: 10.1155/2023/1960152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Background Progressive familial intrahepatic cholestasis (PFIC) is a rare genetic disorder that results from defective mechanisms of bile secretion. We aim to describe different types of PFIC and their clinical features, treatment modalities, and outcomes in Saudi Arabia. Patients and Methods. This is a retrospective study of all patients diagnosed with PFIC at King Faisal Specialist Hospital and Research Center in Riyadh from January 1, 2002, to December 31, 2021. All relevant information was collected from patient charts and transferred into the REDcap® database for statistical analysis. Results A total of 79 patients were identified with PFIC, and PFIC type 3 was the most common (59.5%), followed by PFIC type 2 (34.2%), PFIC type 1 (5.1%), and PFIC type 4 (1.3%). Males and females were affected in 54.4% and 45.6%, respectively. Mutations in ATP8B1, ABCB11, and ABCB4 genes were observed in PFIC type 1, PFIC type 2, and PFIC type 3, and loss of function in a variant of TJP2 was detected in PFIC type 4, respectively. A total of 51 (64.6%) patients underwent liver transplantation: three patients (3/4) with PFIC type 1 (75%), twenty patients (20/27) with PFIC type 2 (74.1%), twenty-seven patients (27/47) with PFIC type 3 (57.4%), and one patient with PFIC type 4 (100%). The mean duration of disease before transplantation was 53.9 ± 67 months with a median of 30 months. Following liver transplantation, symptomatic control was achieved in 47 patients (92.2%). Recurrence after transplantation occurred in 4 patients (7.8%) within an average of 22.5 months and a median of 17 months. Conclusion PFIC is considered a rare disorder in Saudi Arabia; however, early recognition of the disease is important for appropriate management and early referral for liver transplantation evaluation. The overall rate of liver transplantation in our cohort was 64.6% with an excellent five-year survival rate.
Collapse
Affiliation(s)
- Fahad I. Alsohaibani
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musthafa C. Peedikayil
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | - Faisal A. Abaalkhail
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh A. Alqahtani
- Liver Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Weber ND, Odriozola L, Ros-Gañán I, García-Porrero G, Salas D, Argemi J, Combal JP, Kishimoto TK, González-Aseguinolaza G. Rescue of infant progressive familial intrahepatic cholestasis type 3 mice by repeated dosing of AAV gene therapy. JHEP Rep 2023; 5:100713. [PMID: 37096142 PMCID: PMC10121466 DOI: 10.1016/j.jhepr.2023.100713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 04/26/2023] Open
Abstract
Background & Aims Gene therapy using recombinant adeno-associated virus (rAAV) vector carrying multidrug resistance protein 3 (MDR3) coding sequence (AAV8-MDR3) represents a potential curative treatment for progressive familial intrahepatic cholestasis type 3 (PFIC3), which presents in early childhood. However, patients with the severest form of PFIC3 should receive treatment early after detection to prevent irreversible hepatic fibrosis leading ultimately to liver transplantation or death. This represents a challenge for rAAV-based gene therapy because therapeutic efficacy is expected to wane as rAAV genomes are lost owing to hepatocyte division, and the formation of AAV-specific neutralising antibodies precludes re-administration. Here, we tested a strategy of vector re-administration in infant PFIC3 mice with careful evaluation of its oncogenicity - a particular concern surrounding rAAV treatment. Methods AAV8-MDR3 was re-administered to infant Abcb4 -/- mice 2 weeks after a first dose co-administered with tolerogenic nanoparticles carrying rapamycin (ImmTOR) given at 2 weeks of age. Eight months later, long-term therapeutic efficacy and safety were assessed with special attention paid to the potential oncogenicity of rAAV treatment. Results Co-administration with ImmTOR mitigated the formation of rAAV-specific neutralising antibodies and enabled an efficacious second administration of AAV8-MDR3, resulting in stable correction of the disease phenotype, including a restoration of bile phospholipid content and healthy liver function, as well as the prevention of liver fibrosis, hepatosplenomegaly, and gallstones. Furthermore, efficacious repeat rAAV administration prevented the appearance of liver malignancies in an animal model highly prone to developing hepatocellular carcinoma. Conclusions These outcomes provide strong evidence for rAAV redosing through co-administration with ImmTOR, as it resulted in a long-term therapeutic effect in a paediatric liver metabolic disorder, including the prevention of oncogenesis. Impact and implications Redosing of gene therapy for inborn hepatobiliary disorders may be essential as effect wanes during hepatocyte division and renewal, particularly in paediatric patients, but the approach may carry long-term risks of liver cancer. Viral vectors carrying a therapeutic gene exerted a durable cure of progressive familial intrahepatic cholestasis type 3 in infant mice and reduced the risk of liver cancer only following a second administration.
Collapse
Affiliation(s)
- Nicholas D. Weber
- Vivet Therapeutics S.L., Pamplona, Spain
- Corresponding authors. Address: Vivet Therapeutics S.L., Av. Pio XII, 33, 31008 Pamplona, Spain. Tel.: +34-948-194700 x816022.
| | - Leticia Odriozola
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | | | | | - David Salas
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | - Josepmaria Argemi
- Liver Unit, Internal Medicine Department, Clínica Universidad de Navarra and Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- Division of Medicine, Gastroenterology and Hepatology Department, University of Pittsburgh, Pittsburgh, PA, USA
- Centro de Investigacion Biomedica en Red (CIBER-Ehd), Madrid, Spain
| | | | | | - Gloria González-Aseguinolaza
- Vivet Therapeutics S.L., Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
- Corresponding authors. Address: Vivet Therapeutics S.L., Av. Pio XII, 33, 31008 Pamplona, Spain. Tel.: +34-948-194700 x816022.
| |
Collapse
|
14
|
Abstract
Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.
Collapse
|
15
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
16
|
Martínez-García J, Molina M, Odriozola L, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. A minimal bile salt excretory pump promoter allows bile acid-driven physiological regulation of transgene expression from a gene therapy vector. Cell Biosci 2022; 12:79. [PMID: 35641984 PMCID: PMC9158313 DOI: 10.1186/s13578-022-00803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/26/2022] [Indexed: 01/23/2023] Open
Abstract
Background Bile acid (BA) homeostasis is mainly regulated by bile salt excretory pump (BSEP), a hepatocyte transporter that transfers BAs to the bile. BSEP expression is regulated by BA levels through activation of farnesoid X receptor transcription factor, which binds to the inverted repeat (IR-1) element in the BSEP promoter. Gene therapy of cholestatic diseases could benefit from using vectors carrying endogenous promoters physiologically regulated by BAs, however their large size limits this approach, especially when using adeno-associated viral vector (AAV) vectors. Results We evaluated the functionality and BA-mediated regulation of minimal versions of human and mouse BSEP promoters containing IR-1 using AAV vectors expressing luciferase. Unexpectedly, a minimal mouse BSEP promoter (imPr) showed higher BA-mediated expression and inducibility than a minimal human promoter (ihPr) or than full-length BSEP promoters in human hepatic cells. In addition, in mice receiving an AAV8 vector carrying imPr promoter-driven luciferase expression was efficiently regulated by administration of a BA-enriched diet. Interestingly, this vector also expressed significantly higher luciferase levels in Abcb4−/− mice, which have high levels of BAs, compared to wild type mice, or to mice receiving a vector containing the luciferase gene downstream of the constitutive alpha-1 antitrypsin promoter. In contrast, the AAV vector containing ihPr showed very low luciferase expression with no inducibility. Finally, we optimized imPr by adding three IR-1 repeats at its 5′ end. This new promoter provided higher levels of luciferase than imPr both in vitro and in vivo. Conclusions The imPr could represent a useful tool for gene therapy approaches in which physiological BA regulation is desired.
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00803-9.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pio XII 55, 31008, Pamplona, Spain
| | - Manuela Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pio XII 55, 31008, Pamplona, Spain
| | - Leticia Odriozola
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pio XII 55, 31008, Pamplona, Spain
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pio XII 55, 31008, Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pio XII 55, 31008, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,Vivet Therapeutics S.L., Calle Arcadio María Larraona, 1 - 2ª planta, 31008, Pamplona, Spain
| | - Nicholas D Weber
- Vivet Therapeutics S.L., Calle Arcadio María Larraona, 1 - 2ª planta, 31008, Pamplona, Spain.
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pio XII 55, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| |
Collapse
|
17
|
Martínez-García J, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines 2022; 10:biomedicines10061238. [PMID: 35740260 PMCID: PMC9220166 DOI: 10.3390/biomedicines10061238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Nicholas D. Weber
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| |
Collapse
|
18
|
Pfister ED, Dröge C, Liebe R, Stalke A, Buhl N, Ballauff A, Cantz T, Bueltmann E, Stindt J, Luedde T, Baumann U, Keitel V. Extrahepatic manifestations of progressive familial intrahepatic cholestasis syndromes: Presentation of a case series and literature review. Liver Int 2022; 42:1084-1096. [PMID: 35184362 DOI: 10.1111/liv.15200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Progressive familial intrahepatic cholestasis (PFIC) is a collective term for a heterogenous group of rare, inherited cholestasis syndromes. The number of genes underlying the clinical PFIC phenotype is still increasing. While progressive liver disease and its sequelae such as portal hypertension, pruritus and hepatocellular carcinoma determine transplant-free survival, extrahepatic manifestations may cause relevant morbidity. METHODS We performed a literature search for extrahepatic manifestations of PFIC associated with pathogenic gene variants in ATP8B1, ABCB11, ABCB4, TJP2, NR1H4 and MYO5B. To illustrate the extrahepatic symptoms described in the literature, PFIC cases from our centres were revisited. RESULTS Extrahepatic symptoms are common in PFIC subtypes, where the affected gene is expressed at high levels in other tissues. While most liver-associated complications resolve after successful orthotopic liver transplantation (OLT), some extrahepatic symptoms show no response or even worsen after OLT. CONCLUSION The spectrum of extrahepatic manifestations in PFIC highlights essential, non-redundant roles of the affected genes in other organs. Extrahepatic features contribute towards low health-related quality of life (HRQOL) and morbidity in PFIC. While OLT is often the only remaining, curative treatment, potential extrahepatic manifestations need to be carefully monitored and addressed.
Collapse
Affiliation(s)
- Eva-Doreen Pfister
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Carola Dröge
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto von Guericke University, Magdeburg, Germany
| | - Roman Liebe
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amelie Stalke
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Buhl
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Antje Ballauff
- Department of Paediatrics, Helios Hospital, Krefeld, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eva Bueltmann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Baumann
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
19
|
Weber ND, Martínez-García J, González-Aseguinolaza G. Comment on "Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4 -/- mouse model of PFIC3". J Hepatol 2022; 76:749-751. [PMID: 34626730 DOI: 10.1016/j.jhep.2021.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022]
Affiliation(s)
| | - Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Vivet Therapeutics S.L., Pamplona Spain; Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain; Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
20
|
Alam S, Lal BB. Recent updates on progressive familial intrahepatic cholestasis types 1, 2 and 3: Outcome and therapeutic strategies. World J Hepatol 2022; 14:98-118. [PMID: 35126842 PMCID: PMC8790387 DOI: 10.4254/wjh.v14.i1.98] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/17/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidence points towards the role of genotype to understand the phenotype, predict the natural course and long term outcome of patients with progressive familial intrahepatic cholestasis (PFIC). Expanded role of the heterozygous transporter defects presenting late needs to be suspected and identified. Treatment of pruritus, nutritional rehabilitation, prevention of fibrosis progression and liver transplantation (LT) in those with end stage liver disease form the crux of the treatment. LT in PFIC has its own unique issues like high rates of intractable diarrhoea, growth failure; steatohepatitis and graft failure in PFIC1 and antibody-mediated bile salt export pump deficiency in PFIC2. Drugs inhibiting apical sodium-dependent bile transporter and adenovirus-associated vector mediated gene therapy hold promise for future.
Collapse
Affiliation(s)
- Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
21
|
Kaiser RA, Weber ND, Trigueros‐Motos L, Allen KL, Martinez M, Cao W, VanLith CJ, Hillin LG, Douar A, González‐Aseguinolaza G, Aldabe R, Lillegard JB. Use of an adeno-associated virus serotype Anc80 to provide durable cure of phenylketonuria in a mouse model. J Inherit Metab Dis 2021; 44:1369-1381. [PMID: 33896013 PMCID: PMC9291745 DOI: 10.1002/jimd.12392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/02/2022]
Abstract
Phenylketonuria (PKU) is the most common inborn error of metabolism of the liver, and results from mutations of both alleles of the phenylalanine hydroxylase gene (PAH). As such, it is a suitable target for gene therapy via gene delivery with a recombinant adeno-associated virus (AAV) vector. Here we use the synthetic AAV vector Anc80 via systemic administration to deliver a functional copy of a codon-optimized human PAH gene, with or without an intron spacer, to the Pahenu2 mouse model of PKU. Dose-dependent transduction of the liver and expression of PAH mRNA were present with both vectors, resulting in significant and durable reduction of circulating phenylalanine, reaching near control levels in males. Coat color of treated Pahenu2 mice reflected an increase in pigmentation from brown to the black color of control animals, further indicating functional restoration of phenylalanine metabolism and its byproduct melanin. There were no adverse effects associated with administration of AAV up to 5 × 1012 VG/kg, the highest dose tested. Only minor and/or transient variations in some liver enzymes were observed in some of the AAV-dosed animals which were not associated with pathology findings in the liver. Finally, there was no impact on cell turnover or apoptosis as evaluated by Ki-67 and TUNEL staining, further supporting the safety of this approach. This study demonstrates the therapeutic potential of AAV Anc80 to safely and durably cure PKU in a mouse model, supporting development for clinical consideration.
Collapse
Affiliation(s)
- Robert A. Kaiser
- Children's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | | | | | - Kari L. Allen
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Martinez
- Department of Molecular and Medical GeneticsOregon Health & Science UniversityPortlandOregonUSA
| | - William Cao
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Gloria González‐Aseguinolaza
- Vivet Therapeutics S.L.PamplonaSpain
- Division of Gene Therapy and Regulation of Gene ExpressionCIMA Universidad de NavarraPamplonaSpain
- Instituto de Investigación Sanitaria de Navarra (IdISNA)PamplonaSpain
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene ExpressionCIMA Universidad de NavarraPamplonaSpain
| | - Joseph B. Lillegard
- Children's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
- Pediatric Surgical AssociatesMinneapolisMinnesotaUSA
| |
Collapse
|
22
|
Felzen A, Verkade HJ. The spectrum of Progressive Familial Intrahepatic Cholestasis diseases: Update on pathophysiology and emerging treatments. Eur J Med Genet 2021; 64:104317. [PMID: 34478903 DOI: 10.1016/j.ejmg.2021.104317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The Progressive Familial Intrahepatic Cholestasis (PFIC) disease spectrum encompasses a variety of genetic diseases that affect the bile production and the secretion of bile acids. Typically, the first presentation of these diseases is in early childhood, frequently followed by a severe course necessitating liver transplantation before adulthood. Except for transplantation, treatment modalities have been rather limited and frequently only aim at the symptoms of cholestasis, such as cholestatic pruritus. In recent years, progress has been made in understanding the pathophysiology of these diseases and new treatment modalities have been emerging. Herewith we summarize the latest developments in the field and formulate the current key questions and opportunities for further progress.
Collapse
Affiliation(s)
- Antonia Felzen
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
23
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
24
|
RAB10 Interacts with ABCB4 and Regulates Its Intracellular Traffic. Int J Mol Sci 2021; 22:ijms22137087. [PMID: 34209301 PMCID: PMC8268348 DOI: 10.3390/ijms22137087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.
Collapse
|
25
|
Wei G, Cao J, Huang P, An P, Badlani D, Vaid KA, Zhao S, Wang DQH, Zhuo J, Yin L, Frassetto A, Markel A, Presnyak V, Gandham S, Hua S, Lukacs C, Finn PF, Giangrande PH, Martini PGV, Popov YV. Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4 -/- mouse model of PFIC3. J Hepatol 2021; 74:1416-1428. [PMID: 33340584 PMCID: PMC8188846 DOI: 10.1016/j.jhep.2020.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare lethal autosomal recessive liver disorder caused by loss-of-function variations of the ABCB4 gene, encoding a phosphatidylcholine transporter (ABCB4/MDR3). Currently, no effective treatment exists for PFIC3 outside of liver transplantation. METHODS We have produced and screened chemically and genetically modified mRNA variants encoding human ABCB4 (hABCB4 mRNA) encapsulated in lipid nanoparticles (LNPs). We examined their pharmacological effects in a cell-based model and in a new in vivo mouse model resembling human PFIC3 as a result of homozygous disruption of the Abcb4 gene in fibrosis-susceptible BALB/c.Abcb4-/- mice. RESULTS We show that treatment with liver-targeted hABCB4 mRNA resulted in de novo expression of functional hABCB4 protein and restored phospholipid transport in cultured cells and in PFIC3 mouse livers. Importantly, repeated injections of the hABCB4 mRNA effectively rescued the severe disease phenotype in young Abcb4-/- mice, with rapid and dramatic normalisation of all clinically relevant parameters such as inflammation, ductular reaction, and liver fibrosis. Synthetic mRNA therapy also promoted favourable hepatocyte-driven liver regeneration to restore normal homeostasis, including liver weight, body weight, liver enzymes, and portal vein blood pressure. CONCLUSIONS Our data provide strong preclinical proof-of-concept for hABCB4 mRNA therapy as a potential treatment option for patients with PFIC3. LAY SUMMARY This report describes the development of an innovative mRNA therapy as a potential treatment for PFIC3, a devastating rare paediatric liver disease with no treatment options except liver transplantation. We show that administration of our mRNA construct completely rescues severe liver disease in a genetic model of PFIC3 in mice.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/administration & dosage
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Cholestasis, Intrahepatic/drug therapy
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/metabolism
- Disease Models, Animal
- Gene Deletion
- HEK293 Cells
- Homozygote
- Humans
- Liposomes/chemistry
- Liver/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Nanoparticle Drug Delivery System/chemistry
- Nanoparticles/chemistry
- Phenotype
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Transfection
- Treatment Outcome
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Guangyan Wei
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Pinzhu Huang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ping An
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Disha Badlani
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuangshuang Zhao
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny Zhuo
- Rare Diseases, Moderna Inc, Cambridge, MA, USA
| | - Ling Yin
- Rare Diseases, Moderna Inc, Cambridge, MA, USA
| | | | - Arianna Markel
- Rare Diseases, Moderna Inc, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Serenus Hua
- Analytical Development, Moderna Inc, Cambridge, MA, USA
| | | | | | | | | | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Amzal R, Thébaut A, Lapalus M, Almes M, Grosse B, Mareux E, Collado-Hilly M, Davit-Spraul A, Bidou L, Namy O, Jacquemin E, Gonzales E. Pharmacological Premature Termination Codon Readthrough of ABCB11 in Bile Salt Export Pump Deficiency: An In Vitro Study. Hepatology 2021; 73:1449-1463. [PMID: 32702170 DOI: 10.1002/hep.31476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/22/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP). Nonsense mutations are responsible for the most severe phenotypes. The aim was to assess the ability of drugs to induce readthrough of six nonsense mutations (p.Y354X, p.R415X, p.R470X, p.R1057X, p.R1090X, and p.E1302X) identified in patients with PFIC2. APPROACH AND RESULTS The ability of G418, gentamicin, and PTC124 to induce readthrough was studied using a dual gene reporter system in NIH3T3 cells. The ability of gentamicin to induce readthrough and to lead to the expression of a full-length protein was studied in human embryonic kidney 293 (HEK293), HepG2, and Can 10 cells using immunodetection assays. The function of the gentamicin-induced full-length protein was studied by measuring the [3 H]-taurocholate transcellular transport in stable Madin-Darby canine kidney clones co-expressing Na+-taurocholate co-transporting polypeptide (Ntcp). Combinations of gentamicin and chaperone drugs (ursodeoxycholic acid, 4-phenylbutyrate [4-PB]) were investigated. In NIH3T3, aminoglycosides significantly increased the readthrough level of all mutations studied, while PTC124 only slightly increased the readthrough of p.E1302X. Gentamicin induced a readthrough of p.R415X, p.R470X, p.R1057X, and p.R1090X in HEK293 cells. The resulting full-length proteins localized within the cytoplasm, except for BsepR1090X , which was also detected at the plasma membrane of human embryonic kidney HEK293 and at the canalicular membrane of Can 10 and HepG2 cells. Additional treatment with 4-PB and ursodeoxycholic acid significantly increased the canalicular proportion of full-length BsepR1090X protein in Can 10 cells. In Madin-Darby canine kidney clones, gentamicin induced a 40% increase of the BsepR1090X [3 H]-taurocholate transport, which was further increased with additional 4-PB treatment. CONCLUSION This study constitutes a proof of concept for readthrough therapy in selected patients with PFIC2 with nonsense mutations.
Collapse
Affiliation(s)
- Rachida Amzal
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
| | - Alice Thébaut
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte, European Reference Network RARE-LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Martine Lapalus
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
| | - Marion Almes
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte, European Reference Network RARE-LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Brigitte Grosse
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
| | - Elodie Mareux
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
| | - Mauricette Collado-Hilly
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
| | - Anne Davit-Spraul
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
- Biochemistry Unit, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Laure Bidou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif sur Yvette cedex, France
- Sorbonne Universités, Université Pierre et Marie Curie, UPMC, Paris, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Emmanuel Jacquemin
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte, European Reference Network RARE-LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Emmanuel Gonzales
- Université Paris-Saclay, Inserm, Physiopathogénèse et traitement des maladies du Foie, UMR_S 1193, Hepatinov, Orsay, France
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte, European Reference Network RARE-LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Bosma PJ, Wits M, Oude-Elferink RPJ. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci 2020; 22:E273. [PMID: 33383947 PMCID: PMC7796371 DOI: 10.3390/ijms22010273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive Familial Intrahepatic Cholestasis (PFIC) are inherited severe liver disorders presenting early in life, with high serum bile salt and bilirubin levels. Six types have been reported, two of these are caused by deficiency of an ABC transporter; ABCB11 (bile salt export pump) in type 2; ABCB4 (phosphatidylcholine floppase) in type 3. In addition, ABCB11 function is affected in 3 other types of PFIC. A lack of effective treatment makes a liver transplantation necessary in most patients. In view of long-term adverse effects, for instance due to life-long immune suppression needed to prevent organ rejection, gene therapy could be a preferable approach, as supported by proof of concept in animal models for PFIC3. This review discusses the feasibility of gene therapy as an alternative for liver transplantation for all forms of PFIC based on their pathological mechanism. Conclusion: Using presently available gene therapy vectors, major hurdles need to be overcome to make gene therapy for all types of PFIC a reality.
Collapse
Affiliation(s)
- Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AGEM, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.W.); (R.P.J.O.-E.)
| | | | | |
Collapse
|
28
|
Goubran M, Aderibigbe A, Jacquemin E, Guettier C, Girgis S, Bain V, Mason AL. Case report: progressive familial intrahepatic cholestasis type 3 with compound heterozygous ABCB4 variants diagnosed 15 years after liver transplantation. BMC MEDICAL GENETICS 2020; 21:238. [PMID: 33256620 PMCID: PMC7708126 DOI: 10.1186/s12881-020-01173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) type 3 is an autosomal recessive disorder arising from mutations in the ATP-binding cassette subfamily B member 4 (ABCB4) gene. This gene encodes multidrug resistance protein-3 (MDR3) that acts as a hepatocanalicular floppase that transports phosphatidylcholine from the inner to the outer canalicular membrane. In the absence of phosphatidylcholine, the detergent activity of bile salts is amplified and this leads to cholangiopathy, bile duct loss and biliary cirrhosis. Patients usually present in infancy or childhood and often progress to end-stage liver disease before adulthood. CASE PRESENTATION We report a 32-year-old female who required cadaveric liver transplantation at the age of 17 for cryptogenic cirrhosis. When the patient developed chronic ductopenia in the allograft 15 years later, we hypothesized that the patient's original disease was due to a deficiency of a biliary transport protein and the ductopenia could be explained by an autoimmune response to neoantigen that was not previously encountered by the immune system. We therefore performed genetic analyses and immunohistochemistry of the native liver, which led to a diagnosis of PFIC3. However, there was no evidence of humoral immune response to the MDR3 and therefore, we assumed that the ductopenia observed in the allograft was likely due to chronic rejection rather than autoimmune disease in the allograft. CONCLUSIONS Teenage patients referred for liver transplantation with cryptogenic liver disease should undergo work up for PFIC3. An accurate diagnosis of PFIC 3 is key for optimal management, therapeutic intervention, and avoidance of complications before the onset of end-stage liver disease.
Collapse
Affiliation(s)
- Mariam Goubran
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Ayodeji Aderibigbe
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Emmanuel Jacquemin
- Paediatric Hepatology & Paediatric Liver Transplant Department, Reference Center for Rare Paediatric Liver Diseases, FILFOIE, ERN RARE LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine and University Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine and University Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Safwat Girgis
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Canada
| | - Vincent Bain
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Andrew L Mason
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada.
- Division of Gastroenterology, 7-142 KGR, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
29
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|