1
|
Wang X, Chen C, Tian Y, Zhang QW. Dual-Channel Phosphorescence Ratiometry and Phosphorescence Lifetime Imaging of Mitochondria-Specific Methionine Sulfoxide Reductase Activity. J Am Chem Soc 2025; 147:17994-18002. [PMID: 40366085 DOI: 10.1021/jacs.5c03235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer's disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe's utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe's potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.
Collapse
Affiliation(s)
- Xuewei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Wu X, Cheng S, Cheng D, Su X, Nie G, Wu C, Liu Y, Zhan S. Bright White Upconversion Luminescence under Low Excitation Power Density with Sensitive Temperature Monitoring. Inorg Chem 2025; 64:7325-7336. [PMID: 40202206 DOI: 10.1021/acs.inorgchem.4c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Generating white luminescence at the nanoscale is highly desirable for applications in cell imaging and optical sensing, where nanoscale photon sources are essential. However, achieving efficient white upconversion luminescence (UCL) remains a substantial challenge. In this study, we propose a method to achieve ultrastrong white UCL by spatially separating Yb3+/Er3+ and Yb3+/Tm3+ ion pairs into distinct layers within a core/multishell nanoparticle (NaYF4@NaYbF4:1.375%Tm@NaYF4@NaYbF4:20%Er@NaYF4, denoted as C-SSSS). The introduction of an inert NaYF4 interlayer (second shell) is critical, as it controls energy transfer between Er3+ and Tm3+ ions and suppresses nonradiative cross-relaxation. Under 980 nm excitation, the C-SSSS nanoparticles exhibit white emission intensity 37.1 times greater than that of core-only nanoparticles (NaYbF4:0.5%Tm, 0.5%Er). Furthermore, optimizing the inert core size to 85 nm maximizes the effective excitation volume of the Yb-Tm-doped active layer, enabling precise control of luminescence intensity and strong white light emission. The C-SSSS nanoparticles also demonstrate exceptional thermal sensitivity, with a thermometry sensitivity 2.5 times higher than that of core-only nanoparticles, attributed to lattice distortion at the NaYF4@NaYbF4 interface. This work highlights the dual functionality of ultrastrong white UCL and high-performance luminescent thermometry in a single-nanomaterial system.
Collapse
Affiliation(s)
- Xiaofeng Wu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, P. R. China
- Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, P. R. China
| | - Shengbin Cheng
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Dong Cheng
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Xin Su
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Guozheng Nie
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Chuangxin Wu
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Yunxin Liu
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Shiping Zhan
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, P. R. China
- Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|
3
|
Chen L, Yin J, Wang Y, Fan Y, Pei Y, Cai Z, Yan W, Hu D, Wang Q, Wang H, Liu Z, Bian Z, Li F. Time-Resolved Ratiometric Fluorescence Nanothermometer for Real-Time Endoscopic Temperature Guidance during Tumor Ablation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503726. [PMID: 40255096 DOI: 10.1002/adma.202503726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Thermal ablation is a common treatment option for early-stage cancers, but the lack of real-time temperature imaging feedback method increases the risk of incomplete or excessive ablation. Although ratiometric nanothermometer offers a rapid temperature imaging solution, accurate in vivo signal extraction remains challenging due to the autofluorescence and wavelength-dependent tissue absorption and scattering. Herein, a time-resolved ratiometric fluorescence nanothermometer composed of europium and iridium complex with identical working wavelength but distinguishing lifetimes is reported, whose well-designed structures enable 450 nm excitation of both complexes with a high quantum yield (57.8%). Based on the nanothermometer, accurate signal extraction is realized in whole blood, beneath a 2 cm tissue phantom and a 5 mm pork slice through a time-resolved ratiometric method. By leveraging the exceptional thermal sensitivity (6.9% K-1), high temperature resolution (0.02 K), and clinically relevant temperature range (30-96 °C) of the nanothermometer, a fluorescence temperature endoscopy system is further designed with a real-time temperature imaging speed of 10 fps, which is applied to minimally invasive temperature monitoring during microwave ablation of liver tumors in rabbits, realizing precise ablation control through dynamic ablation power adjustment. The real-time and accurate temperature imaging performance of the nanothermometer may offer a new perspective for intraoperative guidance.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry & Academy for Engineering and Technology, Fudan University, Shanghai, 200441, China
| | - Jiamiao Yin
- Department of Chemistry & Academy for Engineering and Technology, Fudan University, Shanghai, 200441, China
| | - Yiran Wang
- Department of Radiology, Central Hospital of Xuhui District, Shanghai, 200031, China
| | - Yiwei Fan
- Department of Chemistry & Academy for Engineering and Technology, Fudan University, Shanghai, 200441, China
| | - Yuetian Pei
- Department of Chemistry & Academy for Engineering and Technology, Fudan University, Shanghai, 200441, China
| | - Zelun Cai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Yan
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Donghao Hu
- School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Huadong Wang
- Department of Chemistry & Academy for Engineering and Technology, Fudan University, Shanghai, 200441, China
| | - Zhiwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zuqiang Bian
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fuyou Li
- School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Li L, Wang J, Zou J, Hu J, Liu S, Wan S, Shi Y, Liang Z, Wang X, Ye C. Enhanced Solid-State Triplet-Triplet Annihilation Upconversion Steered by AIE-Active Isomers. Chemistry 2025:e202500553. [PMID: 40213990 DOI: 10.1002/chem.202500553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
A red-to-blue solid-state triplet-triplet annihilation upconversion (TTA-UC) molecular crystal with a significantly improved upconverted photoluminescence intensity was first achieved via a controlled crystallization pathway. Cyano-substituted stilbene derivatives and transition metal complexes were coupled for TTA-UC systems. The photophysical properties of the two annihilators and their TTA-UC systems in solution and aggregate were comprehensively studied. Particularly, UC crystals were simply prepared under different crystallization conditions resulting in different morphological and structural features. It turned out that the UC crystal prepared in the surfactant-assisted crystallization method demonstrated a 100-fold higher UC intensity than that in the evaporation crystallization method. The morphological and structural study indicated small nanograins with intact crystalline lattice would facilitate the triplet energy migration leading to a boosted UC efficiency. This work provides a novel perspective for the facile construction of high-efficient solid-state TTA-UC systems by utilizing crystals with appropriate morphology, which significantly promotes the practical applications of TTA-UC.
Collapse
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jin Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jie Zou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jun Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shangjie Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Zuoqin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
5
|
Sun Y, Wang Q, Wu N, Kong M, Gu Y, Feng W. A Nd-Yb ratiometric luminescent nanothermometer for assessing thermal resistance discrepancies between A549 and BEAS-2B cells to achieve selective hyperthermia. Biomater Sci 2025; 13:2102-2114. [PMID: 40062947 DOI: 10.1039/d4bm01729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Temperature is a crucial physical parameter in living organisms, directly associated with cellular activities. Elevated temperatures induce cell death, thereby establishing hyperthermia as a viable modality for cancer therapy. The demand for determining appropriate cancer types for hyperthermia lies in identifying cancer cells that exhibit poorer heat tolerance compared to normal cells. Herein, we have designed NaNdF4:4%Yb@NaYF4 with bright luminescence in the near-infrared region for the purpose of achieving in situ cellular temperature detection. The Nd-Yb nanothermometer provides temperature feedback based on a ratiometric luminescence intensity signal. By employing a universal cytobiology method to assess the heat resistance differences between cancer cells and normal cells across various organs, it has been observed that lung epithelial cells exhibit superior heat resistance compared to lung cancer cells. Once the Nd-Yb nanothermometer incubates within lung cells, the temperature differences between live and dead cells can be detected. The absolute temperature differences between live and dead lung cancer cells (0.1 °C) and lung epithelial cells (1.4 °C) under identical thermal stimulation (50 °C) are detected by the Nd-Yb co-doped nanothermometer, confirming that the heat resistance of normal lung cells is significantly superior to that of lung cancer cells. The differential heat resistance of lung cells enables selective hyperthermia for killing A549 cells while maximally protecting BEAS-2B cells. This research may establish rare earth nanothermometry as a valuable protocol for assessing cellular heat resistance, thereby guiding selective hyperthermia for precise lung cancer treatment.
Collapse
Affiliation(s)
- Yishuo Sun
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, P.R. China.
| | - Na Wu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Mengya Kong
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Yuyang Gu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| |
Collapse
|
6
|
Zhou L, Sun D, Lyu Z, Luo P, Lu Z, Zhang X, Wei S, You H. Dual center luminescence characteristics and multifunctional applications of Li 2Ge 7O 15:Cr 3+ near-infrared phosphors. Dalton Trans 2025; 54:5739-5746. [PMID: 40084473 DOI: 10.1039/d5dt00301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Near-infrared (NIR) phosphors have been extensively studied in recent years due to their wide-ranging applications in plant growth lighting, night vision, and biomedical imaging. However, poor thermal stability has significantly limited their practical applications in many fields. This paper reports a NIR phosphor with dual emission centers, Li2Ge7O15:Cr3+ (LG:Cr3+). Cr1 located at [GeO6] produces narrow-line emission through the spin-forbidden 2E → 4A2 transition, and as the temperature increases, electrons in the 2E level thermally migrate to the 4T2 level, resulting in emission from the 4T2 state. In contrast, Cr2 located at [LiO6] generates broadband emission through the spin-allowed 4T2 → 4A2 transition, but this emission disappears due to thermal quenching effects as the temperature increases, making it undetectable at room temperature. The optical thermometry applications of the LG:Cr3+ phosphor were investigated using the fluorescence intensity ratio (FIR) technique, achieving a relative sensitivity (Sr) of 2.77% K-1 at 100 K. Finally, a NIR phosphor-converted diode (NIR pc-LED) was fabricated using this phosphor and a 410 nm chip, demonstrating potential applications in biomedical imaging and night vision.
Collapse
Affiliation(s)
- Luhui Zhou
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, P. R. China.
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Dashuai Sun
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Zeyu Lyu
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Pengcheng Luo
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Zheng Lu
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, P. R. China.
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Xiaowei Zhang
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Shuai Wei
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Hongpeng You
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, P. R. China.
- Key Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| |
Collapse
|
7
|
Niu G, Jiang J, Zeng X, Liu X, Wang X, Zhang Y, Che L, Sui L, Wu G, Yuan K, Yang X. Broad-Temperature Optical Thermometry via Dual Sensitivity of Self-Trapped Excitons Lifetime and Higher-Order Phonon Anharmonicity in Lead-Free Perovskites. Angew Chem Int Ed Engl 2025; 64:e202422424. [PMID: 39844778 DOI: 10.1002/anie.202422424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing. In contrast, the Eg phonon mode undergoes significant linewidth broadening due to five-phonon scattering processes, with a distinct nonlinear temperature dependence up to 500 K. This fifth-order anharmonic effect enhances Raman-based temperature sensitivity, yielding a specific sensitivity (Sr) of 0.577 % K-1 at 330 K and remaining above 0.5 % K-1 at elevated temperatures. This study presents the first evidence of fifth-order anharmonic effects enhancing Raman-based temperature sensitivity, establishing Cs2TeCl6 as a versatile candidate for broad-temperature optical thermometry and opening new avenues for precise non-contact temperature sensing in advanced technological applications.
Collapse
Affiliation(s)
- Guangming Niu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jutao Jiang
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xin Liu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yutong Zhang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian, 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
8
|
Zhang Y, Chen C, Wu Y, Chen R, Gao R, Guo C. Phonon-Assisted Thermally Enhanced Up-conversion Fluorescence Lifetime Thermometry and Visualized Temperature Warning in Yb 3+-Ho 3+-Codoped Lu 2Mo 3O 12. Inorg Chem 2025; 64:6205-6213. [PMID: 40106583 DOI: 10.1021/acs.inorgchem.4c05595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Fluorescence thermometers have been plagued by the problem of thermal quenching (TQ) for a long time when operating at higher temperatures, which seriously hindered their performances in practical application. Ho3+-Yb3+-codoped Lu2Mo3O12 phosphors were synthesized for designing TQ-immune fluorescence thermometers. Temperature-sensitive upconversion (UC) fluorescence lifetime (FL) and fluorescence color were modulated by utilizing appropriate phonon-assisted energy transfer (PAET) from Yb3+ (2F5/2) to Ho3+ (5I5) based on Lu2Mo3O12 with negative thermal expansion (NTE) properties. Under a 980 nm laser excitation, the FL of the 5F4 → 5I8 (Ho3+) transition extended from 35.65 to 52.94 μs (280 to 480 K) and the corresponding fluorescence color changed from green to red in Lu2Mo3O12: Ho3+, Yb3+. Accordingly, a dual-mode self-calibration fluorescence thermometer based on Lu2Mo3O12: Ho3+, Yb3+ was constructed through FL technology (5F4 → 5I8 transition) and Commission Internationale de Eclairage chromaticity coordinate ratio (CIER) technology. Ultimately, the feasibility of the thermometer was verified to have high stability and temperature sensitivity (δT = 0.9 K, CIER), indicating that it is a prospective candidate for visualized temperature warning and sensing.
Collapse
Affiliation(s)
- Yexuan Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
| | - Changheng Chen
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
| | - Yanqi Wu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
| | - Renze Chen
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
| | - Ruibo Gao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
| | - Chongfeng Guo
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
9
|
Tong H, Ju Z, Shi R, Qiao X, Wang R, Wang F, Yan M, Deng R. Anomalously Large Luminescence Modulation Induced by Trace Lanthanide Impurities in Alloyed Upconversion Nanocrystals. ACS NANO 2025; 19:9971-9980. [PMID: 40044504 DOI: 10.1021/acsnano.4c16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Achieving precise control over emission characteristics, such as wavelength and lifetime, is critical to unlocking the full potential of luminescent nanomaterials for diverse applications. In this work, we present a strategy for fine-tuning the optical properties of upconversion nanocrystals by engineering parts-per-million (ppm)-doping-level lanthanide impurities. We show that even trace impurities (∼10 ppm, fewer than 10 atoms per nanocrystal), which are only a hundredth of the conventionally studied doping levels and were previously considered negligible, serve as efficient energy traps in energy migration-based upconversion processes. By introducing controlled trapping centers via minimal impurity doping, we successfully regulate the upconversion emission colors and lifetimes with high precision. Moreover, we find that high-purity nanocrystals exhibit significantly greater lifetime changes in response to surface interactions, enabling an energy-transfer-based ultrasensitive spectrum and lifetime sensing. This approach facilitates the development of upconversion-based DNA sensors with detection limits over an order of magnitude lower than those of conventional methods, highlighting the potential of these nanocrystals as highly effective nanoprobes for interference-resistant biosensing in complex environments.
Collapse
Affiliation(s)
- Huimin Tong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Rui Shi
- Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| | - Xin Qiao
- Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| | - Ruojia Wang
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
10
|
Aggarwal S. Recent advances in fundamental research on photon avalanches on the nanometre scale. NANOSCALE 2025; 17:6329-6361. [PMID: 39951321 DOI: 10.1039/d4nr03493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
In recent years, Photon Avalanche (PA) on the nanometre scale has emerged as a groundbreaking phenomenon, enabling the generation of high-energy photons with minimal pumping power due to its highly nonlinear optical dynamics. This review focuses on the advancement in photon-avalanching nanoparticles (ANPs), composed of lanthanide ion-doped inorganic matrices, which exhibit remarkable optical nonlinear response under low-power excitation. The objective of this article is to provide a comprehensive overview of the PA mechanism in nanoscale materials, with a specific focus on single-ANP systems. Key factors influencing the PA characteristics, such as excitation-power threshold, excited-state absorption, cross-relaxation process, dopant ion concentration, and temperature sensitivity are summarized. Furthermore, the review situates recent ANP research within the broader context of early studies on the PA mechanism observed in bulk crystals and optical fibers, highlighting the distinctive features and applications of ANPs. Notable applications discussed include single-particle and biological super-resolution imaging, deep-tissue imaging, luminescence thermometry, ANP-based lasers, optical data storage, and information security. The paper also addresses current challenges and limitations of ANPs in practical applications, proposing potential solutions and future research directions to facilitate their integration into real-world environments. This review aims to serve as a valuable resource for researchers seeking to advance the understanding and application of ANPs in various scientific and technological domains.
Collapse
Affiliation(s)
- Shradha Aggarwal
- IBS (Institute of Basic Science), 44919, Ulsan, Korea.
- Department of Chemistry, UNIST (Ulsan National Institute of Science and Technology), 44919, Ulsan, Korea
| |
Collapse
|
11
|
Li D, Jia M, Du J, Li Y, Jia T, Chen G. Optomagnetic Heater-Thermometer Nanoplatform for Tumor Magnetothermal Therapy with Operando Temperature Feedback. ACS NANO 2025; 19:8328-8337. [PMID: 39977535 DOI: 10.1021/acsnano.4c18732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Real-time temperature feedback during hyperthermia enables precise lesion ablation with minimal damage to healthy tissue. However, the lack of on-demand theranostic agents eludes such applications. This study demonstrates in vivo operando temperature monitoring in tumor magnetothermal therapy using an optomagnetic heater-thermometer nanocluster agent. This agent was synthesized via a precise microemulsion-based assembly of lanthanide luminescent nanocrystals and superparamagnetic iron oxide nanoparticles. We show that the lanthanide luminescent nanocrystals within the agents provide temperature-sensitive luminescence lifetime and depth-sensitive luminescence intensity ratio in the second near-infrared biological window (NIR-II), enabling accurate 3D thermographic mapping of tissues with an uncertainty as low as 0.12 °C. Meanwhile, the iron oxide nanoparticles facilitate targeted accumulation in lesions under an oriented magnetic field and act as heating sources under oscillating magnetic fields without interfering with the operando temperature measurements of lanthanide nanothermometers. With spatiotemporally synchronized thermographic imaging, we achieved efficient, programmed, and noninvasive tumor ablation in mice through controlled mild hyperthermia by adjusting the direction and strength of the applied magnetic field. Our proof-of-concept results suggest that this optomagnetic heater-thermometer nanoplatform is promising for high accuracy in vivo magnetic hyperthermia applications.
Collapse
Affiliation(s)
- Dan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Jiarui Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Tao Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
12
|
Zheng J, Du P, An R, Liang Y, Wei Y, Liu S, Wang X, Lei P, Song S, Zhang H. Constructing a Self-Referenced NIR-II Thermometer with Energy Tuning of Coordinating Water Molecules by a Minimalist Method. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3578-3586. [PMID: 39748600 DOI: 10.1021/acsami.4c16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb3+/Nd3+-doped zero-dimensional Cs2ScCl5·H2O by a simple "dissolve-dry" method. The whole synthesized process does not involve high temperatures or high pressures. Cs2ScCl5·H2O/Yb3+,Nd3+ has an optimum fluorescence performance when the Yb3+/Nd3+ doping amount is 15%/20%. The emission intensity ratio attributed to Yb3+ and Nd3+ varies with temperature, and this variation is exacerbated due to the fact that the 2F5/2 energy level of Yb3+ can be effectively aligned with the O-H bond stretching vibration energy of coordinating water molecules to facilitate energy transfer. Ultimately, the crystals can act as self-referenced ratiometric NIR-II luminescent thermometers with a maximum relative sensitivity of 1.66% K-1 at 323 K. This work highlights the advantages of NIR-II luminescent materials for temperature sensing, which is significant for advancement in the field of noncontact thermometers.
Collapse
Affiliation(s)
- Jianhao Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Ayachi F, Saidi K, Dammak M, Mediavilla I, Jiménez J. Unlocking advanced thermometric capabilities: BiVO 4: Er 3+/Yb 3+ nanophosphors with dual-mode up-conversion and down-shifting features. RSC Adv 2025; 15:655-664. [PMID: 39781018 PMCID: PMC11707514 DOI: 10.1039/d4ra08590f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO4: Yb3+/Er3+ (BVO: Er/Yb) nanophosphors synthesized via the sol-gel method. Structural, morphological, and optical analyses confirm the high purity and monoclinic crystal structure of the materials. Dual-mode luminescence under UV and near-infrared (NIR) excitation is explored, revealing complex thermal dynamics. The distinct performances of these luminescent thermometers, in terms of thermal sensitivity and temperature uncertainty, were evaluated in the non-saturation regime in both down-shifting (DS) and up-conversion (UC) processes. Utilizing fluorescence intensity ratio (LIR) measurements, we quantified absolute and relative sensitivities, as well as temperature uncertainties, over a temperature range of 300-450 K. Temperature sensing was based on the LIR of green emission bands arising from the thermally coupled 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+. The maximum absolute sensitivity (S a) reached 60 × 10-4 K-1 at 388 K under 975 nm excitation (UC) and 56 × 10-4 K-1 at 400 K under 325 nm excitation (DS). Notably, for both excitation modes, the relative sensitivity (S r) decreased consistently with increasing temperature, peaking at 0.908% K-1 and 0.87% K-1 at 300 K, and gradually declining to 0.4% K-1 and 0.39% K-1 at 450 K for the DS and UC processes, respectively. Temperature resolution (δT) also varied with temperature, increasing from 0.55 K to 1.23 K as the temperature rose from 300 to 450 K under 325 nm excitation. A comparable trend was observed for δT under 975 nm excitation. These findings underscore the potential of BVO: Er/Yb nanophosphors as versatile and effective luminescent thermometers for a broad range of applications.
Collapse
Affiliation(s)
- Fadwa Ayachi
- Département de Physique, Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax BP 1171 Sfax Tunisia
| | - Kamel Saidi
- Département de Physique, Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax BP 1171 Sfax Tunisia
| | - Mohamed Dammak
- Département de Physique, Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax BP 1171 Sfax Tunisia
| | - Irene Mediavilla
- Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain
| | - Juan Jiménez
- Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain
| |
Collapse
|
14
|
Kalnins G, Rudusa L, Bula AL, Zelencova‐Gopejenko D, Bobileva O, Sisovs M, Tars K, Jirgensons A, Jaudzems K, Bobrovs R. Structural Basis for Inhibition of the SARS-CoV-2 nsp16 by Substrate-Based Dual Site Inhibitors. ChemMedChem 2024; 19:e202400618. [PMID: 39258386 PMCID: PMC11648818 DOI: 10.1002/cmdc.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study CentreRatsupites 1 k-1LV1067RigaLatvia
| | - Laura Rudusa
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | - Anna L. Bula
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | | | - Olga Bobileva
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | - Mihails Sisovs
- Latvian Biomedical Research and Study CentreRatsupites 1 k-1LV1067RigaLatvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study CentreRatsupites 1 k-1LV1067RigaLatvia
- University of LatviaJelgavas 1LV1004RigaLatvia
| | - Aigars Jirgensons
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
- University of LatviaJelgavas 1LV1004RigaLatvia
| | - Raitis Bobrovs
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| |
Collapse
|
15
|
Jia M, Li M, Li D, Zhang X, Chen G. Excitation-Power Dependence of Lanthanide-Based Ratiometric Luminescent Nanothermometry. NANO LETTERS 2024. [PMID: 39566488 DOI: 10.1021/acs.nanolett.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Ratiometric luminescent nanothermometry has emerged as a promising tool for remote thermal mapping at the nanoscale, yet its dependence on excitation power has been largely overlooked. Herein, we investigate the excitation power dependence of lanthanide-based ratiometric luminescent nanothermometers by examining two nonlinear pumping processes of Tm3+, where the differing slope factors of two emissions introduce significant intrinsic deviations in the luminescence intensity ratio (LIR) under varying excitation power densities. The robustness of the observed exponential relationship between excitation power density and LIR across different temperatures enables the derivation of a new calibration curve, applicable to any excitation power density. Additionally, analyzing the effect of excitation power on thermometric performance reveals that the absolute thermal sensitivity will change with the excitation power density, while the relative thermal sensitivity remains constant. This study provides valuable insights for optimizing ratiometric luminescent nanothermometry, offering a pathway to more accurate and reliable temperature measurements.
Collapse
Affiliation(s)
- Mochen Jia
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Mengyao Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Dan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Xiangtong Zhang
- School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475000, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
16
|
Silva SFV, Figueiredo G, Pereira RFP, de Zea Bermudez V, Fu L, André PS, Carneiro Neto AN, Ferreira RAS. Time-gated multi-dimensional luminescence thermometry via carbon dots for precise temperature mobile sensing. NANOSCALE 2024; 16:20532-20541. [PMID: 39355863 DOI: 10.1039/d4nr03155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Luminescence thermometry presents precise remote temperature measurement capabilities but faces significant challenges in real-world applications, primarily stemming from the calibration's susceptibility to environmental factors. External factors can compromise accuracy, necessitating resilient measurement protocols to ensure dependable temperature (T) readings across various settings. We explore a novel three-dimensional (3D) approach based on time-gated (t) luminescence thermometric parameters, Δ(T,t), employing physical mixtures of surface-engineered carbon dots (CDs) based on dibenzoylmethane and rhodamine B. These CDs showcase enduring, temperature-responsive, and customizable phosphorescence, easily activated by low-power LEDs and distinguished by their prolonged emission time due to thermally activated delayed phosphorescence. Quantifying the thermal emission dependency is achievable through conventional spectrometer analyses or by capturing photographs with a smartphone's camera under flashlight illumination, yielding up to 30 time-gated ratiometric thermometric parameters per sample. Notably, within the temperature range of 23-45 °C, the maximum relative sensitivity of 7.9% °C-1 surpasses current state-of-the-art CD-based thermometers and ensures temperature readout with low-resolution portable devices as non-modified smartphones.
Collapse
Affiliation(s)
- Sílvia F V Silva
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Figueiredo
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Rui F P Pereira
- Chemistry Center and Chemistry Department, University of Minho, 4710-057 Braga, Portugal
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lianshe Fu
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo S André
- Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Albano N Carneiro Neto
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rute A S Ferreira
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Mielewczyk L, Galle L, Niese N, Grothe J, Kaskel S. Precursor-Derived Sensing Interdigitated Electrode Microstructures Based on Platinum and Nano Porous Carbon. ChemistryOpen 2024; 13:e202400179. [PMID: 39158463 PMCID: PMC11564864 DOI: 10.1002/open.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Interdigital electrodes were prepared using nanoimprint lithography and piezoelectric inkjet printing. These processes are simpler and more cost-effective than the industrially used electron beam lithography because of their purely mechanical process step. For the investigation of material dependence, platinum as well as carbon electrodes were fabricated. Afterwards electrodes with various line widths and spacings were tested for the application as a chemiresistive sensor for ferrocenyl-methanol and the influence of the gap-width and conductor cross-section on the sensitivity was investigated. The general suitability of the systems for the production of such structures could be confirmed. Structures with a limit of detection (LOD) down to 1.2 μM and 35.9 μM could be produced for carbon and platinum, respectively, as well as a response time of 3.6 s was achieved.
Collapse
Affiliation(s)
- Lukas Mielewczyk
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Lydia Galle
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Nick Niese
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Julia Grothe
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Stefan Kaskel
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| |
Collapse
|
18
|
Liu Y, Wei Z. Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. CHEM REC 2024; 24:e202400100. [PMID: 39235547 DOI: 10.1002/tcr.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Indexed: 09/06/2024]
Abstract
In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.
Collapse
Affiliation(s)
- Yuxin Liu
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zheng Wei
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Liu M, Liang J, Vetrone F. Toward Accurate Photoluminescence Nanothermometry Using Rare-Earth Doped Nanoparticles for Biomedical Applications. Acc Chem Res 2024; 57:2653-2664. [PMID: 39192666 DOI: 10.1021/acs.accounts.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Photoluminescence nanothermometry can detect the local temperature at the submicrometer scale with minimal contact with the object under investigation. Owing to its high spatial resolution, this technique shows great potential in biomedicine in both fundamental studies as well as preclinical research. Photoluminescence nanothermometry exploits the temperature-dependent optical properties of various nanoscale optical probes including organic fluorophores, quantum dots, and carbon nanostructures. At the vanguard of these diverse optical probes, rare-earth doped nanoparticles (RENPs) have demonstrated remarkable capabilities in photoluminescence nanothermometry. They distinguish themselves from other luminescent nanoprobes owning to their unparalleled and versatile optical properties that include narrow emission bandwidths, high photostability, tunable lifetimes from microseconds to milliseconds, multicolor emissions spanning the ultraviolet, visible, and near-infrared (NIR) regions, and the ability to undergo upconversion, all with excitation of a single, biologically friendly NIR wavelength. Recent advancements in the design of novel RENPs have led to new fundamental breakthroughs in photoluminescence nanothermometry. Moreover, driven by their excellent biocompatibility, both in vitro and in vivo, their implementation in biomedical applications has also gained significant traction. However, these nanoprobes face limitations caused by the complex biological environments, including absorption and scattering of various biomolecules as well as interference from different tissues, which limit the spatial resolution and detection sensitivity in RENP temperature sensing. Among existing approaches in RENP photoluminescence nanothermometry, the most prevalent implemented mechanisms either leverage the changes in the relative intensity ratio of two emission bands or exploit the lifetimes of various excited states. Photoluminescence intensity ratio (PLIR) nanothermometry has been the mainstream method owing to the readily available spectrometers for photoluminescence acquisition. Despite offering high temperature sensitivity and spatial resolution, this technique is restricted by tedious calibration and undesirable fluctuation in photoluminescence intensity ascribed to factors such as probe concentration, excitation power density, and biochemical surroundings. Lifetime-based nanothermometry uses the lifetime of a specific transition as the contrast mechanism to infer the temperature. This modality is less susceptible to various experimental factors and is compatible with a broader range of photoluminescence nanoprobes. However, due to relatively expensive and complex instrumentation, long data acquisition, and sophisticated data analysis, lifetime-based nanothermometry is still breaking ground with recently emerging techniques lightening its path. In this Account, we provide an overview of RENP nanothermometry and their applications in biomedicine. The architectures and luminescence mechanisms of RENPs are examined, followed by the principles of PLIR and lifetime-based nanothermometry. The in-depth description of each approach starts with its basic principle of accurate temperature sensing, followed by a critical discussion of the representative techniques, applications as well as their strengths and limitations. Special emphasis is given to the emerging modality of lifetime-based nanothermometry in light of the important new developments in the field. Finally, a summary and an outlook are provided to conclude this Account.
Collapse
Affiliation(s)
- Miao Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
20
|
Ning F, Wei D, Yu H, Song T, Li Z, Ma H, Sun Y. Construction of a Multifunctional Upconversion Nanoplatform Based on Autophagy Inhibition and Photodynamic Therapy Combined with Chemotherapy for Antitumor Therapy. Mol Pharm 2024; 21:4297-4311. [PMID: 39106330 DOI: 10.1021/acs.molpharmaceut.4c00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Inhibition of autophagy increases the sensitivity of tumor cells to radiotherapy and chemotherapy and improves the therapeutic effect on tumors. Recently, photodynamic therapy (PDT) combined with chemotherapy has been proven to further improve the efficiency of cancer treatment. As such, combining autophagy inhibition with PDT and chemotherapy may represent a potentially effective new strategy for cancer treatment. However, currently widely studied autophagy inhibitors inevitably produce various toxic side effects due to their inherent pharmacological activity. To overcome this constraint, in this study, we designed an ideal multifunctional upconversion nanoplatform, UCNP-Ce6-EPI@mPPA + NIR (MUCEN). Control, UCNP-EPI@mPPA (MUE), UCNP-EPI@mPPA + NIR (MUEN), Ce6-EPI@mPPA (MCE), Ce6-EPI@mPPA + NIR (MCEN), and UCNP-Ce6-EPI@mPPA (MUCE) groups were set up separately as controls. Based on a combination of autophagy inhibition and PDT, the average particle size of MUCEN was 197 nm, which can simultaneously achieve the double encapsulation of chlorine e6 (Ce6) and epirubicin (EPI). In vitro tests revealed that MUCE was efficiently endocytosed by 4T1 cells under near-infrared light irradiation. Further, in vivo tests revealed that MUCE dramatically inhibited tumor growth. Immunohistochemistry results indicated that MUCE efficiently increased the expression of autophagy inhibitors p62 and LC3 in tumor tissues. The synergistic effect of autophagy inhibition and PDT with MUCE exhibited superior tumor suppression, providing an innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hongmei Ma
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
21
|
Xu H, Dai M, Fu Z. The Art of Nanoparticle Design: Unconventional Morphologies for Advancing Luminescent Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400218. [PMID: 38415814 DOI: 10.1002/smll.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Indexed: 02/29/2024]
Abstract
The advanced design of rare-earth-doped (RE-doped) fluoride nanoparticles has expanded their applications ranging from anticounterfeiting luminescence and contactless temperature measurement to photodynamic therapy. Several recent studies have focused on developing rare morphologies of RE-doped nanoparticles. Distinct physical morphologies of RE-doped fluoride materials set them apart from contemporary nanoparticles. Every unusual structure holds the potential to dramatically improve the physical performance of nanoparticles, resulting in a remarkable revolution and a wide range of applications. This comprehensive review serves as a guide offering insights into various uniquely structured nanoparticles, including hollow, dumbbell-shaped, and peasecod-like forms. It aims to cater to both novices and experts interested in exploring the morphological transformations of nanoparticles. Discovering new energy transfer pathways and enhancing the optical application performance have been long-term challenges for which new solutions can be found in old papers. In the future, nanoparticle morphology design is expected to involve more refined microphysical methods and chemically-induced syntheses. Targeted modification of nanoparticle morphology and the aggregation of nanoparticles of various shapes can provide the advantages of different structures and enhance the universality of nanoparticles.
Collapse
Affiliation(s)
- Hanyu Xu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, 130012, China
| | - Mengmeng Dai
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, 130012, China
| | - Zuoling Fu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Liu C, Zheng Y, Qin Y, Liang L, Yang S, Li H, Jiang H, Zhao X, Liu S, Zhang H, Zhu J. Study on a Highly Thermostable Dy 3+-Activated Borophosphate Phosphor. Inorg Chem 2024; 63:6483-6492. [PMID: 38531042 DOI: 10.1021/acs.inorgchem.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Constructing a phosphor with multifunctional applications is an imperative challenge. Especially, highly thermostable luminescence of phosphor is indispensable for stable white-light-emitting diodes (LEDs). Nevertheless, good thermal quenching resistance behavior is unfavorable for a fluorescence intensity ratio (FIR)-based optical temperature sensor. Herein, a highly thermostable Ba3(ZnB5O10)PO4 (BZBP)-based phosphor is successfully achieved via replacing Ba2+ with Dy3+, demonstrating simultaneously promising lighting and thermometry utilizations. Under the excitation of 350 nm, the title phosphor only loses 12% of the initial intensity when the temperature is up to 473 K, ensuring sufficient luminescence thermostability for white-LED lighting. The white-LED device fabricated using the title phosphor emits high-quality white light with a high color rendering index (Ra = 93) and low correlated color temperature (CCT = 3996 K). Meanwhile, the yellow and blue emission intensities demonstrate a downtrend difference with rising temperature. Temperature sensing properties are assessed through FIR technology. The maximal relative sensitivity reaches as high as 0.0379 K-1 at 298 K. These results reveal that the title phosphor has a great potential for indoor lighting and thermometry applications.
Collapse
Affiliation(s)
- Conglin Liu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Youkui Zheng
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yue Qin
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Lulu Liang
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shuqing Yang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Hong Li
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Hongming Jiang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiaoyang Zhao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shanlin Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Hongzhi Zhang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jing Zhu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
23
|
Wu Y, Li F, Wu Y, Wang H, Gu L, Zhang J, Qi Y, Meng L, Kong N, Chai Y, Hu Q, Xing Z, Ren W, Li F, Zhu X. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Nat Commun 2024; 15:2341. [PMID: 38491065 PMCID: PMC10943110 DOI: 10.1038/s41467-024-46727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 μm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Collapse
Affiliation(s)
- Yukai Wu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Fang Li
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yanan Wu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Hao Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Liangtao Gu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Jieying Zhang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yukun Qi
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Na Kong
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China
| | - Qian Hu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Zhenyu Xing
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P.R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| |
Collapse
|
24
|
Liu M, Lai Y, Marquez M, Vetrone F, Liang J. Short-wave Infrared Photoluminescence Lifetime Mapping of Rare-Earth Doped Nanoparticles Using All-Optical Streak Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305284. [PMID: 38183381 PMCID: PMC10953585 DOI: 10.1002/advs.202305284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Indexed: 01/08/2024]
Abstract
The short-wave infrared (SWIR) photoluminescence lifetimes of rare-earth doped nanoparticles (RENPs) have found diverse applications in fundamental and applied research. Despite dazzling progress in the novel design and synthesis of RENPs with attractive optical properties, existing optical systems for SWIR photoluminescence lifetime imaging are still considerably restricted by inefficient photon detection, limited imaging speed, and low sensitivity. To overcome these challenges, SWIR photoluminescence lifetime imaging microscopy using an all-optical streak camera (PLIMASC) is developed. Synergizing scanning optics and a high-sensitivity InGaAs CMOS camera, SWIR-PLIMASC has a 1D imaging speed of up to 138.9 kHz in the spectral range of 900-1700 nm, which quantifies the photoluminescence lifetime of RENPs in a single shot. A 2D photoluminescence lifetime map can be acquired by 1D scanning of the sample. To showcase the power of SWIR-PLIMASC, a series of core-shell RENPs with distinct SWIR photoluminescence lifetimes is synthesized. In particular, using Er3+ -doped RENPs, SWIR-PLIMASC enables multiplexed anti-counterfeiting. Leveraging Ho3+ -doped RENPs as temperature indicators, this system is applied to SWIR photoluminescence lifetime-based thermometry. Opening up a new avenue for efficient SWIR photoluminescence lifetime mapping, this work is envisaged to contribute to advanced materials characterization, information science, and biomedicine.
Collapse
Affiliation(s)
- Miao Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Miguel Marquez
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| |
Collapse
|
25
|
Li D, Jia M, Jia T, Chen G. Ultrasensitive NIR-II Ratiometric Nanothermometers for 3D In Vivo Thermal Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309452. [PMID: 38088453 DOI: 10.1002/adma.202309452] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Luminescent nanothermometry, particularly the one based on ratiometric, has sparked intense research for non-invasive in vivo or intracellular temperature mapping, empowering their uses as diagnosis tools in biomedicine. However, ratiometric detection still suffers from biased sensing induced by wavelength-dependent tissue absorption and scattering, low thermal sensitivity (Sr ), and lack of imaging depth information. Herein, this work constructs an ultrasensitive NIR-II ratiometric nanothermometer with self-calibrating ability for 3D in vivo thermographic imaging, in which temperature-insensitive lanthanide nanocrystals and strongly temperature-quenched Ag2 S quantum dots are co-assembled to form a hybrid nanocomposite material. Precise control over the amount ratio between two sub-materials enables the manipulation of heat-activated back energy transfer from Ag2 S to Yb3+ in lanthanide nanoparticles, thereby rendering Sr up to 7.8% °C-1 at 43.5 °C, and higher than 6.5% °C-1 over the entire physiological temperature range. Moreover, the luminescence intensity ratio between two separated spectral regions within the narrow Yb3+ emission peak is used to determine the depth information of nanothermometers in living mice and correct the effect of tissue depth on 2D thermographic imaging, and therefore allows a proof-of-concept demonstration of accurate 3D in vivo thermographic imaging, constituting a solid step toward the development of advanced ratiometric nanothermometry for biological applications.
Collapse
Affiliation(s)
- Dan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Tao Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
26
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
27
|
Suo H, Guo D, Zhao P, Zhang X, Wang Y, Zheng W, Li P, Yin T, Guan L, Wang Z, Wang F. Ultrasensitive Colorimetric Luminescence Thermometry by Progressive Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305241. [PMID: 38084003 PMCID: PMC10870082 DOI: 10.1002/advs.202305241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Luminescent materials that display quick spectral responses to thermal stimuli have attracted pervasive attention in sensing technologies. Herein, a programmable luminescence color switching in lanthanide-doped LiYO2 under thermal stimuli, based on deliberate control of the monoclinic (β) to tetragonal (α) phase transition in the crystal lattice, is reported. Specifically, a lanthanide-doping (Ln3+ ) approach to fine-tune the phase-transition temperature in a wide range from 294 to 359 K is developed. Accordingly, an array of Ln3+ -doped LiYO2 crystals that exhibit progressive phase transition, and thus sequential color switching at gradually increasing temperatures, is constructed. The tunable optical response to thermal stimuli is harnessed for colorimetric temperature indication and quantitative detection, demonstrating superior sensitivity and temperature resolution (Sr = 26.1% K-1 , δT = 0.008 K). The advances in controlling the phase-transition behavior of luminescent materials also offer exciting opportunities for high-performance personalized health monitoring.
Collapse
Affiliation(s)
- Hao Suo
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong SAR999077China
| | - Dongxu Guo
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Peihang Zhao
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Xin Zhang
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong SAR999077China
| | - Yu Wang
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Weilin Zheng
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong SAR999077China
| | - Panlai Li
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Tao Yin
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Li Guan
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Zhijun Wang
- National‐Local Joint Engineering Laboratory of New Energy Photoelectric DevicesHebei Key Laboratory of Optic‐electronic Information and MaterialsCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Feng Wang
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong SAR999077China
| |
Collapse
|
28
|
Dinić I, Vuković M, Rabanal ME, Milošević M, Bukumira M, Tomić N, Tomić M, Mančić L, Ignjatović N. Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF 3 and YF 3 Mesocrystals. J Funct Biomater 2023; 15:6. [PMID: 38248673 PMCID: PMC10816806 DOI: 10.3390/jfb15010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Y0.8-xGdxF3:Yb/Er mesocrystals with a biocompatible surface and diverse morphological characteristics were successfully synthesized using chitosan-assisted solvothermal processing. Their structural properties, studied using X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and energy dispersive X-ray analysis, were further correlated with the up-conversion emission (λexc = 976 nm) recorded in function of temperature. Based on the change in the visible green emissions originating from the thermally coupled 2H11/2 and 4S3/2 levels of Er3+, the corresponding LIR was acquired in the physiologically relevant range of temperatures (25-50 °C). The detected absolute sensitivity of about 0.0042 °C-1, along with the low cytotoxicity toward both normal human lung fibroblasts (MRC-5) and cancerous lung epithelial (A549) cells, indicate a potential for use in temperature sensing in biomedicine. Additionally, their enhanced internalization in cells, without suppression of cell viability, enabled in vitro labeling of cancer and healthy cells upon 976 nm laser irradiation.
Collapse
Affiliation(s)
- Ivana Dinić
- Institute of Technical Science of SASA, 110000 Belgrade, Serbia; (I.D.); (N.T.); (M.T.)
| | - Marina Vuković
- Innovative Centre, Faculty of Chemistry, University of Belgrade, 110000 Belgrade, Serbia;
| | - Maria Eugenia Rabanal
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid and IAAB, 28903 Madrid, Spain;
| | - Milica Milošević
- Department of Radiation Chemistry and Physics, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Vinča, 110000 Belgrade, Serbia;
| | - Marta Bukumira
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 110000 Belgrade, Serbia;
| | - Nina Tomić
- Institute of Technical Science of SASA, 110000 Belgrade, Serbia; (I.D.); (N.T.); (M.T.)
| | - Miloš Tomić
- Institute of Technical Science of SASA, 110000 Belgrade, Serbia; (I.D.); (N.T.); (M.T.)
| | - Lidija Mančić
- Institute of Technical Science of SASA, 110000 Belgrade, Serbia; (I.D.); (N.T.); (M.T.)
| | - Nenad Ignjatović
- Institute of Technical Science of SASA, 110000 Belgrade, Serbia; (I.D.); (N.T.); (M.T.)
| |
Collapse
|
29
|
Cao Z, Wei X, Zhou X, Li L, Chen Y, Wang Y, Xie G, Yin M. Thermal imaging study of Sm 2+ doped SrB 4O 7 based on time-resolved technology. Dalton Trans 2023; 53:285-291. [PMID: 38047478 DOI: 10.1039/d3dt03388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Thermal imaging materials with high sensitivity and the ability to reflect real-time temperature play an important role in research areas such as biotechnology and electronic engineering. However, the temperature sensitivity and temporal resolution of the current materials are not suitable for the complicated detection situation. In this paper, we introduce a thermal imaging material - SrB4O7:5%Sm2+ - with high temperature sensitivity. Furthermore, by applying a time resolving technique based on an intensified charge-coupled device, the sensitivity and temporal resolution are greatly promoted. The good temperature sensitivity (9.67% K-1 at 533 K), the high spatial resolution (2.7 μm) and the fast detection time (<1 s) suggest its considerable potential for real-time thermal imaging applications. The results of temperature distribution on a printed circuit board show that the as-prepared material will be greatly beneficial for thermal imaging applications.
Collapse
Affiliation(s)
- Zhongmin Cao
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
| | - Xiantao Wei
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
| | - Xianju Zhou
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
| | - Li Li
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
| | - Yonghu Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
| | - Yongjie Wang
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
| | - Guangxin Xie
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
| | - Min Yin
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
| |
Collapse
|
30
|
Han Y, Zhang X, Huang L. Novel Aspects about "Lifetime" in Upconversion Luminescence. Chemistry 2023; 29:e202302633. [PMID: 37697454 DOI: 10.1002/chem.202302633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Recent progress on the temporal response (TR) of lanthanide-doped upconversion luminescence (UCL) has enriched the means of UCL regulation, promoted advanced designs for customized applications such as biological diagnosis, high-capacity optical coding, and dynamic optical anti-counterfeiting, and pushed us to reacquaint the dynamic responses of sensitizer/activator ions in UCL systems. In particular, the lifetime of UCL should be revisited after discovery of novel experimental phenomena and luminescence mechanisms, i. e., it should be understood as the collective TR (in the decay edge) of all the involved ions rather than the reciprocal of the radiative rate of an individual ion. In this Concept, we retraced the latest understanding of the dynamics in UCL with special attention to the relationship between excitation and emission, means of TR regulation, and discussed existing challenges. It is expected to provide some fundamental insights to deepened understanding, further regulation, and frontier applications of TR features of UCL.
Collapse
Affiliation(s)
- Yingdong Han
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
- Institute of Environment and Sustainable Development, Civil Aviation University of China, Tianjin, 300300, China
| | - Xingxing Zhang
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Ling Huang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
31
|
Zhang K, Wang J, Peng L, Zhang Y, Zhang J, Zhao W, Ma S, Mao C, Zhang S. UCNPs-based nanoreactors with ultraviolet radiation-induced effect for enhanced ferroptosis therapy of tumor. J Colloid Interface Sci 2023; 651:567-578. [PMID: 37562299 DOI: 10.1016/j.jcis.2023.07.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The limitations of light source limit the clinical application of optical therapy technology. How to improve the application efficiency of radiant light has become the focus of researchers. Here, we synthesize a kind of UCNPs@PVP-GOx-PpIX-Fe3+ (UPGPF) nanoreactors with rare earth upconversion nanoparticles (UCNPs) as the substrate for the enhancement of ferroptosis effect by the synergistic starvation/photodynamic therapies. Firstly, glucose oxidase (GOx) and Fe3+ loaded in UPGPF nanoreactors are used to directly face the problems of insufficient H2O2 level in tumor tissue and low Fenton reaction efficiency. Further, UCNPs can absorb NIR light at 980 nm and convert low-energy photons into high-energy photons, thereby cleverly generating ultraviolet (UV) radiation induction in vivo, which can produce a synergistic effect of enhancing iron death. The in vivo experimental results of breast cancer model mice show that the UPGPF nanoreactors have significant anticancer effect and good biosafety. With the help of the optical conversion characteristics of UCNPs, this kind of treatment idea of building a UV radiation-induced microplatform in the tumor microenvironment, which leads to the synergistic enhancement of iron death effect, provides a promising innovative design strategy for tumor research.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jingzhi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Liqi Peng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jinzha Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Shenglin Ma
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shirong Zhang
- Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
32
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
33
|
Li G, Chen X, Wang M, Cheng S, Yang D, Wu D, Han Y, Jia M, Li X, Zhang Y, Shan C, Shi Z. Regulating Exciton De-Trapping of Te 4+ -Doped Zero-Dimensional Scandium-Halide Perovskite for Fluorescence Thermometry with Record High Time-Resolved Thermal Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305495. [PMID: 37603794 DOI: 10.1002/adma.202305495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Fluorescence thermometry has been propelled to the forefront of scientific attention due to its high spatial resolution and remote non-invasive detection. However, recent generations of thermometers still suffer from limited thermal sensitivity (Sr ) below 10% change per Kelvin. Herein, this work presents an ideal temperature-responsive fluorescence material through Te4+ -doped 0D Cs2 ScCl5 ·H2 O, in which isolated polyhedrons endow highly localized electronic structures, and the strong electron-phonon coupling facilitates the formation of self-trapped excitons (STEs). With rising temperature, the dramatic asymmetric expansion of the soft lattice induces increased defects, strong exciton-phonon coupling, and low thermal activation energy, which evokes a rapid de-trapping process of STEs, enabling several orders of magnitude changes in the fluorescence lifetime over a narrow temperature range. After regulating the de-trapping process with different Te4+ doping, a record-high Sr (27.36% K-1 ) of fluorescence lifetime-based detection is achieved at 325 K. The robust stability against multiple heating/cooling cycles and long-term measurements enables a low temperature uncertainty of 0.067 K. Further, the developed thermometers are demonstrated for the remote local monitoring of operating temperature on internal electronic components. It is believed that this work constitutes a solid step towards building the next generation of ultrasensitive thermometers based on low-dimensional metal halides.
Collapse
Affiliation(s)
- Gaoqiang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Meng Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Shanshan Cheng
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Dongwen Yang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Yanbing Han
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| |
Collapse
|
34
|
Wang X, Li M, Zheng X, Sun B, Wang Y, Xu J, Han T, Ma S, Zhu S, Zhang S. Dye-Triplet-Sensitized Downshifting Nanoprobes with Ratiometric Dual-NIR-IIb Emission for Accurate In Vivo Detection. Anal Chem 2023; 95:15264-15275. [PMID: 37797318 DOI: 10.1021/acs.analchem.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Despite the emerging near-infrared-IIb (NIR-IIb, 1500-1700 nm) bioimaging significantly improving the in vivo penetration depth and resolution, quantitative detection with accuracy remains challenging due to its inhomogeneous fluorescence signal attenuation in biological tissue. Here, ratiometric dual-NIR-IIb in vivo detection with excitation wavelengths of 808 and 980 nm is presented using analyte-responsive dye-triplet-sensitized downshifting nanoprobes (DSNPs). NIR cyanine dye IR-808, a recognizer of biomarker hypochlorite (ClO-), is introduced to trigger a triplet energy transfer process from the dye to Er3+ ions of DSNPs under 808 nm excitation, facilitating the formation of an analyte-responsive 1525 nm NIR-IIb assay channel. Meanwhile, DSNPs also enable emitting intrinsic nonanalyte-dependent downshifting fluorescence at the same NIR-IIb window under 980 nm excitation, serving as a self-calibrated signal to alleviate the interference from the probe amount and depth. Due to the two detected emissions sharing identical light propagation and scattering, the ratiometric NIR-IIb signal is demonstrated to ignore the depth of penetration in biotissue. The arthritis lesions are distinguished from normal tissue using ratiometric probes, and the amount of ClO- can be accurately output by the established detection curves.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Mengfei Li
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yajun Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shengjie Ma
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
35
|
Zhou B, Fan K, Zhai J, Jin C, Kong L. Upconversion-Luminescent Fiber Microchannel Sensors for Temperature Monitoring at High Spatial Resolution in the Brains of Freely Moving Animals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303527. [PMID: 37712115 PMCID: PMC10602553 DOI: 10.1002/advs.202303527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Indexed: 09/16/2023]
Abstract
Brain temperature is a critical factor affecting neural activity and function, whose fluctuations may result in acute life-threatening health complications and chronic neuropathology. To monitor brain temperature, luminescent nanothermometry (LN) based on upconversion nanoparticles (UCNPs) with low autofluorescence has received extensive attention for its advantages in high temperature sensitivity and high response speed. However, most of current the LNs are based on optical imaging, which fails in temperature monitoring in deep brain regions at high spatial resolution. Here, the fiber microchannel sensor (FMS) loaded with UCNPs (UCNP-FMS) is presented for temperature monitoring at high spatial resolution in the deep brains of freely moving animals. The UCNP-FMS is fabricated by incorporating UCNPs in microchannels of optical fibers, whose diameter is ∼50 µm processed by femtosecond laser micromachining for spatially resolved sensing. The UCNPs provide thermal-sensitive upconversion emissions at dual wavelengths for ratiometric temperature sensing, ensuring a detection accuracy of ± 0.3 °C at 37 °C. Superior performances of UCNP-FMS are demonstrated by real-time temperature monitoring in different brain regions of freely moving animals under various conditions such as taking food, undergoing anesthesia/wakefulness, and suffering external temperature changes. Moreover, this study shows the capability of UCNP-FMS in distributed temperature sensing in mammalian brains in vivo.
Collapse
Affiliation(s)
- Bingqian Zhou
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Kuikui Fan
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Jiazhen Zhai
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Cheng Jin
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijing100084China
| |
Collapse
|
36
|
Pelluau T, Sene S, Ali LMA, Félix G, Manhes F, Carneiro Neto AN, Carlos LD, Albela B, Bonneviot L, Oliviero E, Gary-Bobo M, Guari Y, Larionova J. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb 3+/Eu 3+ complexes as efficient ratiometric emissive thermometers working in water. NANOSCALE 2023; 15:14409-14422. [PMID: 37614145 DOI: 10.1039/d3nr01851b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Despite the great effort made in recent years on lanthanide-based ratiometric luminescent nanothermometers able to provide temperature measurements in water, their design remains challenging. We report on the synthesis and properties of efficient ratiometric nanothermometers that are based on mesoporous stellate nanoparticles (MSN) of ca. 90 nm functionalized with an acetylacetonate (acac) derivative inside the pores and loaded with β-diketonate-Tb3+/Eu3+ complexes able to work in water, in PBS or in cells. Encapsulating a [(Tb/Eu)9(acac)16(μ3-OH)8(μ4-O)(μ4-OH)] complex (Tb/Eu ratio = 19/1 and 9/1) led to hybrid multifunctionalized nanoparticles exhibiting a Tb3+ and Eu3+ characteristic temperature-dependent luminescence with a high rate Tb3+-to-Eu3+ energy transfer. According to theoretical calculations, the modifications of photoluminescence properties and the increase in the pairwise Tb3+-to-Eu3+ energy transfer rate by about 10 times can be rationalized as a change of the coordination number of the Ln3+ sites of the complex from 7 to 8 accompanied by a symmetry evolution from Cs to C4v and a slight shortening of intramolecular Ln3+-Ln3+ distances upon the effect of encapsulation. These nanothermometers operate in the 20-70 °C range with excellent photothermal stability, cyclability and repeatability (>95%), displaying a maximum relative thermal sensitivity of 1.4% °C-1 (at 42.7 °C) in water. Furthermore, they can operate in cells with a thermal sensitivity of 8.6% °C-1 (at 40 °C), keeping in mind that adjusting the calibration for each system is necessary to ensure accurate measurements.
Collapse
Affiliation(s)
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Gautier Félix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Albano N Carneiro Neto
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luis D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Belén Albela
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Bonneviot
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Erwan Oliviero
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
37
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
38
|
Zanella S, Aragon-Alberti M, Brite CDS, Salles F, Carlos LD, Long J. Luminescent Single-Molecule Magnets as Dual Magneto-Optical Molecular Thermometers. Angew Chem Int Ed Engl 2023; 62:e202306970. [PMID: 37418512 DOI: 10.1002/anie.202306970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Luminescent thermometry allows the remote detection of the temperature and holds great potential in future technological applications in which conventional systems could not operate. Complementary approaches to measuring the temperature aiming to enhance the thermal sensitivity would however represent a decisive step forward. For the first time, we demonstrate the proof-of-concept that luminescence thermometry could be associated with a complementary temperature readout related to a different property. Namely, we propose to take advantage of the temperature dependence of both magnetic (canonical susceptibility and relaxation time) and luminescence features (emission intensity) found in Single-Molecule Magnets (SMM) to develop original dual magneto-optical molecular thermometers to conciliate high-performance SMM and Boltzmann-type luminescence thermometry. We highlight this integrative approach to concurrent luminescent and magnetic thermometry using an air-stable benchmark SMM [Dy(bbpen)Cl] (H2 bbpen=N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethyl-enediamine)) exhibiting Dy3+ luminescence. The synergy between multiparametric magneto-optical readouts and multiple linear regression makes possible a 10-fold improvement in the relative thermal sensitivity of the thermometer over the whole temperature range, compared with the values obtained with the single optical or magnetic devices.
Collapse
Affiliation(s)
- Sofia Zanella
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Carlos D S Brite
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France, (IUF), 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
39
|
Fan Y, Wang Y, Wang F, Huang L, Yang Y, Wong KC, Li X. Reliable Identification and Interpretation of Single-Cell Molecular Heterogeneity and Transcriptional Regulation using Dynamic Ensemble Pruning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205442. [PMID: 37290050 PMCID: PMC10401140 DOI: 10.1002/advs.202205442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Unsupervised clustering is an essential step in identifying cell types from single-cell RNA sequencing (scRNA-seq) data. However, a common issue with unsupervised clustering models is that the optimization direction of the objective function and the final generated clustering labels in the absence of supervised information may be inconsistent or even arbitrary. To address this challenge, a dynamic ensemble pruning framework (DEPF) is proposed to identify and interpret single-cell molecular heterogeneity. In particular, a silhouette coefficient-based indicator is developed to determine the optimization direction of the bi-objective function. In addition, a hierarchical autoencoder is employed to project the high-dimensional data onto multiple low-dimensional latent space sets, and then a clustering ensemble is produced in the latent space by the basic clustering algorithm. Following that, a bi-objective fruit fly optimization algorithm is designed to prune dynamically the low-quality basic clustering in the ensemble. Multiple experiments are conducted on 28 real scRNA-seq datasets and one large real scRNA-seq dataset from diverse platforms and species to validate the effectiveness of the DEPF. In addition, biological interpretability and transcriptional and post-transcriptional regulatory are conducted to explore biological patterns from the cell types identified, which could provide novel insights into characterizing the mechanisms.
Collapse
Affiliation(s)
- Yi Fan
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Yunhe Wang
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Lei Huang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| |
Collapse
|
40
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
41
|
Wu L, Jia M, Li D, Chen G. Shell Engineering on Thermal Sensitivity of Lifetime-Based NIR Nanothermometers for Accurate Temperature Measurement in Murine Internal Liver Organ. NANO LETTERS 2023; 23:2862-2869. [PMID: 36926957 DOI: 10.1021/acs.nanolett.3c00190] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lifetime-based NIR luminescent nanothermometry is ideally suited for temperature detection in living cells and in vivo, but the thermal sensitivity (Sr) modulation remains elusive. Herein, a thorough investigation is performed to unveil the shell effect on lifetime-based Sr by finely controlling the shell thickness of lanthanide-doped core-shell-shell nanoparticles. Owing to the space-dependent energy transfer and back energy transfer between Nd3+ and Yb3+ as well as the energy migration to surface quenchers, both active and inert shells can regulate the thermal-dependent nonradiative decays and NIR luminescence lifetime of Yb3+, which in turn modulates the Sr from 0.56% to 1.54% °C-1. After poly(acrylic acid) modification of the optimal architecture, the tiny nanoprobes possess robust stability to fluctuations in the microenvironment, which enables accurate temperature mapping of inflammation in the internal liver organ of living mouse. This work will provide new insights for optimizing Sr and guidance for precise temperature measurements in vivo.
Collapse
Affiliation(s)
- Lijun Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Dan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
42
|
Alrebdi TA, Alodhayb AN, Ristić Z, Dramićanin MD. Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn 5+ Near-Infrared Emission. SENSORS (BASEL, SWITZERLAND) 2023; 23:3839. [PMID: 37112178 PMCID: PMC10143882 DOI: 10.3390/s23083839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Herein, we investigate the performance of single- and multiparametric luminescence thermometry founded on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission. The material was prepared by a conventional steady-state synthesis, and its photoluminescence emission was measured from 7500 to 10,000 cm-1 over the 293-373 K temperature range in 5 K increments. The spectra are composed of the emissions from 1E → 3A2 and 3T2 → 3A2 electronic transitions and Stokes and anti-Stokes vibronic sidebands at 320 cm-1 and 800 cm-1 from the maximum of 1E → 3A2 emission. Upon temperature increase, the 3T2 and Stokes bands gained in intensity while the maximum of 1E emission band is redshifted. We introduced the procedure for the linearization and feature scaling of input variables for linear multiparametric regression. Then, we experimentally determined accuracies and precisions of the luminescence thermometry based on luminescence intensity ratios between emissions from the 1E and 3T2 states, between Stokes and anti-Stokes emission sidebands, and at the 1E energy maximum. The multiparametric luminescence thermometry involving the same spectral features showed similar performance, comparable to the best single-parameter thermometry.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zoran Ristić
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Miroslav D. Dramićanin
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
43
|
Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Ratiometric upconversion nanoprobes for turn-on fluorescent detection of hypochlorous acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
44
|
Uncovering the mechanism for aggregation in repeat expanded RNA reveals a reentrant transition. Nat Commun 2023; 14:332. [PMID: 36658112 PMCID: PMC9852226 DOI: 10.1038/s41467-023-35803-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
RNA molecules aggregate under certain conditions. The resulting condensates are implicated in human neurological disorders, and can potentially be designed towards specified bulk properties in vitro. However, the mechanism for aggregation-including how aggregation properties change with sequence and environmental conditions-remains poorly understood. To address this challenge, we introduce an analytical framework based on multimer enumeration. Our approach reveals the driving force for aggregation to be the increased configurational entropy associated with the multiplicity of ways to form bonds in the aggregate. Our model uncovers rich phase behavior, including a sequence-dependent reentrant phase transition, and repeat parity-dependent aggregation. We validate our results by comparison to a complete computational enumeration of the landscape, and to previously published molecular dynamics simulations. Our work unifies and extends published results, both explaining the behavior of CAG-repeat RNA aggregates implicated in Huntington's disease, and enabling the rational design of programmable RNA condensates.
Collapse
|
45
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
46
|
Matulionyte M, Skripka A, Ramos-Guerra A, Benayas A, Vetrone F. The Coming of Age of Neodymium: Redefining Its Role in Rare Earth Doped Nanoparticles. Chem Rev 2023; 123:515-554. [PMID: 36516409 DOI: 10.1021/acs.chemrev.2c00419] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among luminescent nanostructures actively investigated in the last couple of decades, rare earth (RE3+) doped nanoparticles (RENPs) are some of the most reported family of materials. The development of RENPs in the biomedical framework is quickly making its transition to the ∼800 nm excitation pathway, beneficial for both in vitro and in vivo applications to eliminate heating and facilitate higher penetration in tissues. Therefore, reports and investigations on RENPs containing the neodymium ion (Nd3+) greatly increased in number as the focus on ∼800 nm radiation absorbing Nd3+ ion gained traction. In this review, we cover the basics behind the RE3+ luminescence, the most successful Nd3+-RENP architectures, and highlight application areas. Nd3+-RENPs, particularly Nd3+-sensitized RENPs, have been scrutinized by considering the division between their upconversion and downshifting emissions. Aside from their distinctive optical properties, significant attention is paid to the diverse applications of Nd3+-RENPs, notwithstanding the pitfalls that are still to be addressed. Overall, we aim to provide a comprehensive overview on Nd3+-RENPs, discussing their developmental and applicative successes as well as challenges. We also assess future research pathways and foreseeable obstacles ahead, in a field, which we believe will continue witnessing an effervescent progress in the years to come.
Collapse
Affiliation(s)
- Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Alma Ramos-Guerra
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Antonio Benayas
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,Molecular Imaging Program at Stanford Department of Radiology Stanford University 1201 Welch Road, Lucas Center (exp.), Stanford, California 94305-5484, United States
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
47
|
Silva JF, Maria de Oliveira J, Silva WF, Costa Soares AC, Rocha U, Oliveira Dantas N, Alves da Silva Filho E, Duzzioni M, Helmut Rulf Cofré A, Wagner de Castro O, Anhezini L, Christine Almeida Silva A, Jacinto C. Supersensitive nanothermometer based on CdSe/CdSxSe1-x magic-sized quantum dots with in vivo low toxicity. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Wei W, Dai Y, Li D, Xu J, Li H, Duan C, Zhao Q. Upconversion luminescence and optical thermometry of Gd3BWO9: Yb3+, Er3+ phosphors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Liang H, Yang K, Yang Y, Hong Z, Li S, Chen Q, Li J, Song X, Yang H. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. NANO LETTERS 2022; 22:9045-9053. [PMID: 36326607 DOI: 10.1021/acs.nanolett.2c03392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.
Collapse
Affiliation(s)
- Hanyu Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yating Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
50
|
Zhang Y, Xue X, Fang M, Pang G, Xing Y, Zhang X, Li L, Chen Q, Wang Y, Chang J, Zhao P, Wang H. Upconversion Optogenetic Engineered Bacteria System for Time-Resolved Imaging Diagnosis and Light-Controlled Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46351-46361. [PMID: 36201723 DOI: 10.1021/acsami.2c14633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering bacteria can achieve targeted and controllable cancer therapy using synthetic biology technology and the characteristics of tumor microenvironment. Besides, the accurate tumor diagnosis and visualization of the treatment process are also vital for bacterial therapy. In this paper, a light control engineered bacteria system based on upconversion nanoparticles (UCNP)-mediated time-resolved imaging (TRI) was constructed for colorectal cancer theranostic and therapy. UCNP with different luminous lifetimes were separately modified with the tumor targeting molecule (folic acid) or anaerobic bacteria (Nissle 1917, EcN) to realize the co-localization of tumor tissues, thus improving the diagnostic accuracy based on TRI. In addition, blue light was used to induce engineered bacteria (EcN-pDawn-φx174E/TRAIL) lysis and the release of tumor apoptosis-related inducing ligand (TRAIL), thus triggering tumor cell death. In vitro and in vivo results indicated that this system could achieve accurate tumor diagnosis and light-controlled cancer therapy. EcN-pDawn-φx174E/TRAIL with blue light irradiation could inhibit 53% of tumor growth in comparison to that without blue light irradiation (11.8%). We expect that this engineered bacteria system provides a new technology for intelligent bacterial therapy and the construction of cancer theranostics.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Xin Xue
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Xinyu Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| | - Lianyue Li
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| | - Qu Chen
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| | - Peiqi Zhao
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, People's Republic of China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, People's Republic of China
| |
Collapse
|