1
|
Brooke M, Upadhaya A, Clare S, Brueggeman R. Quantitative Trait Loci Analysis of a Novel Source of Barley Seedling Resistance Effective Against the Virulent North American Stem Rust Pathogen. PHYTOPATHOLOGY 2025; 115:724-732. [PMID: 39961036 DOI: 10.1094/phyto-07-24-0231-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2025]
Abstract
Wheat stem rust, caused by the obligate biotrophic fungal pathogen Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat worldwide. Alarmingly, the Pacific Northwest contains a highly virulent Pgt population on barley. This population includes the Pgt isolate Lsp21, which is virulent on the barley stem rust resistance genes Rpg1, Rpg2, Rpg3, rpg4, Rpg5, and rpg8. The virulence on barley lines containing Rpg1 and the rpg4/Rpg5-mediated resistance locus, when stacked together, is a Pgt virulence profile on barley not previously reported. Thus, this population contains the most virulent Pgt isolates on barley resistance genes characterized worldwide. The Elliot line (PI 592261) was identified from the world barley core collection as containing effective seedling resistance to Pgt isolate Lsp21. To genetically characterize the resistance present in Elliot, 129 recombinant inbred lines were developed by advancing a population from the cross Elliot (resistant) × Palmer (susceptible) to the F6 generation. The population was phenotyped with Pgt isolate Lsp21 at the seedling stage and genotyped with the Illumina 50K bead express single-nucleotide polymorphism chip, resulting in 7,284 high-quality single-nucleotide polymorphism markers. Two significant resistance quantitative trait loci (QTLs) (EPRpg_4H-1 and EPRpg_5H-1) contributed by Elliot were identified on chromosomes 4H and 5H, respectively. The major QTL, EPRpg_4H-1, is novel, whereas EPRpg_5H-1 localized to a region approximately 9 Mbp distal of the rpg4/Rpg5-mediated resistance locus within a region of the barley genome that contains previously identified stem rust resistance loci. These QTLs should be useful in developing barley cultivars with resistance to the virulent Pacific Northwest Pgt population.
Collapse
Affiliation(s)
- Matthew Brooke
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, U.S.A
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97330, U.S.A
| | - Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, U.S.A
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, U.S.A
| | - Shaun Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, U.S.A
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, U.S.A
| |
Collapse
|
2
|
Zhu K, Li M, Dong L, Zhang H, Zhang D, Lu P, Wu Q, Xie J, Chen Y, Guo G, Zhang P, Li B, Li W, Dong L, Hou Y, Yang Y, Qiu D, Wang G, Huang B, Cui X, Fu H, Yuan C, Fahima T, Nevo E, Li H, Rong J, Hua W, Liu Z. An atypical NLR pair TdCNL1/TdCNL5 from wild emmer confers powdery mildew resistance in wheat. Nat Genet 2025; 57:1553-1562. [PMID: 40490514 DOI: 10.1038/s41588-025-02208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/28/2025] [Indexed: 06/11/2025]
Abstract
Resistance to wheat powdery mildew is commonly mediated by individual resistance proteins, most of which encode nucleotide-binding leucine-rich repeat (NLR) receptors. Here we report that the powdery mildew resistance gene MLIW170/PM26 in wild emmer and bread wheat derivatives is determined by a genetically linked atypical NLR pair TdCNL1/TdCNL5. Map-based cloning and PacBio HiFi long-read sequencing revealed that TdCNL1 encodes an atypical coiled-coil-domain-containing NLR protein (CNL) fused with a new potassium-dependent sodium-calcium exchanger integrated domain, whereas TdCNL5 encodes a canonical CNL protein. Mutagenesis and virus-induced gene silencing experiments indicated that both TdCNL1 and TdCNL5 are essential for powdery mildew resistance. Transgenic plants with TdCNL1 alone or TdCNL1/TdCNL5 together show resistance, whereas Fielder with TdCNL5 alone was susceptible. Geographically, MLIW170/PM26 occurs in a few Southern populations of wild emmer wheat. Our study highlights an atypical NLR pair coordinately regulating powdery mildew resistance and provides a diversified resistance gene resource for wheat improvement.
Collapse
Affiliation(s)
- Keyu Zhu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Lingli Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Deyun Zhang
- Chaozhou Hybribio Biochemistry Ltd., Chaozhou, China
| | - Ping Lu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Jingzhong Xie
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Guanghao Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Panpan Zhang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Beibei Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Wenling Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Lei Dong
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Yikun Hou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yijun Yang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoge Huang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkui Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mount Carmel, Israel
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Israel
| | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Junkang Rong
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Lin'an, China.
| | - Wei Hua
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China.
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Zhiyong Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya, China.
| |
Collapse
|
3
|
Li J, Yu N, Sun N, Geng L, Qie Y, Zhai D, Wang Y, Li L, Liu X, Sun X, Wang J, Liu R, Pan G, Zou S, Han G, Jin Y, Ma P. Identification and characterization of the powdery mildew resistance in cultivated emmer wheat accession Lxd-682 via bulked segregant RNA sequencing. BMC PLANT BIOLOGY 2025; 25:583. [PMID: 40319256 PMCID: PMC12048989 DOI: 10.1186/s12870-025-06623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Common wheat (Triticum aestivum L.) is a vital source of nutrition for human consumption. However, wheat production is significantly threatened by various diseases, such as powdery mildew, a widespread fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). Utilizing and identifying resistance genes and elucidating the molecular mechanisms underlying this resistance are the most effective and sustainable ways to fight this disease. RESULTS Lxd-682, a cultivated emmer wheat accession, exhibited resistance to 12 out of 13 tested Bgt isolates at the seedling stage. Genetic analysis revealed that this resistance is conferred by a single dominant gene, tentatively designated as PmLxd-682. Molecular mapping positioned PmLxd-682 between the markers WGRE77413 and WGRC1096, with the Pm4-diagnostic marker JS717/JS718 co-segregating. Homology-based cloning and sequence alignment further confirmed that PmLxd-682 is identical to Pm4a. qRT-PCR analysis showed that the alternative splicing PmLxd-682-V2 exhibited higher expression level than that of PmLxd-682-V1 post-Bgt invasion, suggesting its prominent role in fighting Bgt invasion. Additionally, four pathogenesis-related (PR) genes were significantly up-regulated in both Lxd-682 and susceptible parent Langdon upon infection, revealing possibly unimportant roles in resistance pathway. Furthermore, 1,567 differentially expressed genes (DEGs) between resistant and susceptible bulks were identified through BSR-Seq, with 490 ones located within the candidate interval on chromosome 2AL, and potential biological processes associated with resistance were enriched via gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. To verify the potential regulatory genes, three key genes, TRITD2 Av1G294940, TRITD2 Av1G036490 and TRITD2 Av1G295220 all encoding disease resistance protein, were selected from six candidates via qRT-PCR following post-Bgt invasion. Molecular markers JS717/JS718 and WGRC1096 were confirmed to be available for marker-assisted selection (MAS) of PmLxd-682 in breeding practices. CONCLUSIONS The study identified key genetic intervals and genes involved in the resistance of a cultivated emmer wheat accession Lxd-682 to powdery mildew. These findings significantly advance our understanding of plant-pathogen interactions and establish a solid foundation for future genetic and functional studies aimed at improving disease resistance in crops.
Collapse
Affiliation(s)
- Jiatong Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Lige Geng
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Dongfeng Zhai
- Shandong Denghai Seeds Co., Ltd, Laizhou, 261448, China
| | - Yuxiang Wang
- Shandong Denghai Seeds Co., Ltd, Laizhou, 261448, China
| | - Linzhi Li
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xueqing Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xusheng Sun
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Jiangchun Wang
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Guantong Pan
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Shengmao Zou
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Sung YC, Li Y, Bernasconi Z, Baik S, Asuke S, Keller B, Fahima T, Coaker G. Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense. Nat Genet 2025; 57:1238-1249. [PMID: 40229601 DOI: 10.1038/s41588-025-02162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025]
Abstract
Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4's kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation.
Collapse
Affiliation(s)
- Yi-Chang Sung
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Yinghui Li
- Department of Plant Pathology, University of California, Davis, CA, USA
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Suji Baik
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Cheng X, Guan Y, Zhao J, Yang X, Wang G, Li T, Deng P, Chen C, Zhao J, Wang C, Liu X, Ji W. Establishment of a set of St-group wheat- Thinopyrum ponticum derivative lines conferring resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2025; 16:1576050. [PMID: 40313730 PMCID: PMC12044885 DOI: 10.3389/fpls.2025.1576050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Thinopyrum ponticum (2n = 10x = 70, EeEeEbEbExExStStStSt), a wild relative of common wheat (Triticum aestivum L., 2n = 6x = 42), possesses extensive genetic diversity. The primary objective of this study was to develop and evaluate alien derivatives carrying the St-chromosome from Th. ponticum, aiming to improve wheat disease resistance and agronomic traits. In this study, a set of St-chromosome alien derivatives was developed from Th. ponticum. Chromosomal compositions, karyotypes and homoeologous group affiliations of seven derivatives were characterized using genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), multicolor GISH (mc-GISH), and liquid chip analysis. Resistance assessments showed that the 4St and 7St derivatives exhibited strong resistance to the E09 isolate at the seedling stage and to naturally occurring pathogen mixtures in the field at the heading stage. The 7St derivative line, based on agronomic trait evaluations, is considered an ideal bridging material for breeding, with a reduction in plant height to 71.3 cm, while thousand-kernel weight and kernel length increased to 41 g and 0.77 cm, respectively. Specific markers for the St-homoeologous groups were developed through genome sequencing, achieving a development efficiency of 47.5%. This study provides a theoretical and technical basis for applying Th. ponticum genetic resources to improve wheat resistance and agronomic performance.
Collapse
Affiliation(s)
- Xiaofang Cheng
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yue Guan
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Jianing Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaoying Yang
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Guangyi Wang
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Tingdong Li
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| | - Pingchuan Deng
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| | - Chunhuan Chen
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| | - Jixin Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| | - Changyou Wang
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| | - Xinlun Liu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| | - Wanquan Ji
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
6
|
Zhuang Y, Wang Q, Liu J, Wang D, Qi G. Improving multiple disease resistance in wheat by using multitask kinase fusion proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40183362 DOI: 10.1111/jipb.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Broad spectrum resistance genes are desirable in wheat breeding because they confer resistance against multiple pathogens. Kinase fusion proteins confer broad spectrum resistance in wheat. The resistance locus Pm4 encodes a kinase fusion protein that confers resistance to the fungal diseases powdery mildew and wheat blast.
Collapse
Affiliation(s)
- Yamei Zhuang
- National Key Laboratory of Wheat Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 252100, China
| | - Qiaoli Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianjun Liu
- National Key Laboratory of Wheat Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 252100, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guang Qi
- National Key Laboratory of Wheat Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 252100, China
| |
Collapse
|
7
|
Guo G, Bai K, Hou Y, Gong Z, Zhang H, Wu Q, Lu P, Li M, Dong L, Xie J, Chen Y, Zhang P, Zhu K, Li B, Li W, Dong L, Yang Y, Qiu D, Wang G, Ahn H, Zhao H, Yuan C, Shi W, Xue M, Yang L, Yu D, Zhao Y, Chen Y, Li H, Hu T, Han G, Jones JDG, Liu Z. The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1260-1276. [PMID: 39840722 PMCID: PMC11933841 DOI: 10.1111/pbi.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat. The resistance function of the RXL/Pm5e pair is validated by mutagenesis, gene silencing, and gene-editing assays. Interestingly, both RXL and Pm5e encode atypical NLRs, with RXL possessing a truncated NB-ARC (nucleotide binding adaptor shared by APAF-1, plant R proteins and CED-4) domain and Pm5e featuring an atypical coiled-coil (CC) domain. Notably, RXL and Pm5e lack an integrated domain associated with effector recognition found in all previously reported NLR pairs. Additionally, RXL and Pm5e exhibit a preference for forming hetero-complexes rather than homo-complexes, highlighting their cooperative role in disease resistance. We further show that the CC domain of Pm5e specifically suppresses the hypersensitive response induced by the CC domain of RXL through competitive interaction, revealing regulatory mechanisms within this NLR pair. Our study sheds light on the molecular mechanism underlying RXL/Pm5e-mediated powdery mildew resistance and provides a new example of an NLR pair in wheat disease resistance.
Collapse
Affiliation(s)
- Guanghao Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Kaihong Bai
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yikun Hou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhen Gong
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | - Huaizhi Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qiuhong Wu
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Ping Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Miaomiao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Lingli Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jingzhong Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yongxing Chen
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Panpan Zhang
- Tea Research InstituteYunnan Academy of Agricultural SciencesKunmingYunnanChina
| | - Keyu Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Beibei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wenling Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Lei Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yijun Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dan Qiu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Gaojie Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hee‐Kyung Ahn
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Present address:
Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - He Zhao
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Wenqi Shi
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Minfeng Xue
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Lijun Yang
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Dazao Yu
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Yusheng Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yuhang Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hongjie Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Tiezhu Hu
- Henan Institute of Science and TechnologyXinxiangHenan ProvinceChina
| | - Guan‐Zhu Han
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | | | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Hainan Seed Industry LaboratorySanya CityHainan ProvinceChina
| |
Collapse
|
8
|
Chen R, Chen J, Powell OR, Outram MA, Arndell T, Gajendiran K, Wang YL, Lubega J, Xu Y, Ayliffe MA, Blundell C, Figueroa M, Sperschneider J, Vanhercke T, Kanyuka K, Tang D, Zhong G, Gardener C, Yu G, Gourdoupis S, Jaremko Ł, Matny O, Steffenson BJ, Boshoff WHP, Meyer WB, Arold ST, Dodds PN, Wulff BBH. A wheat tandem kinase activates an NLR to trigger immunity. Science 2025; 387:1402-1408. [PMID: 40146821 DOI: 10.1126/science.adp5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
The role of nucleotide-binding leucine-rich repeat (NLR) receptors in plant immunity is well studied, but the function of a class of tandem kinases (TKs) that confer disease resistance in wheat and barley remains unclear. In this study, we show that the SR62 locus is a digenic module encoding the Sr62TK TK and an NLR (Sr62NLR), and we identify the corresponding AvrSr62 effector. AvrSr62 binds to the N-terminal kinase 1 of Sr62TK, triggering displacement of kinase 2, which activates Sr62NLR. Modeling and mutation analysis indicated that this is mediated by overlapping binding sites (i) on kinase 1 for binding AvrSr62 and kinase 2 and (ii) on kinase 2 for binding kinase 1 and Sr62NLR. Understanding this two-component resistance complex may help engineering and breeding plants for durable resistance.
Collapse
Affiliation(s)
- Renjie Chen
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jian Chen
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Oliver R Powell
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Megan A Outram
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Taj Arndell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Karthick Gajendiran
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yan L Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jibril Lubega
- National Institute of Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge, UK
| | - Yang Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael A Ayliffe
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Cheryl Blundell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Melania Figueroa
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jana Sperschneider
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Kostya Kanyuka
- National Institute of Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge, UK
| | - Dingzhong Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guitao Zhong
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Spyridon Gourdoupis
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Wilku B Meyer
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Stefan T Arold
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Peter N Dodds
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Lu P, Zhang G, Li J, Gong Z, Wang G, Dong L, Zhang H, Guo G, Su M, Wang K, Wang Y, Zhu K, Wu Q, Chen Y, Li M, Huang B, Li B, Li W, Dong L, Hou Y, Cui X, Fu H, Qiu D, Yuan C, Li H, Zhou JM, Han GZ, Chen Y, Liu Z. A wheat tandem kinase and NLR pair confers resistance to multiple fungal pathogens. Science 2025; 387:1418-1424. [PMID: 40146830 DOI: 10.1126/science.adp5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
Tandem kinase proteins underlie the innate immune systems of cereal plants, but how they initiate plant immune responses remains unclear. This report identifies wheat protein wheat tandem NBD 1 (WTN1), a noncanonical nucleotide-binding leucine-rich repeat (NLR) receptor featuring tandem nucleotide binding adaptor shared by APAF-1, plant R proteins, and CED-4 (NB-ARC) domains, required for WTK3-mediated disease resistance. Both WTK3 and its allelic variant Rwt4-known for conferring resistance to wheat powdery mildew and blast, respectively-are capable of recognizing the blast effector PWT4. They activate WTN1 to form calcium-permeable channels, akin to ZAR1 and Sr35. Thus, tandem kinase proteins and their associated NLRs operate as "sensor-executor" pairs against fungal pathogens. Additionally, evolutionary analyses reveal a coevolutionary trajectory of the tandem kinase-NLR module, highlighting their cooperative role in triggering plant immunity.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Gaojie Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Yongxing Chen
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Miaomiao Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoge Huang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yikun Hou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkui Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Jian-Min Zhou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
| |
Collapse
|
10
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Fu B, Lin Z, Yan L, Zhang Q, Liu C, Cai J, Guo W, Liu Y, Zhai W, Gong S, Xu F, Wu J. Fine-mapping of PmHHM, a broad-spectrum allele from a wheat landrace conferring both seedling and adult resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2025; 15:1489013. [PMID: 39980756 PMCID: PMC11839664 DOI: 10.3389/fpls.2024.1489013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/28/2024] [Indexed: 02/22/2025]
Abstract
Introduction Common wheat is a leading global food crop that impacts food security. Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici (Bgt), poses a significant threat to grain yield and flour quality. The identification and utilization of broad-spectrum resistance genes against PM are essential for effective disease control. Methods The resistance spectrum test during the seedling stage and the identification of resistance during the adult stage were conducted to evaluate the wheat landrace Honghuamai (HHM). Five segregating populations were investigated to assess the inheritance of PM resistance in HHM. To map its PM resitance gene, bulked segregant analysis, molecular mapping and comparative genomic analysis were also used in the present study. Results HHM shows remarkable adult resistance in the field and is nearly immune to all 25 Bgt isolates used in seedling tests, making it an excellent source of PM resistance. PM resistance in HHM was determined by a single dominant gene, temporarily named PmHHM. It was then fine-mapped to an interval with a genetic distance of 0.0031 cM and a physical distance of 187.4 kb on chromosome 4AL of the Chinese Spring reference sequence v.2.1. Four genes were identified in the target region, three of which encode nucleotide-binding leucine-rich repeat (NLR) proteins. Comparative genomic analysis revealed presence/absence variations (PAVs) of the PmHHM locus among common wheat varieties. Discussion These closely linked molecular markers will not only benefit the cloning of the gene underlying PmHHM but also facilitate the efficient utilization of the gene in breeding programs.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhixin Lin
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lijuan Yan
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Feng Xu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Reveguk T, Fatiukha A, Potapenko E, Reveguk I, Sela H, Klymiuk V, Li Y, Pozniak C, Wicker T, Coaker G, Fahima T. Tandem kinase proteins across the plant kingdom. Nat Genet 2025; 57:254-262. [PMID: 39779952 DOI: 10.1038/s41588-024-02032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Plant pathogens pose a continuous threat to global food production. Recent discoveries in plant immunity research unveiled a unique protein family characterized by an unusual resistance protein structure that combines two kinase domains. This study demonstrates the widespread occurrence of tandem kinase proteins (TKPs) across the plant kingdom. An examination of 104 plant species' genomes uncovered 2,682 TKPs. The majority (95.6%) of these kinase domains are part of the receptor-like kinase-Pelle family, which is crucial for cell surface responses in plant immunity. Notably, 90% of TKPs comprise dual kinase domains, with over 50% being pseudokinases. Over 56% of these proteins harbor 127 different integrated domains, and over 47% include a transmembrane domain. TKP pseudokinases and/or integrated domains probably serve as decoys, engaging with pathogen effectors to trigger plant immunity. The TKP Atlas we created sheds light on the mechanisms of TKP convergent molecular evolution and potential function.
Collapse
Affiliation(s)
- Tamara Reveguk
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Evgenii Potapenko
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Ivan Reveguk
- Laboratory of the Structural Biology of the Cell (BIOC), École Polytechnique, Paris, France
| | - Hanan Sela
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yinghui Li
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
14
|
Xu S, Ji X, Han H, Zhang J, Zhou S, Guo B, Yang X, Li X, Guo X, Liu T, Li L, Liu W. AcRLK2P-1, an LRR receptor protein kinase gene from Agropyron cristatum, confers leaf rust resistance in wheat. PLANT COMMUNICATIONS 2024; 5:101132. [PMID: 39257003 PMCID: PMC11671749 DOI: 10.1016/j.xplc.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Shirui Xu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Xiajie Ji
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Haiming Han
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Jinpeng Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Shenghui Zhou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Baojin Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Xinming Yang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Xiuquan Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Xiaomin Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lihui Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China.
| | - Weihua Liu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China.
| |
Collapse
|
15
|
Fu B, Zhang Q, Cai J, Guo W, Liu C, Liu Y, Zhai W, Gong S, Wu J. Identification and Precise Mapping of PmHSM, a Novel Recessive Powdery Mildew Resistance Allele from Wheat Landrace Heshangmai. PLANT DISEASE 2024; 108:3623-3630. [PMID: 39172492 DOI: 10.1094/pdis-12-23-2754-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Common wheat (Triticum aestivum L.) is the world's primary food crop, and ensuring its safe production is of utmost importance for global peace and human development. However, the continuous threat of fungal diseases, including Fusarium head scab, rusts, sharp eyespot, and powdery mildew (PM), poses a significant challenge to production. PM caused by Blumeria graminis f. sp. tritici causes substantial yield losses. Heshangmai (HSM), a wheat landrace originating from Sichuan Province, possesses high levels of resistance to PM. A comprehensive study using a large segregating population of a cross between HSM and Ningmaizi119 (NMZ119) revealed a single recessive allele conferring resistance. The gene, provisionally designated PmHSM, was located on the long arm of chromosome 4A (4AL). Molecular marker analysis, a PM response array, and an allelism test indicated that PmHSM is a novel recessive resistance gene that shares an allelic relationship with PmHHXM. Thirteen simple sequence repeat markers were developed using the sequence information of the 4AL region in the Chinese spring reference sequence version 2.1. PmHSM was flanked by the markers Xmp1567 and Xmp1444 at genetic distances of 0.11 and 0.18 cM, respectively, and cosegregated with the markers Xmp1439/Xmp1440/Xmp1442.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, P.R. China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, P.R. China
| |
Collapse
|
16
|
Cheng M, Zhang H, Zhang Y, Tang X, Wang Z, Zhang X, Song X, Li X, Cui H, Wang T, Song R, Xiao J, Wang H, Wang X. Cytological mapping of a powdery mildew resistance locus PmRc1 based on wheat-Roegneria ciliaris structural rearrangement library. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:276. [PMID: 39576288 DOI: 10.1007/s00122-024-04768-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
KEY MESSAGE A powdery mildew (Pm) resistance locus PmRc1 was identified and transferred from Roegneria ciliaris into wheat. Two compensative translocation lines carrying PmRc1 were developed. Powdery mildew (Pm), caused by the biotrophic fungal pathogen Blumeria graminis f.sp. tritici (Bgt), is a global destructive disease of bread wheat (Triticum aestivum L.). Identifying and utilizing new Pm resistance gene(s) is the most fundamental work for disease control. Roegneria ciliaris (2n = 4 x= 28, genome ScScYcYc) is a wild relative species of cultivated wheat. In this work, we evaluated wheat-R. ciliaris disomic chromosome addition lines for Pm resistance in multiple years. The introduction of R. ciliaris chromosome 1Sc into wheat enhanced resistance. The resistance locus on 1Sc was designated as PmRc1. To cytologically map PmRc1, we induced structural rearrangements using ion irradiation and increasing homoeologous chromosomal recombination. The identified 43 1Sc translocation or deletion lines were used to construct 1Sc cytological bin map by marker analysis using 111 molecular markers. Based on the Pm resistance of the characterized structural rearrangement lines, the PmRc1 locus was cytologically mapped to bin 1ScS-8 of 1Sc short arm, flanked by markers CMH93-2 and CMH114-1. Two compensatory chromosomal translocation lines (T1ScS · 1BL and T1ScS-1AS · 1AL) carrying PmRc1 were developed and assessed for their agronomic traits. Translocation chromosome T1ScS · 1BL had enhanced Pm resistance accompanied by negative effects on grain number and single plant yield. Translocation chromosome T1ScS-1AS · 1AL had enhanced Pm resistance and increased spikelet number per spike, without any obvious negative effect on other tested traits. Thus, T1ScS-1AS · 1AL is recommended preferentially used in wheat breeding for Pm resistance.
Collapse
Affiliation(s)
- Menghao Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Huajian Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Yao Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Xiong Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Xinying Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Xingyue Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Huimin Cui
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Tong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Rongrong Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China.
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
17
|
Ji Y, Yang G, Li X, Wang H, Bao Y. Development and Characterization of Two Wheat-Rye Introgression Lines with Resistance to Stripe Rust and Powdery Mildew. Int J Mol Sci 2024; 25:11677. [PMID: 39519228 PMCID: PMC11546993 DOI: 10.3390/ijms252111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Rye (Secale cereale L.) genes, which contribute to the tertiary gene pool of wheat, include multiple disease resistance genes useful for the genetic improvement of wheat. Introgression lines are the most valuable materials for wheat breeding because of their small alien segments and limited or lack of linkage drag. In the present study, wheat-rye derivative lines SN21627-2 and SN21627-6 were produced via distant hybridization. A genomic in situ hybridization analysis revealed that SN21627-2 and SN21627-6 lack alien segments, while a multi-color fluorescence in situ hybridization analysis detected structural changes in both introgression lines. At the seedling and adult plant stages, SN21627-2 and SN21627-6 were highly resistant to stripe rust and powdery mildew. Primers for 86 PCR-based landmark unique gene markers and 345 rye-specific SLAF markers were used to amplify SN21627-2 and SN21627-6 genomic DNA. Eight markers specific to rye chromosome 2R were detected in both introgression lines, implying these lines carry chromosome 2R segments with genes conferring stripe rust and powdery mildew resistance. Therefore, SN21627-2 and SN21627-6 are resistant to more than one major wheat disease, making them promising bridging parents for breeding disease-resistant wheat lines.
Collapse
Affiliation(s)
- Yuzhou Ji
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Guotang Yang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Honggang Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yinguang Bao
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
18
|
Liu Y, You H, Li H, Zhang C, Guo H, Huang X, Zhang Q, Zhang X, Ma C, Wang Y, Li T, Ji W, Kang Z, Zhang H. TaNAC1 boosts powdery mildew resistance by phosphorylation-dependent regulation of TaSec1a and TaCAMTA4 via PP2Ac/CDPK20. THE NEW PHYTOLOGIST 2024; 244:635-653. [PMID: 39183373 DOI: 10.1111/nph.20070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
The integrity of wheat (Triticum aestivum) production is increasingly jeopardized by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), particularly amid the vicissitudes of climate change. Here, we delineated the role of a wheat transcription factor, TaNAC1, which precipitates cellular apoptosis and fortifies resistance against Bgt. Utilizing BiFC, co-immunoprecipitation, protein quantification, luciferase report assays, we determined that cytoplasmic TaNAC1-7A undergoes phosphorylation at the S184/S258 sites by TaCDPK20, facilitating its nuclear translocation. This migration appears to prime further phosphorylation by TaMPK1, thereby enhancing transcriptional regulatory activity. Notably, the apoptotic activity of phosphorylated TaNAC1-7A is negatively modulated by the nuclear protein phosphatase PP2Ac. Furthermore, activation of TaNAC1 phosphorylation initiates transcription of downstream genes TaSec1a and TaCAMTA4, through binding to the C[T/G]T[N7]A[A/C]G nucleic acid motif. Suppression of TaNAC1, TaCDPK20, and TaMPK1 in wheat compromises its resistance to Bgt strain E09, whereas overexpression of TaNAC1 and silencing of PP2Ac markedly elevate resistance levels. Our results reveal the pivotal role of TaNAC1 in basal resistance which is mediated by its effects on homotypic fusion, vacuolar protein sorting, and the expression of defense-related genes. The findings highlight the potential through targeting TaNAC1 and its regulators as a strategy for improving wheat's resistance to fungal pathogens.
Collapse
Affiliation(s)
- Yuanming Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongguang You
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanping Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chujun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingdong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
19
|
Xing L, Gu T, Shi F, Jin Y, Fu X, Han G, Xu H, Zhou Y, Liu W, He M, An D. Characterization of a Powdery Mildew Resistance Gene in Wheat Breeding Line Jingzi 102 Using Bulk Segregant RNA Sequencing. PLANT DISEASE 2024; 108:3084-3091. [PMID: 38853337 DOI: 10.1094/pdis-02-24-0297-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA sequencing combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 centimorgan, respectively, corresponding to the bread wheat genome of Chinese Spring (International Wheat Genome Sequencing Consortium RefSeq v2.1) 703.8 to 707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Lixian Xing
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| |
Collapse
|
20
|
Sertse D, Fetene A, Leon J, You FM, Cloutier S, McCartney CA. Tracing post-domestication historical events and screening pre-breeding germplasm from large gene pools in wheat in the absence of phenotype data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:237. [PMID: 39340687 DOI: 10.1007/s00122-024-04738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Wheat, particularly common wheat (Triticum aestivum L.), is a major crop accounting for 25% of the world cereal production and thriving in diverse ecogeographic regions. Its adaptation to diverse environments arises from its three distinct genomes adapted to different environments and post-domestication anthropogenic interventions. In search of key genomic regions revealing historic events and breeding significance to common wheat, we performed genome scan and genome-environment association (GEA) analyses using high-marker density genotype datasets. Whole-genome scans revealed highly differentiated regions on chromosomes 2A, 3B, and 4A. In-depth analyses corroborated our previous prediction of the 4A differentiated region signifying the separation between Spelt/Macha and other wheat types. Individual chromosome scans captured key introgressions, including one from T. timopheevii and one from Thinopyrum ponticum on 2B and 3D, respectively, as well as known genes such as Vrn-A1 on 5A. GEA highlighted loci linked to latitude-induced environmental variations, influencing traits such as photoperiodism and responses to abiotic stress. Variation at the Vrn-A1 locus on 5A assigned accessions to two haplotypes (6% and 94%). Further analysis on Vrn-A1 coding gene revealed four subgroups of the major haplotype, while the minor haplotype remained undifferentiated. Analyses at differentiated loci mostly dichotomized the population, illustrating the possibility of isolating pre-breeding materials with desirable traits from large gene pools in the absence of phenotype data. Given the current availability of broad genetic data, the genome-scan-GEA hybrid can be an efficient and cost-effective approach for pinpointing environmentally resilient pre-breeding germplasm from vast gene pools, including gene banks regardless of trait characterization.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Aramde Fetene
- Department of Environmental Planning and Landscape Design, EiABC, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jen Leon
- Department of Plant Breeding, University of Bonn, Bonn, Germany
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
21
|
Lin X, Wang J, Hou Z, Ren S, Wang W, Yang Y, Yi Y, Zhang Y, Li R. Antifungal Potential and Mechanism of Bacillus velezensis HeN-7 Isolated from Tobacco Leaves on Bipolaris sorokiniana. Curr Microbiol 2024; 81:340. [PMID: 39225871 DOI: 10.1007/s00284-024-03858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Wheat leaf blight caused by Bipolaris sorokiniana is a widespread fungal disease that poses a serious risk to wheat. Biological control without causing environmental pollution is one of the safest and most effective method to control plant diseases. The antagonistic bacterial strain HeN-7 (identified as Bacillus velezensis) was isolated from tobacco leaves cultivated in Henan province, China. The results of different concentrations of cell-free supernatant (CFS) from HeN-7 culture against B. sorokiniana mycelia showed that 20% HeN-7 CFS (v/v) reached the maximum inhibition rate of 96%. In the potted plants control assay, B. velezensis HeN-7 CFS exhibited remarkable biocontrol activity on the wheat infected with B. sorokiniana, the best pot control efficacy was 65% at 20% CFS. The research on the mechanism of action demonstrated that HeN-7 CFS induced the membrane lipid peroxidation in B. sorokiniana, leading to the disruption of cell membrane integrity and resulting in the leakage of cell contents; in addition, the intracellular mitochondrial membrane potential in mycelium dissipated and reactive oxygen species accumulated, thereby inhibiting the growth of B. sorokiniana. These results indicate that B. velezensis HeN-7 is a promising candidate as a biological control agent against Bipolaris sorokiniana infection.
Collapse
Affiliation(s)
- Xiaojie Lin
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jianwei Wang
- Key Laboratory of Eco-Environment and Tobacco Leaf Quality, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhipeng Hou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Shiming Ren
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenxiu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yanhui Yang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yanjie Yi
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yanling Zhang
- Key Laboratory of Eco-Environment and Tobacco Leaf Quality, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Ruifang Li
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
22
|
He H, Chen Z, Fan R, Zhang J, Zhu S, Wang J, Zhang Q, Gao A, Gong S, Zhang L, Li Y, Zhao Y, Krattinger SG, Shen QH, Li H, Wang Y. A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew. Nat Commun 2024; 15:6512. [PMID: 39095395 PMCID: PMC11297308 DOI: 10.1038/s41467-024-50909-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.
Collapse
Affiliation(s)
- Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| | - Zhaozhao Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shanying Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiale Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qianyuan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Anli Gao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yitong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
23
|
Sharma D, Budhlakoti N, Kumari A, Saini DK, Sharma A, Yadav A, Mir RR, Singh AK, Vikas VK, Singh GP, Kumar S. Exploring the genetic architecture of powdery mildew resistance in wheat through QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386494. [PMID: 39022610 PMCID: PMC11251950 DOI: 10.3389/fpls.2024.1386494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.
Collapse
Affiliation(s)
- Divya Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Centre for Agriculture Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, Ludhiana, India
| | - Anshu Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aakash Yadav
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Department of Genetics and Plant Breeding , Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Amit Kumar Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V. K. Vikas
- Divison of Crop Improvement, ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, Tamilnadu, India
| | - Gyanendra Pratap Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
24
|
Hou F, Chen H, Zhang T, Jin Y, Kong L, Liu X, Xing L, Cao A, Zhang R. Introgression of an All-Stage and Broad-Spectrum Powdery Mildew Resistance Gene Pm3VS from Dasypyrum villosum Chromosome 3V into Wheat. PLANT DISEASE 2024; 108:2073-2080. [PMID: 38389384 DOI: 10.1094/pdis-11-23-2495-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious disease that threatens wheat production globally. It is imperative to explore novel resistance genes to control this disease by developing and planting resistant varieties. Here, we identified a wheat-Dasypyrum villosum 3V (3D) disomic substitution line, NAU3815 (2n = 42), with a high level of powdery mildew resistance at both the seedling and adult-plant stages. Subsequently, NAU3815 was used to generate recombination between chromosomes 3V and 3D. Through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and 3VS- and 3VL-specific markers analysis, four introgression lines were developed from the selfing progenies of 3V and 3D double monosomic line NAU3816, which was derived from the F1 hybrids of NAU3815/NAU0686. There were t3VS (3D) ditelosomic substitution line NAU3817, t3VL (3D) ditelosomic substitution line NAU3818, homozygous T3DL·3VS translocation line NAU3819, and homozygous T3DS·3VL translocation line NAU3820. Powdery mildew tests of these lines confirmed the presence of an all-stage and broad-spectrum powdery mildew resistance gene, Pm3VS, located on chromosome arm 3VS. When compared with the recurrent parent NAU0686 plants, the T3DL·3VS translocation line NAU3819 showed no obvious negative effect on yield-related traits. However, the introduction of the T3DL·3VS translocated chromosome had a strong effect on reducing the flag-leaf length. Consequently, the T3DL·3VS translocation line NAU3819 provides a new germplasm in breeding for both resistance and plant architecture.
Collapse
Affiliation(s)
- Fu Hou
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Area in Jiangsu, Huaian 223001, China
| | - Heyu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Xiaoxue Liu
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
25
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
26
|
Wei Y, Zhang T, Jin Y, Li W, Kong L, Liu X, Xing L, Cao A, Zhang R. Introgression of an adult-plant powdery mildew resistance gene Pm4VL from Dasypyrum villosum chromosome 4V into bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1401525. [PMID: 38966140 PMCID: PMC11222578 DOI: 10.3389/fpls.2024.1401525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) seriously threatens wheat production worldwide. It is imperative to identify novel resistance genes from wheat and its wild relatives to control this disease by host resistance. Dasypyrum villosum (2n = 2x = 14, VV) is a relative of wheat and harbors novel genes for resistance against multi-fungal diseases. In the present study, we developed a complete set of new wheat-D. villosum disomic introgression lines through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and molecular markers analysis, including four disomic substitution lines (2n=42) containing respectively chromosomes 1V#6, 2V#6, 3V#6, and 6V#6, and four disomic addition lines (2n=44) containing respectively chromosomes 4V#6, 5V#6, 6V#6 and 7V#6. These lines were subsequently evaluated for their responses to a mixture Bgt isolates at both seedling and adult-plant stages. Results showed that introgression lines containing chromosomes 3V#6, 5V#6, and 6V#6 exhibited resistance at both seedling and adult-plant stages, whereas the chromosome 4V#6 disomic addition line NAU4V#6-1 exhibited a high level of adult plant resistance to powdery mildew. Moreover, two translocation lines were further developed from the progenies of NAU4V#6-1 and the Ph1b mutation line NAU0686-ph1b. They were T4DL·4V#6S whole-arm translocation line NAU4V#6-2 and T7DL·7DS-4V#6L small-fragment translocation line NAU4V#6-3. Powdery mildew tests of the two lines confirmed the presence of an adult-plant powdery mildew resistance gene, Pm4VL, located on the terminal segment of chromosome arm 4V#6L (FL 0.6-1.00). In comparison with the recurrent parent NAU0686 plants, the T7DL·7DS-4V#6L translocation line NAU4V#6-3 showed no obvious negative effect on yield-related traits, providing a new germplasm in breeding for resistance.
Collapse
Affiliation(s)
- Yi Wei
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Wen Li
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Xiaoxue Liu
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Liu X, Yang C, Wu S, Dong H, Wang G, Han X, Fan B, Shang Y, Dang C, Xie C, Wang Z. Genetic Basis Identification of a NLR Gene, TaRGA5-like, That Confers Partial Powdery Mildew Resistance in Wheat SJ106. Int J Mol Sci 2024; 25:6603. [PMID: 38928313 PMCID: PMC11204014 DOI: 10.3390/ijms25126603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Wheat powdery mildew is an important fungal disease that seriously jeopardizes wheat production, which poses a serious threat to food safety. SJ106 is a high-quality, disease-resistant spring wheat variety; this disease resistance is derived from Wheat-wheatgrass 33. In this study, the powdery mildew resistance genes in SJ106 were located at the end of chromosome 6DS, a new disease resistance locus tentatively named PmSJ106 locus. This interval was composed of a nucleotide-binding leucine-rich repeat (NLR) gene cluster containing 19 NLR genes. Five NLRs were tandem duplicated genes, and one of them (a coiled coil domain-nucleotide binding site-leucine-rich repeat (CC-NBS-LRR; CNL) type gene, TaRGA5-like) expressed 69-836-fold in SJ106 compared with the susceptible control. The genome DNA and cDNA sequences of TaRGA5-like were amplified from SJ106, which contain several nucleotide polymorphisms in LRR regions compared with susceptible individuals and Chinese Spring. Overexpression of TaRGA5-like significantly increased resistance to powdery mildew in susceptible receptor wheat Jinqiang5. However, Virus induced gene silence (VIGS) of TaRGA5-like resulted in only a small decrease of SJ106 in disease resistance, presumably compensated by other NLR duplicated genes. The results suggested that TaRGA5-like confers partial powdery mildew resistance in SJ106. As a member of the PmSJ106 locus, TaRGA5-like functioned together with other NLR duplicated genes to improve wheat resistance to powdery mildew. Wheat variety SJ106 would become a novel and potentially valuable germplasm for powdery mildew resistance.
Collapse
Affiliation(s)
- Xiaoying Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Chenxiao Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Siqi Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Huixuan Dong
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Guangyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Xinyue Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Baoli Fan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China;
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE), State Key Laboratory for Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (C.D.); (C.X.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE), State Key Laboratory for Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (C.D.); (C.X.)
| | - Zhenying Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| |
Collapse
|
28
|
Zhao Y, Dong Z, Miao J, Liu Q, Ma C, Tian X, He J, Bi H, Yao W, Li T, Gill HS, Zhang Z, Cao A, Liu B, Li H, Sehgal SK, Liu W. Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance. Nat Commun 2024; 15:4796. [PMID: 38839783 PMCID: PMC11153570 DOI: 10.1038/s41467-024-49257-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Powdery mildew is a devastating disease that affects wheat yield and quality. Wheat wild relatives represent valuable sources of disease resistance genes. Cloning and characterization of these genes will facilitate their incorporation into wheat breeding programs. Here, we report the cloning of Pm57, a wheat powdery mildew resistance gene from Aegilops searsii. It encodes a tandem kinase protein with putative kinase-pseudokinase domains followed by a von Willebrand factor A domain (WTK-vWA), being ortholog of Lr9 that mediates wheat leaf rust resistance. The resistance function of Pm57 is validated via independent mutants, gene silencing, and transgenic assays. Stable Pm57 transgenic wheat lines and introgression lines exhibit high levels of all-stage resistance to diverse isolates of the Bgt fungus, and no negative impacts on agronomic parameters are observed in our experimental set-up. Our findings highlight the emerging role of kinase fusion proteins in plant disease resistance and provide a valuable gene for wheat breeding.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, China
| | - Jingnan Miao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qianwen Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiubin Tian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinqiu He
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huihui Bi
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tao Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Aizhong Cao
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huanhuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
29
|
Jin Y, Yu Z, Su F, Fang T, Liu S, Xu H, Wang J, Xiao B, Han G, Li H, Ma P. Evaluation and Identification of Powdery Mildew Resistance Genes in Aegilops tauschii and Emmer Wheat Accessions. PLANT DISEASE 2024; 108:1670-1681. [PMID: 38173259 DOI: 10.1094/pdis-08-23-1667-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.
Collapse
Affiliation(s)
- Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ziyang Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Fuyu Su
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Tianying Fang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shuang Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
30
|
Asuke S, Morita K, Shimizu M, Abe F, Terauchi R, Nago C, Takahashi Y, Shibata M, Yoshioka M, Iwakawa M, Kishi-Kaboshi M, Su Z, Nasuda S, Handa H, Fujita M, Tougou M, Hatta K, Mori N, Matsuoka Y, Kato K, Tosa Y. Evolution of wheat blast resistance gene Rmg8 accompanied by differentiation of variants recognizing the powdery mildew fungus. NATURE PLANTS 2024; 10:971-983. [PMID: 38898164 DOI: 10.1038/s41477-024-01711-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
Wheat blast, a devastating disease having spread recently from South America to Asia and Africa, is caused by Pyricularia oryzae (synonym of Magnaporthe oryzae) pathotype Triticum, which first emerged in Brazil in 1985. Rmg8 and Rmg7, genes for resistance to wheat blast found in common wheat and tetraploid wheat, respectively, recognize the same avirulence gene, AVR-Rmg8. Here we show that an ancestral resistance gene, which had obtained an ability to recognize AVR-Rmg8 before the differentiation of Triticum and Aegilops, has expanded its target pathogens. Molecular cloning revealed that Rmg7 was an allele of Pm4, a gene for resistance to wheat powdery mildew on 2AL, whereas Rmg8 was its homoeologue on 2BL ineffective against wheat powdery mildew. Rmg8 variants with the ability to recognize AVR-Rmg8 were distributed not only in Triticum spp. but also in Aegilops speltoides, Aegilops umbellulata and Aegilops comosa. This result suggests that the origin of resistance gene(s) recognizing AVR-Rmg8 dates back to the time before differentiation of A, B, S, U and M genomes, that is, ~5 Myr before the emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested that, in the evolutionary process thereafter, some of their variants gained the ability to recognize the wheat powdery mildew fungus and evolved into genes controlling dual resistance to wheat powdery mildew and wheat blast.
Collapse
Affiliation(s)
- Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kohei Morita
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chika Nago
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yoshino Takahashi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mai Shibata
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mizuki Iwakawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mitsuko Kishi-Kaboshi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Zhuo Su
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Handa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masaya Fujita
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Makoto Tougou
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Koichi Hatta
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoki Mori
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| |
Collapse
|
31
|
Li M, Zhang H, Xiao H, Zhu K, Shi W, Zhang D, Wang Y, Yang L, Wu Q, Xie J, Chen Y, Qiu D, Guo G, Lu P, Li B, Dong L, Li W, Cui X, Li L, Tian X, Yuan C, Li Y, Yu D, Nevo E, Fahima T, Li H, Dong L, Zhao Y, Liu Z. A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew. Nat Commun 2024; 15:3124. [PMID: 38600164 PMCID: PMC11006675 DOI: 10.1038/s41467-024-47497-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huixin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Shi
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dong Zhang
- Beijing PlantTech Biotechnology Co., Ltd., Beijing, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lingchuan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dazhao Yu
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya City, Hainan Province, China.
| |
Collapse
|
32
|
Zhao Y, Han G, Qie Y, Song J, Zi Y, Xiao B, Wang J, Qian Z, Huang X, Liu R, Zhang J, Song L, Jin Y, Ma P. Characterization of the powdery mildew resistance locus in wheat breeding line Jimai 809 and its breeding application. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:28. [PMID: 38545461 PMCID: PMC10963687 DOI: 10.1007/s11032-024-01467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/15/2024] [Indexed: 04/24/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01467-8.
Collapse
Affiliation(s)
- Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021 China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035 China
| | - Jianmin Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yan Zi
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Xiaomei Huang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Lihong Song
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005 China
| |
Collapse
|
33
|
Li H, Men W, Ma C, Liu Q, Dong Z, Tian X, Wang C, Liu C, Gill HS, Ma P, Zhang Z, Liu B, Zhao Y, Sehgal SK, Liu W. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat Commun 2024; 15:2449. [PMID: 38503771 PMCID: PMC10951266 DOI: 10.1038/s41467-024-46814-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.
Collapse
Affiliation(s)
- Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenqiang Men
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, PR China
| | - Xiubin Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, PR China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
34
|
Bernasconi Z, Stirnemann U, Heuberger M, Sotiropoulos AG, Graf J, Wicker T, Keller B, Sánchez-Martín J. Mutagenesis of Wheat Powdery Mildew Reveals a Single Gene Controlling Both NLR and Tandem Kinase-Mediated Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:264-276. [PMID: 37934013 DOI: 10.1094/mpmi-09-23-0136-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (Pm) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify Avr genes in Bgt by generating gain-of-virulence mutants on Pm genes. We first identified six Bgt mutants with gain of virulence on Pm3b and Pm3c. They all had point mutations, deletions or insertions of transposable elements within the corresponding AvrPm3b2/c2 gene or its promoter region. We further selected six mutants on Pm3a, aiming to identify the yet unknown AvrPm3a3 recognized by Pm3a, in addition to the previously described AvrPm3a2/f2. Surprisingly, Pm3a virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene WTK4. No virulence toward 11 additional R genes tested was observed, indicating that the gain of virulence was specific for Pm3a and WTK4. Several independently obtained Pm3a-WTK4 mutants have mutations in Bgt-646, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that Bgt-646 regulates a subset of effector genes. We conclude that Bgt-646 is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ursin Stirnemann
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alexandros G Sotiropoulos
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Centre for Crop Health, University of Southern Queensland, Darling Heights, Queensland, Australia
| | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
35
|
Liu Y, Hou S, Chen S. Kinase fusion proteins: intracellular R-proteins in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:278-282. [PMID: 38016865 DOI: 10.1016/j.tplants.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Resistance (R) genes in the Triticeae tribe include not only genes encoding the canonical intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) but also genes encoding kinase fusion proteins (KFPs). Exploring these unconventional KFPs may expand the scope of effector-triggered immunity (ETI) and will have significant implications for crop improvement.
Collapse
Affiliation(s)
- Yukun Liu
- College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, Yunnan 650224, China.
| | - Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China.
| | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
36
|
Xue S, Wang H, Ma Y, Sun T, Wang Y, Meng F, Wang X, Yang Z, Zhang J, Du J, Li S, Li Z. Fine mapping of powdery mildew resistance gene PmXNM in a Chinese wheat landrace Xiaonanmai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:35. [PMID: 38286845 DOI: 10.1007/s00122-024-04544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
KEY MESSAGE Powdery mildew resistance gene PmXNM, originated from the Chinese wheat landrace Xiaonanmai, was delimited to a 300.7-kb interval enriched with resistance genes. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease threatening the yield and quality of wheat worldwide. The use of broad-spectrum disease resistance genes from wheat landraces is an effective strategy to prevent this pathogen. Chinese wheat landrace Xiaonanmai (XNM) was immune to 23 tested Bgt isolates at the seedling stage. The F1, F2, and F2:4 progenies derived from the cross between XNM and Chinese Spring (CS) were used in this study. Genetic analysis revealed that powdery mildew resistance in XNM was controlled by a single dominant gene, temporarily designated PmXNM. Bulked segregant analysis and molecular mapping delimited PmXNM to the distal terminal region of chromosome 4AL flanked by markers caps213923 and kasp511718. The region carrying the PmXNM locus was approximately 300.7 kb and contained nine high-confidence genes according to the reference genome sequence of CS. Five of these genes, annotated as disease resistance RPP13-like proteins 1, were clustered in the target region. Haplotype analysis using the candidate gene-specific markers indicated that the majority of 267 common wheat accessions (75.3%) exhibited extensive gene losses at the PmXNM locus, as confirmed by aligning the targeted genome sequences of CS with those of other sequenced wheat cultivars. Seven candidate gene-specific markers have proven effective for marker-assisted introgression of PmXNM into modern elite cultivars.
Collapse
Affiliation(s)
- Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Huan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yuyu Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Tiepeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yingxue Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Fan Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xintian Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zihan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jieli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jinxuan Du
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhifang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
37
|
Wang J, Xu H, Qie Y, Han R, Sun X, Zhao Y, Xiao B, Qian Z, Huang X, Liu R, Zhang J, Liu C, Jin Y, Ma P. Evaluation and identification of powdery mildew-resistant genes in 137 wheat relatives. Front Genet 2024; 15:1342239. [PMID: 38327832 PMCID: PMC10847533 DOI: 10.3389/fgene.2024.1342239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Powdery mildew is one of the most severe diseases affecting wheat yield and quality and is caused by Blumeria graminis f. sp. tritici (Bgt). Host resistance is the preferred strategy to prevent this disease. However, the narrow genetic basis of common wheat has increased the demand for diversified germplasm resources against powdery mildew. Wheat relatives, especially the secondary gene pool of common wheat, are important gene donors in the genetic improvement of common wheat because of its abundant genetic variation and close kinship with wheat. In this study, a series of 137 wheat relatives, including 53 Triticum monococcum L. (2n = 2x = 14, AA), 6 T. urartu Thumanjan ex Gandilyan (2n = 2x = 14, AA), 9 T. timopheevii Zhuk. (2n = 4x = 28, AAGG), 66 T. aestivum subsp. spelta (2n = 6x = 42, AABBDD), and 3 Aegilops speltoides (2n = 2x = 14, SS) were systematically evaluated for their powdery mildew resistance and composition of Pm genes. Out of 137 (60.58%) accessions, 83 were resistant to Bgt isolate E09 at the seedling stage, and 116 of 137 (84.67%) wheat relatives were resistant to the mixture of Bgt isolates at the adult stage. This indicates that these accessions show a high level of resistance to powdery mildew. Some 31 markers for 23 known Pm genes were used to test these 137 accessions, and, in the results, only Pm2, Pm4, Pm6, Pm58, and Pm68 were detected. Among them, three Pm4 alleles (Pm4a, Pm4b, and Pm4f) were identified in 4 T. subsp. spelta accessions. q-RT PCR further confirmed that Pm4 alleles played a role in disease resistance in these four accessions. The phylogenetic tree showed that the kinship of Pm4 was close to Pm24 and Sr62. This study not only provides reference information and valuable germplasm resources for breeding new wheat varieties with disease resistance but also lays a foundation for enriching the genetic basis of wheat resistance to powdery mildew.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Science, Yantai, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Xiaomei Huang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
38
|
Lin M, Islamov B, Aleliūnas A, Armonienė R, Gorash A, Meigas E, Ingver A, Tamm I, Kollist H, Strazdiņa V, Bleidere M, Brazauskas G, Lillemo M. Genome-wide association analysis identifies a consistent QTL for powdery mildew resistance on chromosome 3A in Nordic and Baltic spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:25. [PMID: 38240841 PMCID: PMC10799116 DOI: 10.1007/s00122-023-04529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
KEY MESSAGE QPm.NOBAL-3A is an important QTL providing robust adult plant powdery mildew resistance in Nordic and Baltic spring wheat, aiding sustainable crop protection and breeding. Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, poses a significant threat to bread wheat (Triticum aestivum L.), one of the world's most crucial cereal crops. Enhancing cultivar resistance against this devastating disease requires a comprehensive understanding of the genetic basis of powdery mildew resistance. In this study, we performed a genome-wide association study (GWAS) using extensive field trial data from multiple environments across Estonia, Latvia, Lithuania, and Norway. The study involved a diverse panel of recent wheat cultivars and breeding lines sourced from the Baltic region and Norway. We identified a major quantitative trait locus (QTL) on chromosome 3A, designated as QPm.NOBAL-3A, which consistently conferred high resistance to powdery mildew across various environments and countries. Furthermore, the consistency of the QTL haplotype effect was validated using an independent Norwegian spring wheat panel. Subsequent greenhouse seedling inoculations with 15 representative powdery mildew isolates on a subset of the GWAS panel indicated that this QTL provides adult plant resistance and is likely of race non-specific nature. Moreover, we developed and validated KASP markers for QPm.NOBAL-3A tailored for use in breeding. These findings provide a critical foundation for marker-assisted selection in breeding programs aimed at pyramiding resistance QTL/genes to achieve durable and broad-spectrum resistance against powdery mildew.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway
| | - Bulat Islamov
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva Alevik, 48309, Jõgeva Maakond, Estonia
| | - Andrius Aleliūnas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344, Akademija, Lithuania
| | - Rita Armonienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344, Akademija, Lithuania
| | - Andrii Gorash
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344, Akademija, Lithuania
| | - Egon Meigas
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Anne Ingver
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva Alevik, 48309, Jõgeva Maakond, Estonia
| | - Ilmar Tamm
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva Alevik, 48309, Jõgeva Maakond, Estonia
| | - Hannes Kollist
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Vija Strazdiņa
- Institute of Agricultural Resources and Economics, Zinatnes Iela 2, Cesis County, 4126, Latvia
| | - Māra Bleidere
- Institute of Agricultural Resources and Economics, Zinatnes Iela 2, Cesis County, 4126, Latvia
| | - Gintaras Brazauskas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344, Akademija, Lithuania
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.
| |
Collapse
|
39
|
Lu C, Du J, Chen H, Gong S, Jin Y, Meng X, Zhang T, Fu B, Molnár I, Holušová K, Said M, Xing L, Kong L, Doležel J, Li G, Wu J, Chen P, Cao A, Zhang R. Wheat Pm55 alleles exhibit distinct interactions with an inhibitor to cause different powdery mildew resistance. Nat Commun 2024; 15:503. [PMID: 38218848 PMCID: PMC10787760 DOI: 10.1038/s41467-024-44796-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
Powdery mildew poses a significant threat to wheat crops worldwide, emphasizing the need for durable disease control strategies. The wheat-Dasypyrum villosum T5AL·5 V#4 S and T5DL·5 V#4 S translocation lines carrying powdery mildew resistant gene Pm55 shows developmental-stage and tissue-specific resistance, whereas T5DL·5 V#5 S line carrying Pm5V confers resistance at all stages. Here, we clone Pm55 and Pm5V, and reveal that they are allelic and renamed as Pm55a and Pm55b, respectively. The two Pm55 alleles encode coiled-coil, nucleotide-binding site-leucine-rich repeat (CNL) proteins, conferring broad-spectrum resistance to powdery mildew. However, they interact differently with a linked inhibitor gene, SuPm55 to cause different resistance to wheat powdery mildew. Notably, Pm55 and SuPm55 encode unrelated CNL proteins, and the inactivation of SuPm55 significantly reduces plant fitness. Combining SuPm55/Pm55a and Pm55b in wheat does not result in allele suppression or yield penalty. Our results provide not only insights into the suppression of resistance in wheat, but also a strategy for breeding durable resistance.
Collapse
Affiliation(s)
- Chuntian Lu
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jie Du
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Heyu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P.R. China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Xiangru Meng
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Bisheng Fu
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
- Institute of Germplasm Resources and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 2462, Martonvásár, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, 12619, Giza, Cairo, Egypt
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, P.R. China
| | - Jizhong Wu
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
- Institute of Germplasm Resources and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Peidu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
40
|
Li Y, Wei ZZ, Sela H, Govta L, Klymiuk V, Roychowdhury R, Chawla HS, Ens J, Wiebe K, Bocharova V, Ben-David R, Pawar PB, Zhang Y, Jaiwar S, Molnár I, Doležel J, Coaker G, Pozniak CJ, Fahima T. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. PLANT COMMUNICATIONS 2024; 5:100646. [PMID: 37415333 PMCID: PMC10811346 DOI: 10.1016/j.xplc.2023.100646] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.
Collapse
Affiliation(s)
- Yinghui Li
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Zhen-Zhen Wei
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hanan Sela
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Liubov Govta
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Rajib Roychowdhury
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Harmeet Singh Chawla
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Valeria Bocharova
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Roi Ben-David
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Center, Rishon Lezion 7505101, Israel
| | - Prerna B Pawar
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Yuqi Zhang
- Department of Crop Genomics and Bioinformatics, China Agricultural University, Beijing 100094, China
| | - Samidha Jaiwar
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Gitta Coaker
- Plant Pathology Department, University of California, Davis, Davis, CA 95616, USA
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
| |
Collapse
|
41
|
Han G, Liu H, Zhu S, Gu T, Cao L, Yan H, Jin Y, Wang J, Liu S, Zhou Y, Shi Z, He H, An D. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:66-81. [PMID: 38153293 PMCID: PMC10754004 DOI: 10.1111/pbi.14165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 12/29/2023]
Abstract
Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shanying Zhu
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Huagang He
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
42
|
Jin Y, Xiao L, Zheng J, Su F, Yu Z, Mu Y, Zhang W, Li L, Han G, Ma P. Genetic Analysis and Molecular Identification of the Powdery Mildew Resistance in 116 Elite Wheat Cultivars/Lines. PLANT DISEASE 2023; 107:3801-3809. [PMID: 37272049 DOI: 10.1094/pdis-04-23-0792-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease worldwide. Host resistance is the preferred method for limiting the disease epidemic, protecting the environment, and minimizing economic losses. In the present study, the reactions to powdery mildew for a collection of 600 wheat cultivars and breeding lines from different wheat-growing regions were tested using the Bgt isolate E09. Next, 116 resistant genotypes were identified and then crossed with susceptible wheat cultivars/lines to produce segregating populations for genetic analysis. Among them, 87, 19, and 10 genotypes displayed single, dual, and multiple genic inheritance, respectively. To identify the Pm gene(s) in those resistant genotypes, 16 molecular markers for 13 documented Pm genes were used to test the resistant and susceptible parents and their segregating populations. Of the 87 wheat genotypes that fitted the monogenic inheritance, 75 carried the Pm2a allele. Three, two, one, and two genotypes carried Pm21, Pm6, Pm4, and the recessive genes pm6 and pm42, respectively. Four genotypes did not carry any of the tested genes, suggesting that they might have other uncharacterized or new genes. The other 29 wheat cultivars/lines carried two or more of the tested Pm genes and/or other untested genes, including Pm2, Pm5, Pm6, and/or pm42. It was obvious that Pm2 was widely used in wheat production, whereas Pm1, Pm24, Pm33, Pm34, Pm35, Pm45, and Pm47 were not detected in any of these resistant wheat genotypes. This study clarified the genetic basis of the powdery mildew resistance of these wheat cultivars/lines to provide information for their rational utilization in different wheat-growing regions. Moreover, some wheat genotypes which may have novel Pm gene(s) were mined to enrich the diversity of resistance source.
Collapse
Affiliation(s)
- Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Luning Xiao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianpeng Zheng
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Fuyu Su
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ziyang Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yanjun Mu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Wenjing Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
43
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Dracatos PM, Lu J, Sánchez‐Martín J, Wulff BB. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1938-1951. [PMID: 37494504 PMCID: PMC10502761 DOI: 10.1111/pbi.14106] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
Staying ahead of the arms race against rust and mildew diseases in cereal crops is essential to maintain and preserve food security. The methodological challenges associated with conventional resistance breeding are major bottlenecks for deploying resistance (R) genes in high-yielding crop varieties. Advancements in our knowledge of plant genomes, structural mechanisms, innovations in bioinformatics, and improved plant transformation techniques have alleviated this bottleneck by permitting rapid gene isolation, functional studies, directed engineering of synthetic resistance and precise genome manipulation in elite crop cultivars. Most cloned cereal R genes encode canonical immune receptors which, on their own, are prone to being overcome through selection for resistance-evading pathogenic strains. However, the increasingly large repertoire of cloned R genes permits multi-gene stacking that, in principle, should provide longer-lasting resistance. This review discusses how these genomics-enabled developments are leading to new breeding and biotechnological opportunities to achieve durable rust and powdery mildew control in cereals.
Collapse
Affiliation(s)
- Peter M. Dracatos
- La Trobe Institute for Sustainable Agriculture & Food (LISAF)Department of Animal, Plant and Soil SciencesLa Trobe UniversityVIC 3086Australia
| | - Jing Lu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Center for Desert AgricultureKAUSTThuwalSaudi Arabia
- College of Life SciencesSichuan UniversityChengduChina
- Chengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Javier Sánchez‐Martín
- Department of Microbiology and Genetics, Spanish‐Portuguese Agricultural Research Center (CIALE)University of SalamancaSalamancaSpain
| | - Brande B.H. Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Center for Desert AgricultureKAUSTThuwalSaudi Arabia
| |
Collapse
|
45
|
Zou S, Xu Y, Li Q, Wei Y, Zhang Y, Tang D. Wheat powdery mildew resistance: from gene identification to immunity deployment. FRONTIERS IN PLANT SCIENCE 2023; 14:1269498. [PMID: 37790783 PMCID: PMC10544919 DOI: 10.3389/fpls.2023.1269498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
Powdery mildew is one of the most devastating diseases on wheat and is caused by the obligate biotrophic phytopathogen Blumeria graminis f. sp. tritici (Bgt). Due to the complexity of the large genome of wheat and its close relatives, the identification of powdery mildew resistance genes had been hampered for a long time until recent progress in large-scale sequencing, genomics, and rapid gene isolation techniques. Here, we describe and summarize the current advances in wheat powdery mildew resistance, emphasizing the most recent discoveries about the identification of genes conferring powdery mildew resistance and the similarity, diversity and molecular function of those genes. Multilayered resistance to powdery mildew in wheat could be used for counteracting Bgt, including durable, broad spectrum but partial resistance, as well as race-specific and mostly complete resistance mediated by nucleotide-binding and leucine rich repeat domain (NLR) proteins. In addition to the above mentioned layers, manipulation of susceptibility (S) and negative regulator genes may represent another layer that can be used for durable and broad-spectrum resistance in wheat. We propose that it is promising to develop effective and durable strategies to combat powdery mildew in wheat by simultaneous deployment of multilayered immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
Wang B, Meng T, Xiao B, Yu T, Yue T, Jin Y, Ma P. Fighting wheat powdery mildew: from genes to fields. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:196. [PMID: 37606731 DOI: 10.1007/s00122-023-04445-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE Host resistance conferred by Pm genes provides an effective strategy to control powdery mildew. The study of Pm genes helps modern breeding develop toward more intelligent and customized. Powdery mildew of wheat is one of the most destructive diseases seriously threatening the crop yield and quality worldwide. The genetic research on powdery mildew (Pm) resistance has entered a new era. Many Pm genes from wheat and its wild and domesticated relatives have been mined and cloned. Meanwhile, modern breeding strategies based on high-throughput sequencing and genome editing are emerging and developing toward more intelligent and customized. This review highlights mining and cloning of Pm genes, molecular mechanism studies on the resistance and avirulence genes, and prospects for genomic-assisted breeding for powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Bo Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ting Meng
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tianying Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tingyan Yue
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
47
|
Wang J, Han G, Liu H, Yan H, Jin Y, Cao L, Zhou Y, An D. Development of novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance and physical mapping of the resistance gene PmW6RS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:179. [PMID: 37548696 DOI: 10.1007/s00122-023-04433-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
KEY MESSAGE Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58-0.66-bin corresponding to 18.38 Mb in Weining rye. Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58-0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23-68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58-0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.
Collapse
Affiliation(s)
- Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
48
|
Karikari B, Lemay MA, Belzile F. k-mer-Based Genome-Wide Association Studies in Plants: Advances, Challenges, and Perspectives. Genes (Basel) 2023; 14:1439. [PMID: 37510343 PMCID: PMC10379394 DOI: 10.3390/genes14071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Genome-wide association studies (GWAS) have allowed the discovery of marker-trait associations in crops over recent decades. However, their power is hampered by a number of limitations, with the key one among them being an overreliance on single-nucleotide polymorphisms (SNPs) as molecular markers. Indeed, SNPs represent only one type of genetic variation and are usually derived from alignment to a single genome assembly that may be poorly representative of the population under study. To overcome this, k-mer-based GWAS approaches have recently been developed. k-mer-based GWAS provide a universal way to assess variation due to SNPs, insertions/deletions, and structural variations without having to specifically detect and genotype these variants. In addition, k-mer-based analyses can be used in species that lack a reference genome. However, the use of k-mers for GWAS presents challenges such as data size and complexity, lack of standard tools, and potential detection of false associations. Nevertheless, efforts are being made to overcome these challenges and a general analysis workflow has started to emerge. We identify the priorities for k-mer-based GWAS in years to come, notably in the development of user-friendly programs for their analysis and approaches for linking significant k-mers to sequence variation.
Collapse
Affiliation(s)
- Benjamin Karikari
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale P.O. Box TL 1882, Ghana
| | - Marc-André Lemay
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
49
|
Wu J, Jia H, Qiao L, Fu B, Brown-Guedira G, Nagarajan R, Yan L. Genetic basis of resistance against powdery mildew in the wheat cultivar "Tabasco". MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:56. [PMID: 37424796 PMCID: PMC10326205 DOI: 10.1007/s11032-023-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
European winter wheat cultivar "Tabasco" was reported to have resistance to powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) in China. In previous studies, Tabasco was reported to have the resistance gene designated as Pm48 on the short arm of chromosome 5D when a mapping population was phenotyped with pathogen isolate Bgt19 collected in China and was genotyped with simple sequence repeat (SSR) markers. In this study, single-nucleotide polymorphism (SNP) chips were used to rapidly determine the resistance gene by mapping a new F2 population that was developed from Tabasco and a susceptible cultivar "Ningmaizi119" and inoculated with pathogen isolate NCF-D-1-1 that was collected in the USA. The segregation of resistance in the population was found to link with Pm2 which was identified in Tabasco. Therefore, it was concluded that the previously reported Pm48 on chromosome arm 5DS in Tabasco should be the Pm2 gene on the same chromosome. The Pm2 was also found in European cultivars "Mattis" and "Claire" but not in any of the accessions from diploid wheat Aegilops tauschii or modern cultivars such as "Gallagher," "Smith's Gold," and "OK Corral" being used in the Great Plains in the USA. A KASP marker was developed to track the resistance allele Pm2 in wheat breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01402-3.
Collapse
Affiliation(s)
- Jizhong Wu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
- The Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Linyi Qiao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Bisheng Fu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Gina Brown-Guedira
- USDA-ARS Plant Science Research, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695 USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
50
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|