1
|
Tao S, Yang Y, Chen L, Xu J, Fu H, Chen H, Jiang W, Li R, Xue W, Zheng X. Electrochemical Synergistic Ni/Co-Catalyzed Carbonylative Cross-Electrophile Coupling of Aryl and Alkyl Halides with CO. JACS AU 2025; 5:1413-1420. [PMID: 40151257 PMCID: PMC11937974 DOI: 10.1021/jacsau.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Accessing unsymmetric ketones and achieving their carbon isotope labeling are crucial yet challenging tasks in both synthetic and medicinal chemistry. We report here an efficient electrochemical nickel-/cobalt-catalyzed carbonylative cross-electrophile coupling reaction. This method allows for the modular synthesis of a library of unsymmetric ketones from simple building blocks, including aryl halides, alkyl halides, and gaseous CO. The simultaneous use of nickel and cobalt salts as concerted catalysts ensures the high efficiency of this three-component carbonylative coupling. Furthermore, electrochemical reduction avoids the use of stoichiometric reductants, making this protocol more sustainable and attractive. The broad substrate scope and late-stage 13C isotope labeling of complex molecules derived from biologically active compounds highlight the practicality of this method.
Collapse
Affiliation(s)
- Shaokun Tao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yun Yang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Li Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jiaqi Xu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weidong Jiang
- School
of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Ruixiang Li
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weichao Xue
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
2
|
Fu Z, Rong B, Huang L. Pd-Catalyzed Coupling of Aryl Chloride, Isocyanides, and Thiocarboxylate To Synthesize Thioamides. Org Lett 2025; 27:2782-2787. [PMID: 40052948 DOI: 10.1021/acs.orglett.5c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Although aryl chlorides are among the most abundant and stable aromatic electrophiles, the coupling of aryl chlorides with isocyanides has remained an unsolved challenge. Herein, we report a general transformation of aryl chlorides, isocyanides, and thiocarboxylates to synthesize thioamides. The sterically hindered and electron-rich Josiphos ligand significantly facilitates the rate-determining oxidative addition step and reduces the toxicity of isocyanides toward the metal center. The combination of thiocarboxylate as the nucleophile and Josiphos as the ligands enabled the coupling-tolerated various 1°, 2°, and 3° isocyanides, which provides a rapid, efficient, and versatile method for the synthesis of large quantities of thioamides, including those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Zeyuan Fu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bingjie Rong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Thondur JR, Sharada DS, Satyanarayana G. Electrochemical stereoselective borylation of Morita-Baylis-Hillman adducts to functionalized allylic boronates. Chem Commun (Camb) 2024; 60:12553-12556. [PMID: 39380465 DOI: 10.1039/d4cc04187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we disclose a highly efficient and facile electrochemical borylation of Morita-Baylis-Hillman adducts without using any metal catalyst. This methodology demonstrates excellent regio- and stereo-selectivity, leading to a wide range of functionalized E-allylic boronates, including derivatives of ibuprofen and menthol. Under mild and straightforward conditions, this redox-neutral reaction, combined with the scalability and synthetic applications of the allylic boronate esters, underscores its potential for a wide range of applications in organic synthesis.
Collapse
Affiliation(s)
- Jagadeesh Reddy Thondur
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Kandi - 502 284, Telangana, India.
| | - Duddu S Sharada
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Kandi - 502 284, Telangana, India.
- Department of Green Energy Technology, Pondicherry University, Pondicherry 605014, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Kandi - 502 284, Telangana, India.
| |
Collapse
|
4
|
Teng BH, Bao ZP, Zhao Y, Wu XF. Nickel-Catalyzed Four-Component Carbonylation of 1,3-Butadiene To Access β,γ-Unsaturated Ketones. Org Lett 2024; 26:4779-4783. [PMID: 38807481 PMCID: PMC11165585 DOI: 10.1021/acs.orglett.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
A new strategy to obtain β,γ-unsaturated ketones via the cross-coupling of 1,3-butadiene, alkyl bromides, and arylboronic acids under 1 bar of CO with nickel as the catalyst has been developed. This newly developed four-component carbonylation procedure features advantages including using a cheap catalytic system, high step economy, mild reaction conditions, and excellent 1,4-regioselectivity, thereby providing a sustainable and alternative tool for β,γ-unsaturated ketones production compared to the present tactics. To elucidate the application potential of this method, olefin synthons are derived from the representative coupling product.
Collapse
Affiliation(s)
- Bing-Hong Teng
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Zhi-Peng Bao
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Yingying Zhao
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Xiao-Feng Wu
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Zhang Y, Cao Q, Xi Y, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylative Negishi Cross-Coupling of Unactivated Secondary Alkyl Electrophiles with 1 atm CO Gas. J Am Chem Soc 2024; 146:7971-7978. [PMID: 38483538 DOI: 10.1021/jacs.4c02023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
We describe a nickel-catalyzed carbonylative cross-coupling of unactivated secondary alkyl electrophiles with the organozinc reagent at atmospheric CO gas, thus allowing the expedient construction of unsymmetric dialkyl ketones with broad functional group tolerance. The leverage of a newly developed NN2-pincer type ligand enables the chemoselective three-component carbonylation by overcoming the competing Negishi coupling, the undesired β-hydride elimination, and dehalogenation of alkyl iodides side pathways. Both alkyl iodides and alkyl tosylates are compatible in the single electron transfer involved mechanism.
Collapse
Affiliation(s)
- Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qihang Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Liang Q, Cai Y, Jiang W, Pang M, Fan L, Zhang G. Palladium-catalyzed allylation and carbonylation: access to allylhydrazones and allyl acylhydrazones. Chem Commun (Camb) 2024; 60:1638-1641. [PMID: 38235749 DOI: 10.1039/d3cc05531k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A palladium-catalyzed allylation of hydrazines with allyl alcohols and aldehydes was developed, enabling the syntheses of a series of allylhydrazones in good to excellent yields with high regioselectivity. Furthermore, the four-component tandem allylation carbonylation of hydrazines with allyl alcohols and aldehydes was established using the catalytic system, producing various allyl acylhydrazones. Additionally, the functionalized allyl acylhydrazones could be smoothly constructed with the catalytic system employing allylhydrazones as a partner. The catalytic system exhibited good functional tolerance with excellent regioselectivities and scaled-up capability, overcoming the limitations of chemoselectivity of the multicomponent transformation and poor conversion of the weak nucleophile.
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Wenjun Jiang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Mengdi Pang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Wu X, Wang C, Liu N, Qu J, Chen Y. Nickel-catalyzed acylzincation of allenes with organozincs and CO. Nat Commun 2023; 14:6960. [PMID: 37907542 PMCID: PMC10618444 DOI: 10.1038/s41467-023-42716-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Transition metal-catalyzed carbonylative reaction with CO gas are among the central task in organic synthesis, enabling the construction of highly valuable carbonyl compound. Here, we show an earth-abundant nickel-catalyzed three-component tandem acylzincation/cyclization sequence of allene and alkylzinc reagent with 1 atm of CO under mild conditions. This protocol is featured by broad functional group tolerance with high reaction selectivity, providing a rapid and convenient synthetic method for the construction of diverse fully substituted benzotropone derivatives. Mechanistic studies reveal that the installation of a cyano group tethered to allene moiety enables the high regio- and stereoselectivity of this acylzincation of allene, allowing the selective formation of three consecutive C-C bonds in a highly efficient manner.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China.
| |
Collapse
|
8
|
Liu N, Wu X, Qu J, Chen Y. Nickel-Catalyzed Aminocarbonylation of Aryl Iodides with 1 atm CO. Chem Asian J 2023; 18:e202201061. [PMID: 36373896 DOI: 10.1002/asia.202201061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Reported here is a nickel-catalyzed aminocarbonylation of aromatic iodides with (hetero)aryl anilines and alkyl amines under atmospheric CO pressure. The reaction features with broad substrate scope with excellent functional group tolerance, providing an expedient method for the construction of amide analogues. Notably, amino alcohols can be selectively transformed into the corresponding amides successfully without interfering the hydroxyl group under the current standard conditions.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
9
|
Wang C, Wu X, Li H, Qu J, Chen Y. Carbonylative Cross‐Coupling Reaction of Allylic Alcohols and Organoalanes with 1 atm CO Enabled by Nickel Catalysis. Angew Chem Int Ed Engl 2022; 61:e202210484. [DOI: 10.1002/anie.202210484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Haiyan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
10
|
Li M, Zhang R, Gao Q, Jiang H, Lei M, Wu W. Divergent Synthesis of Fused Tetracyclic Heterocycles from Diarylalkynes Enabled by the Selective Insertion of Isocyanide. Angew Chem Int Ed Engl 2022; 61:e202208203. [DOI: 10.1002/anie.202208203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Ruixue Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 10019 China
| | - Qiushan Gao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 10019 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
11
|
Carbonylative Cross‐Coupling Reaction of Allylic Alcohols and Organoalanes with 1 atm CO Enabled by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Li M, Zhang R, Gao Q, Jiang H, Lei M, Wu W. Divergent Synthesis of Fused Tetracyclic Heterocycles from Diarylalkynes Enabled by the Selective Insertion of Isocyanide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ruixue Zhang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Qiushan Gao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Huanfeng Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ming Lei
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Wanqing Wu
- South China University of Technology School of Chemistry & Chemical Engineering No. 381, Wushan Road, Tianhe Strict, 510640 Guangzhou CHINA
| |
Collapse
|
13
|
Escudero J, Mampuys P, Mensch C, Bheeter CB, Vroemans R, Orru RV, Harvey J, Maes BU. Synthesis of Heterocycles via Aerobic Ni-Catalyzed Imidoylation of Aromatic 1,2-Bis-nucleophiles with Isocyanides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Escudero
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Pieter Mampuys
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Carl Mensch
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Charles B. Bheeter
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Robby Vroemans
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Romano V.A. Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Center Court, Urmonderbaan 22, Geleen 6167 RD, The Netherlands
| | - Jeremy Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B3001, Belgium
| | - Bert U.W. Maes
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| |
Collapse
|
14
|
Liu N, Wu X, Wang C, Qu J, Chen Y. Nickel-catalyzed alkoxycarbonylation of aryl iodides with 1 atm CO. Chem Commun (Camb) 2022; 58:4643-4646. [PMID: 35311870 DOI: 10.1039/d2cc00876a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A nickel-catalyzed alkoxycarbonylation of aromatic iodides with alcohols under atmospheric pressure of carbon monoxide is presented here. This operationally simple protocol allows the facile synthesis of (hetero)aromatic esters, exhibiting broad substrate scope with excellent functional group tolerance. Various primary and secondary aliphatic alcohols as well as phenols are suitable for this transformation.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Hou L, Huang W, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylation of Cyclopropanol with Benzyl Bromide for Multisubstituted Cyclopentenone Synthesis. Org Lett 2022; 24:2699-2704. [PMID: 35389666 DOI: 10.1021/acs.orglett.2c00798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we reported a Ni-catalyzed carbonylation of cyclopropanol with benzyl bromide to afford multisubstituted cyclopentenone under 1 atm of CO. The reaction proceeds through cascade carbonylation of benzyl bromides, followed by generation of nickel homoenolate from cyclopropanols via β-C elimination to afford 1,4-diketones, which undergoes intramolecular Aldol condensation to furnish highly substituted cyclopentenone derivatives in moderate to good yields. The reaction exhibits high functional group tolerance with broad substrate scope.
Collapse
Affiliation(s)
- Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Darbem MP, Esteves HA, Burrow RA, Soares-Paulino AA, Pimenta DC, Stefani HA. Synthesis of unprotected glyco-alkynones via molybdenum-catalyzed carbonylative Sonogashira cross-coupling reaction. RSC Adv 2022; 12:2145-2149. [PMID: 35425248 PMCID: PMC8979075 DOI: 10.1039/d1ra08388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Herein we report a novel Mo-catalyzed carbonylative Sonogashira cross-coupling between 2-iodoglycals and terminal alkynes. The reaction displays major improvements compared to a related Pd-catalyzed procedure previously published by our group, such as utilizing unprotected sugar derivatives as starting materials and tolerance to substrates bearing chelating groups. In this work we also demonstrate the utility of the glyco-alkynone products as platform for further functionalization by synthesizing glyco-flavones via Au-catalyzed 6-endo-dig cyclization.
Collapse
Affiliation(s)
- Mariana P Darbem
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Robert A Burrow
- Departamento de Química, Universidade Federal de Santa Maria Santa Maria 97105-340 Brazil
| | - Antônio A Soares-Paulino
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | | | - Hélio A Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| |
Collapse
|
17
|
Fan P, Wang R, Wang C. Nickel/Photo-Cocatalyzed C(sp 2)-H Allylation of Aldehydes and Formamides. Org Lett 2021; 23:7672-7677. [PMID: 34553950 DOI: 10.1021/acs.orglett.1c02938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a nickel/photo-cocatalyzed C(sp2)-H allylation of aldehydes and formamides wherein both allyl acetates and allyl alcohols can be used as the allylating agents. In this reaction, radical-type umpolung of the formyl moiety is enabled by tetrabutylammonium decatungstate as a hydrogen-atom-transfer photocatalyst, whereas nickel serves to cleave the C-O bond of allyl acetates or allyl alcohols. The synergistic effect of these two catalysts provides new access to various β,γ-unsaturated ketones and amides with high selectivities.
Collapse
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Liu HW, Wang DL, Jiang NQ, Li HY, Cai ZJ, Ji SJ. Divergent synthesis of α-functionalized amides through selective N-O/C-C or N-O/C-C/C-N cleavage of aza-cyclobutanone oxime esters. Chem Commun (Camb) 2021; 57:9618-9621. [PMID: 34546230 DOI: 10.1039/d1cc03348d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, a novel sequential ring opening reaction of aza-cyclobutanone oxime esters with isocyanides is described. The reaction proceeded smoothly under redox-neutral and mild conditions, leading to a divergent synthesis of α-cyanomethylaminoamides, α-acyloxyamides and α-acylaminoamides. In these transformations, a selective N-O/C-C or N-O/C-C/C-N cleavage was achieved only by changing the iron-catalyst system. Among them, a rare sequential N-O/C-C/C-N cleavage process with a classical Passerini or Ugi multicomponent reaction can be executed in a single step. To the best of our knowledge, this work creates a novel reaction mode of cycloketone oximes and provides new opportunities for reaction design.
Collapse
Affiliation(s)
- Hua-Wei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Dian-Liang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
19
|
Chen J, Zhu S. Nickel-Catalyzed Multicomponent Coupling: Synthesis of α-Chiral Ketones by Reductive Hydrocarbonylation of Alkenes. J Am Chem Soc 2021; 143:14089-14096. [PMID: 34436887 DOI: 10.1021/jacs.1c07851] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nickel-catalyzed, multicomponent regio- and enantioselective coupling via sequential hydroformylation and carbonylation from readily available starting materials has been developed. This modular multicomponent hydrofunctionalization strategy enables the straightforward reductive hydrocarbonylation of a broad range of unactivated alkenes to produce a wide variety of unsymmetrical dialkyl ketones bearing a functionalized α-stereocenter, including enantioenriched chiral α-aryl ketones and α-amino ketones. It uses chiral bisoxazoline as a ligand, silane as a reductant, chloroformate as a safe CO source, and a racemic secondary benzyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid as the alkylation reagent. The benign nature of this process renders this method suitable for late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
20
|
Li X, Li Y, Zhang Z, Shi X, Liu R, Wang Z, Li X, Shi D. Nickel-Catalyzed Arylation of C(sp 3)-O Bonds in Allylic Alkyl Ethers with Organoboron Compounds. Org Lett 2021; 23:6612-6616. [PMID: 34387992 DOI: 10.1021/acs.orglett.1c01879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nickel-catalyzed cross-coupling of allylic alkyl ethers with organoboron compounds through the cleavage of the inert C(sp3)-O(alkyl) bonds is described. Several types of allylic alkyl ethers can be coupled with various boronic acids or their derivatives to give the corresponding products in good to excellent yields with wide functional group tolerance and excellent regioselectivity. The gram-scale reaction and late-stage modification of biologically active compounds further prove the practicality of this synthetic method.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Yuxiu Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiaolin Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
21
|
Chongdar S, Bhattacharjee S, Azad S, Samui S, Dutta S, Bal R, Bhaumik A. Nickel Nanoparticles Immobilized over Mesoporous SBA-15 for Efficient Carbonylative Coupling Reactions Utilizing CO 2: A Spotlight. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40157-40171. [PMID: 34415715 DOI: 10.1021/acsami.1c09942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ecofriendly routes for the synthesis of carbamates and carbonylative coupling products such as benzyl formate derivatives are very demanding for both academia and industries. Foreseeing a sustainable green future, we systematically analyzed the synthesis history of both these chemicals, mentioning their pros and cons. As a step towards green chemistry, here we have optimized the reaction conditions for the synthesis of various benzyl formates from corresponding benzyl halides and carbamates from substituted anilines and alkyl halides catalyzed by Ni(0) nanoparticles (NPs) immobilized over amine-functionalized ordered mesoporous SBA-15 material in the presence of CO2 as C1 source. This spotlight on applications is aimed to provide a clear outlook to date regarding the gradual progress in the synthesis of both these aforementioned chemicals and finally addresses further efforts for overcoming the current challenges.
Collapse
Affiliation(s)
- Sayantan Chongdar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shiyana Azad
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Surajit Samui
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201303, India
| | - Rajaram Bal
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
22
|
Wang X, Fu J, Mo J, Tian Y, Liu C, Tang H, Sun Z, Pan Y. Assembly of 5‐Aminoimidazoles via Palladium‐Catalysed Double Isocyanide Insertion Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jin‐Ping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jia‐Hui Mo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Yu‐Hong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Chun‐You Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Jun Sun
- Research Centre for Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
23
|
Wen LR, Wang NN, Du WB, Ma Q, Zhang LB, Li M. Nickel-promoted oxidative domino C sp3-H/N-H bond double-isocyanide insertion reaction to construct pyrrolin-2-ones. Org Biomol Chem 2021; 19:2895-2900. [PMID: 33725062 DOI: 10.1039/d1ob00139f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The first nickel-catalyzed oxidative domino Csp3-H/N-H double isocyanide insertion reaction of acetamides with isocyanides has been developed for the synthesis of pyrrolin-2-one derivatives. A wide range of acetamides bearing various functional groups are compatible with this reaction system by utilizing Ni(acac)2 as a catalyst. In this transformation, isocyanide could serve as a C1 connector and insert into the inactive Csp3-H bond, representing an effective way to construct heterocycles.
Collapse
Affiliation(s)
- Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Zhou Z, Ji H, Li Q, Zhang Q, Li D. Direct C-H aminocarbonylation of N-heteroarenes with isocyanides under transition metal-free conditions. Org Biomol Chem 2021; 19:2917-2922. [PMID: 33885551 DOI: 10.1039/d1ob00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C-C bond forming amide synthesis through direct C-H aminocarbonylation of N-heteroarenes with isocyanides was developed. The reaction was mediated by an inorganic persulfate salt under transition metal-free conditions. Mechanistic studies suggested a radical pathway for this reaction without the participation of H2O and O2. This method also showed merits of substrate availability, easy operation and atom economy. It provided an efficient route for straightforward synthesis of N-heteroaryl amides.
Collapse
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | |
Collapse
|
25
|
Menges-Flanagan G, Deitmann E, Gössl L, Hofmann C, Löb P. Scalable Continuous Synthesis of Organozinc Reagents and Their Immediate Subsequent Coupling Reactions. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Eva Deitmann
- Fraunhofer IMM, Carl-Zeiss-Strasse 18-20, 55129 Mainz, Germany
- Fachhochschule Münster, Stegerwaldstrasse 39, 48565 Steinfurt, Germany
| | - Lars Gössl
- Fraunhofer IMM, Carl-Zeiss-Strasse 18-20, 55129 Mainz, Germany
- Hochschule Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | | | - Patrick Löb
- Fraunhofer IMM, Carl-Zeiss-Strasse 18-20, 55129 Mainz, Germany
| |
Collapse
|
26
|
Zhang S, Duan X, Li P. Access to Stereodefined Multifunctionalized β,
γ‐Unsaturated
Ketones
via
Chemo‐, Regio‐ and Diastereoselective
Copper‐Catalyzed
Diborylation of
Cross‐Conjugated
Enynones
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Xinhua Duan
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
27
|
Weng Y, Qu J, Chen Y. Palladium-Catalyzed Allylic Carbonylative Negishi Cross-Coupling Reactions with Sterically Bulky Aromatic Isocyanides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
29
|
Li Q, Cai Y, Jin H, Liu Y, Zhou B. Nickel-catalyzed aminocarbonylation of Aryl/Alkenyl/Allyl (pseudo)halides with isocyanides and H2O. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Wang C, Wu L, Xu W, He F, Qu J, Chen Y. Palladium-Catalyzed Secondary Benzylic Imidoylative Reactions. Org Lett 2020; 22:6954-6959. [PMID: 32808530 DOI: 10.1021/acs.orglett.0c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a palladium-catalyzed secondary benzylic imidoylative Negishi reaction leveraging the sterically bulky aromatic isocyanides as the imine source. This method allows the facile access of alkyl-, (hetero)aryl-, and alkynylzinc reagents to afford various α-substituted phenylacetone products under mild acidic hydrolysis, which are ubiquitous motifs in many pharmaceuticals and biologically active compounds. The diastereoselective reduction of imine can be accomplished to provide the expedient conversion of secondary benzylic halide into α-substituted phenethylamine derivatives with high atom economy.
Collapse
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentao Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
31
|
Wu X, Qu J, Chen Y. Quinim: A New Ligand Scaffold Enables Nickel-Catalyzed Enantioselective Synthesis of α-Alkylated γ-Lactam. J Am Chem Soc 2020; 142:15654-15660. [DOI: 10.1021/jacs.0c07126] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
32
|
Wang Y, Huang W, Wang C, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Secondary Benzyl Chlorides with Isocyanides. Org Lett 2020; 22:4245-4249. [PMID: 32383891 DOI: 10.1021/acs.orglett.0c01284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylacetamides represent versatile feedstocks in synthetic chemistry, widely existing in drug molecules and natural products. Herein, we disclose a nickel-catalyzed formal aminocarbonylation of secondary benzyl chlorides with isocyanides yielding α-substituted phenylacetamide with steric hindrance, which is synthetically challenging via palladium-catalyzed aminocarbonylation. The reaction features wide functional group tolerance under mild conditions, highlighted by the tolerance of various aromatic halide (-Cl, -Br, -I) and heteroaromatic rings (pyridine and pyrazine).
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
33
|
Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. Org Lett 2020; 22:3245-3250. [PMID: 32242414 DOI: 10.1021/acs.orglett.0c01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, we disclose a Ni-catalyzed formal aminocarbonylation of primary and secondary unactivated aliphatic iodides with isocyanides to afford alkyl amide, which proceeds via the selective monomigratory insertion of isocyanides with alkyl iodides, subsequent β-hydride elimination, and hydrolysis process. The reaction features wide functional group tolerance under mild conditions. Additionally, the selective, one-pot hydrolysis of reaction mixture under acid conditions allows for expedient synthesis of the corresponding alkyl carboxylic acid.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Weng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
34
|
Sang R, Schneider C, Razzaq R, Neumann H, Jackstell R, Beller M. Palladium-catalyzed carbonylations of highly substituted olefins using CO-surrogates. Org Chem Front 2020. [DOI: 10.1039/d0qo01164a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CO surrogate chemistry: General protocols for alkoxycarbonylations of highly substituted olefins with paraformaldehyde and methyl formate are reported, allowing the performance of carbonylation reactions in all labs and for all kinds of substrates.
Collapse
Affiliation(s)
- Rui Sang
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | - Rauf Razzaq
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | | | | |
Collapse
|