1
|
Mouton A, Bird DJ, Li G, Craven BA, Levine JM, Morselli M, Pellegrini M, Van Valkenburgh B, Wayne RK, Murphy WJ. Genetic and Anatomical Determinants of Olfaction in Dogs and Wild Canids. Mol Biol Evol 2025; 42:msaf035. [PMID: 39950968 PMCID: PMC11950533 DOI: 10.1093/molbev/msaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 03/29/2025] Open
Abstract
Understanding the anatomical and genetic basis of complex phenotypic traits has long been a challenge for biological research. Domestic dogs offer a compelling model as they demonstrate more phenotypic variation than any other vertebrate species. Dogs have been intensely selected for specific traits and abilities, directly or indirectly, over the past 15,000 years since their initial domestication from the gray wolf. Because olfaction plays a central role in critical tasks, such as the detection of drugs, diseases, and explosives, as well as human rescue, we compared relative olfactory capacity across dog breeds and assessed changes to the canine olfactory system to their direct ancestors, wolves, and coyotes. We conducted a cross-disciplinary survey of olfactory anatomy, olfactory receptor (OR) gene variation, and OR gene expression in domestic dogs. Through comparisons to their closest wild canid relatives, the gray wolf and coyote, we show that domestic dogs might have lost functional OR genes commensurate with a documented reduction in nasal morphology as an outcome of the domestication process prior to breed formation. Critically, within domestic dogs alone, we found no genetic or morphological profile shared among functional or genealogical breed groupings, such as scent hounds, that might indicate evidence of any human-directed selection for enhanced olfaction. Instead, our results suggest that superior scent detection dogs likely owe their success to advantageous behavioral traits and training rather than an "olfactory edge" provided by morphology or genes.
Collapse
Affiliation(s)
- Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- InBios-Conservation Genetics Lab, University of Liege, Liège, Belgium
| | - Deborah J Bird
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Kleinau G, Chini B, Andersson L, Scheerer P. The role of G protein-coupled receptors and their ligands in animal domestication. Anim Genet 2024; 55:893-906. [PMID: 39324206 DOI: 10.1111/age.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The domestication of plants and animals has resulted in one of the most significant cultural and socio-economical transitions in human history. Domestication of animals, including human-supervised reproduction, largely uncoupled particular animal species from their natural, evolutionary history driven by environmental and ecological factors. The primary motivations for domesticating animals were, and still are, producing food and materials (e.g. meat, eggs, honey or milk products, wool, leather products, jewelry and medication products) to support plowing in agriculture or in transportation (e.g. horse, cattle, camel and llama) and to facilitate human activities (for hunting, rescuing, therapeutic aid, guarding behavior and protecting or just as a companion). In recent years, decoded genetic information from more than 40 domesticated animal species have become available; these studies have identified genes and mutations associated with specific physiological and behavioral traits contributing to the complex genetic background of animal domestication. These breeding-altered genomes provide insights into the regulation of different physiological areas, including information on links between e.g. endocrinology and behavior, with important pathophysiological implications (e.g. for obesity and cancer), extending the interest in domestication well beyond the field. Several genes that have undergone selection during domestication and breeding encode specific G protein-coupled receptors, a class of membrane-spanning receptors involved in the regulation of a number of overarching functions such as reproduction, development, body homeostasis, metabolism, stress responses, cognition, learning and memory. Here we summarize the available literature on variations in G protein-coupled receptors and their ligands and how these have contributed to animal domestication.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Bice Chini
- CNR, Institute of Neuroscience, Vedano al Lambro, Italy, and NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| |
Collapse
|
3
|
Wu S, Chen Z, Zhou X, Lu J, Tian Y, Jiang Y, Liu Q, Wang Z, Li H, Qu L, Zhang F. Analysis of genetic diversity and genetic structure of indigenous chicken populations in Guizhou province based on genome-wide single nucleotide polymorphism markers. Poult Sci 2024; 103:104383. [PMID: 39447329 PMCID: PMC11539430 DOI: 10.1016/j.psj.2024.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Guizhou province in China is rich in indigenous chicken breeds, playing an essential role in the genetic improvement of modern chickens. Genetic diversity has decreased in recent decades due to accelerated breeding processes and changing conservation priorities. To determine the genetic diversity and population structure of Guizhou indigenous chicken breeds, we used 55K genotyping arrays to conduct population genetic analysis on 233 individuals from 8 Guizhou indigenous breeds and 263 individuals from 9 Guizhou indigenous chicken populations. We evaluated the genetic diversity parameter (heterozygosity, proportion of polymorphic markers, and nucleotide diversity), linkage disequilibrium (LD), population structure, and genetic differentiation (FST and genetics distance). Genetic diversity results indicated that the genetic diversity of chicken breeds in Guizhou province is relatively affluent. Among Guizhou breeds, Baiyi black-bone and Guizhou yellow chicken displayed the lowest genetic diversity, as the 2 breeds exhibit lower PN and heterozygosity, the extent of linkage disequilibrium is higher. According to the LD pattern, Guizhou indigenous breeds can be divided into 3 categories. Population structure analysis showed a certain degree of genetic differentiation among local chickens in Guizhou. We argue that Chishui black-bone and Puan black-bone chickens are 2 different geographical regional groups of the same breed. In principal component analysis, individuals from the 2 groups clustered together, and the phylogenetic tree results showed that the 2 groups clustered together to form a branch independent of other breeds, and they displayed an identical pattern of ancestral lineage composition. The research results will provide a reference for protecting local chicken genetic resources in Guizhou Province and promote the protection and utilization of genetic resources.
Collapse
Affiliation(s)
- Sheng Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhiwen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaohong Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Juanhong Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yingping Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yaozhou Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qinsong Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fuping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Rahman R, Fouhse JM, Ju T, Fan Y, S Marcolla C, Pieper R, Brook RK, Willing BP. A comparison of wild boar and domestic pig microbiota does not reveal a loss of microbial species but an increase in alpha diversity and opportunistic genera in domestic pigs. Microbiol Spectr 2024; 12:e0084324. [PMID: 39162552 PMCID: PMC11448168 DOI: 10.1128/spectrum.00843-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
The microbiome of wild animals is believed to be co-evolved with host species, which may play an important role in host physiology. It has been hypothesized that the rigorous hygienic practices in combination with antibiotics and diets with simplified formulas used in the modern swine industry may negatively affect the establishment and development of the gut microbiome. In this study, we evaluated the fecal microbiome of 90 domestic pigs sampled from nine farms in Canada and 39 wild pigs sampled from three different locations on two continents (North America and Europe) using 16S rRNA gene amplicon sequencing. Surprisingly, the gut microbiome in domestic pigs exhibited higher alpha-diversity indices than wild pigs (P < 0.0001). The wild pig microbiome showed a lower Firmicutes-to-Bacteroidetes ratio and a higher presence of bacterial phyla Elusimicrobiota, Verrucomicrobiota, Cyanobacteria, and Fibrobacterota when compared to their domestic counterparts. At the genus level, the wild pig microbiome had enriched genera that were known for fiber degradation and short-chain fatty acid production. Interestingly, the phylum Fusobacteriota was only observed in domestic pigs. We identified 31 ASVs that were commonly found in the pig gut microbiome, regardless of host sources, which could be recognized as members of the core gut microbiome. Interestingly, we found five ASVs missing in domestic pigs that were prevalent in wild ones, whereas domestic pigs harbored 59 ASVs that were completely absent in wild pigs. The present study sheds light on the impact of domestication on the pig gut microbiome, including the gain of new genera, which might provide the basis to identify novel targets to manipulate the pig gut microbiome for improved health. IMPORTANCE The microbiome of pigs plays a crucial role in shaping host physiology and health. This study sought to identify if domestication and current rearing practices have resulted in a loss of co-evolved bacterial species by comparing the microbiome of wild boar and conventionally raised pigs. It provides a comparison of domestic and wild pigs with the largest sample sizes and is the first to examine wild boars from multiple sites and continents. We were able to identify core microbiome members that were shared between wild and domestic populations, and on the contrary to expectation, few microbes were identified to be lost from wild boar. Nevertheless, the microbiome of wild boars had a lower abundance of important pathogenic genera and was distinct from domestic pigs. The differences in the microbial composition may identify an opportunity to shift the microbial community of domestic pigs towards that of wild boar with the intent to reduce pathogen load.
Collapse
Affiliation(s)
- Rajibur Rahman
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Janelle M Fouhse
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Tingting Ju
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yi Fan
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Camila S Marcolla
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Robert Pieper
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße, Berlin, Germany
| | - Ryan K Brook
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
6
|
Wu ZY, Chapman MA, Liu J, Milne RI, Zhao Y, Luo YH, Zhu GF, Cadotte MW, Luan MB, Fan PZ, Monro AK, Li ZP, Corlett RT, Li DZ. Genomic variation, environmental adaptation, and feralization in ramie, an ancient fiber crop. PLANT COMMUNICATIONS 2024; 5:100942. [PMID: 38720463 PMCID: PMC11369781 DOI: 10.1016/j.xplc.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and feralization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, we gathered 915 accessions from 23 countries, comprising cultivars, major landraces, feral populations, and the wild progenitor. Based on whole-genome resequencing of these accessions, we constructed the most comprehensive ramie genomic variation map to date. Phylogenetic, demographic, and admixture signal detection analyses indicated that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and the wild progenitor or ancient landraces. Feral ramie has higher genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization differ from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches that differ substantially from the niche of the wild progenitor, and three environmental variables are associated with habitat-specific adaptation in feral ramie. These findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.
Collapse
Affiliation(s)
- Zeng-Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jie Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Ying Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Ming-Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China.
| | - Peng-Zhen Fan
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Alex K Monro
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK
| | - Zhi-Peng Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Richard T Corlett
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK; Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
7
|
Andrade P, Alves JM, Pereira P, Rubin CJ, Silva E, Sprehn CG, Enbody E, Afonso S, Faria R, Zhang Y, Bonino N, Duckworth JA, Garreau H, Letnic M, Strive T, Thulin CG, Queney G, Villafuerte R, Jiggins FM, Ferrand N, Andersson L, Carneiro M. Selection against domestication alleles in introduced rabbit populations. Nat Ecol Evol 2024; 8:1543-1555. [PMID: 38907020 DOI: 10.1038/s41559-024-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild-domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| | - Joel M Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Institute of Marine Research, Bergen, Norway
| | - Eugénio Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Yexin Zhang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Never Bonino
- Estación Experimental Bariloche, Instituto Nacional de Tecnología Agropecuaria, Casilla de Correo Bariloche, Argentina
| | - Janine A Duckworth
- Wildlife Ecology and Management Group, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Hervé Garreau
- GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Mike Letnic
- Centre for Ecosystem Science, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australian Capital Territory, Australia
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Carl-Gustaf Thulin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guillaume Queney
- ANTAGENE, Wildlife Genetics Laboratory, La Tour de Salvagny, France
| | | | | | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| |
Collapse
|
8
|
Souilmi Y, Wasef S, Williams MP, Conroy G, Bar I, Bover P, Dann J, Heiniger H, Llamas B, Ogbourne S, Archer M, Ballard JWO, Reed E, Tobler R, Koungoulos L, Walshe K, Wright JL, Balme J, O’Connor S, Cooper A, Mitchell KJ. Ancient genomes reveal over two thousand years of dingo population structure. Proc Natl Acad Sci U S A 2024; 121:e2407584121. [PMID: 38976766 PMCID: PMC11287250 DOI: 10.1073/pnas.2407584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sally Wasef
- Ancient DNA Facility, Defence Genomics, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Innovation Division, Forensic Science Queensland, Queensland Health, Coopers Plains, QLD4108, Australia
| | - Matthew P. Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD4111, Australia
| | - Pere Bover
- Fundación Agencia Aragonesa para la Investigacióny el Desarrollo (ARAID), Zaragoza50018, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza50009, Spain
| | - Jackson Dann
- Grützner Laboratory of Comparative Genomics, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Holly Heiniger
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, ActonACT2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA5000, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, SydneyNSW2052, Australia
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC3052, Australia
| | - Elizabeth Reed
- Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, AdelaideSA5005, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Acton, ACT2601, Australia
| | - Loukas Koungoulos
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW2010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Keryn Walshe
- School of Anthropology and Archaeology, University of Auckland, Auckland1010, New Zealand
| | - Joanne L. Wright
- Queensland Department of Education, Kelvin Grove State College, Kelvin Grove, QLD4059, Australia
| | - Jane Balme
- School of Social Sciences, University of Western Australia, Crawley, WA6009, Australia
| | - Sue O’Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Alan Cooper
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- Manaaki Whenua—Landcare Research, Lincoln, Canterbury7608, New Zealand
| |
Collapse
|
9
|
Leon-Apodaca AV, Kumar M, del Castillo A, Conroy GC, Lamont RW, Ogbourne S, Cairns KM, Borburgh L, Behrendorff L, Subramanian S, Szpiech ZA. Genomic Consequences of Isolation and Inbreeding in an Island Dingo Population. Genome Biol Evol 2024; 16:evae130. [PMID: 38913571 PMCID: PMC11221432 DOI: 10.1093/gbe/evae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Dingoes come from an ancient canid lineage that originated in East Asia around 8,000 to 11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequence data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole-genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROHs)-indicators of inbreeding-are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.
Collapse
Affiliation(s)
- Ana V Leon-Apodaca
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Manoharan Kumar
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
| | - Andres del Castillo
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabriel C Conroy
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Robert W Lamont
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Kylie M Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Liz Borburgh
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Linda Behrendorff
- Queensland Parks and Wildlife Service, Department of Environment & Science, K’gari, Australia
| | - Sankar Subramanian
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Foster M, Dwibhashyam S, Patel D, Gupta K, Matz OC, Billings BK, Bitterman K, Bertelson M, Tang CY, Mars RB, Raghanti MA, Hof PR, Sherwood CC, Manger PR, Spocter MA. Comparative anatomy of the caudate nucleus in canids and felids: Associations with brain size, curvature, cross-sectional properties, and behavioral ecology. J Comp Neurol 2024; 532:e25618. [PMID: 38686628 DOI: 10.1002/cne.25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.
Collapse
Affiliation(s)
- Michael Foster
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Sai Dwibhashyam
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Devan Patel
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kanika Gupta
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Olivia C Matz
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
- College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Leon-Apodaca AV, Kumar M, del Castillo A, Conroy GC, Lamont RW, Ogbourne S, Cairns KM, Borburgh L, Behrendorff L, Subramanian S, Szpiech ZA. Genomic consequences of isolation and inbreeding in an island dingo population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557950. [PMID: 37745583 PMCID: PMC10516007 DOI: 10.1101/2023.09.15.557950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Dingoes come from an ancient canid lineage that originated in East Asia around 8000-11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequencing data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROH) - indicators of inbreeding - are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.
Collapse
Affiliation(s)
| | - Manoharan Kumar
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
| | | | - Gabriel C. Conroy
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Robert W Lamont
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Kylie M. Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney NSW 2052, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Liz Borburgh
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Linda Behrendorff
- Queensland Parks and Wildlife Service, Department of Environment & Science, K’gari, Australia
| | - Sankar Subramanian
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Zachary A. Szpiech
- Department of Biology, Pennsylvania State University, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, PA, USA
| |
Collapse
|
12
|
Szpiech ZA. selscan 2.0: scanning for sweeps in unphased data. Bioinformatics 2024; 40:btae006. [PMID: 38180866 PMCID: PMC10789311 DOI: 10.1093/bioinformatics/btae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
SUMMARY Several popular haplotype-based statistics for identifying recent or ongoing positive selection in genomes require knowledge of haplotype phase. Here, we provide an update to selscan which implements a re-definition of these statistics for use in unphased data. AVAILABILITY AND IMPLEMENTATION Source code and binaries are freely available at https://github.com/szpiech/selscan, implemented in C/C++, and supported on Linux, Windows, and MacOS.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology, Penn State University, University Park, PA 16802, United States
- Institute for Computational and Data Sciences, Penn State University, University Park, PA 16802, United States
| |
Collapse
|
13
|
Ahn B, Kang M, Jeon H, Kim JS, Jiang H, Ha J, Park C. Origin and population structure of native dog breeds in the Korean peninsula and East Asia. iScience 2023; 26:106982. [PMID: 37378348 PMCID: PMC10291505 DOI: 10.1016/j.isci.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
To study the ancestry and phylogenetic relationships of native Korean dog breeds to other Asian dog populations, we analyzed nucleotide variations in whole-genome sequences of 205 canid individuals. Sapsaree, Northern Chinese indigenous dog, and Tibetan Mastiff were largely related to West Eurasian ancestry. Jindo, Donggyeongi, Shiba, Southern Chinese indigenous (SCHI), Vietnamese indigenous dogs (VIET), and Indonesian indigenous dogs were related to Southeast and East Asian ancestry. Among East Asian dog breeds, Sapsaree presented the highest haplotype sharing with German Shepherds, indicating ancient admixture of European ancestry to modern East Asian dog breeds. SCHI showed greater haplotype sharing with New Guinea singing dogs, VIET, and Jindo than with other Asian breeds. The predicted divergence time of East Asian populations from their common ancestor was approximately 2,000 to 11,000 years ago. Our results expand understanding of the genetic history of dogs in the Korean peninsula to the Asian continent and Oceanic region.
Collapse
Affiliation(s)
- Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Seok Kim
- Department of Korean Jindo and Domestic Animal, Jindo 58927, Republic of Korea
| | - Hao Jiang
- College of Animal Science, Jilin University, Changchun, Jilin 130119, China
| | - Jihong Ha
- Korean Sapsaree Foundation, Gyeongsan 38412, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Hu M, Jiang H, Lai W, Shi L, Yi W, Sun H, Chen C, Yuan B, Yan S, Zhang J. Assessing Genomic Diversity and Signatures of Selection in Chinese Red Steppe Cattle Using High-Density SNP Array. Animals (Basel) 2023; 13:ani13101717. [PMID: 37238146 DOI: 10.3390/ani13101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Chinese Red Steppe Cattle (CRS), a composite cattle breed, is well known for its milk production, high slaughter rate, carcass traits, and meat quality. Nowadays, it is widely bred in Jilin and Hebei Province and the Inner Mongolia Autonomous region. However, the population structure and the genetic basis of prominent characteristics of CRS are still unknown. In this study, we systematically describe their population structure, genetic diversity, and selection signature based on genotyping data from 61 CRS individuals with GGP Bovine 100 K chip. The results showed that CRS cattle had low inbreeding levels and had formed a unique genetic structure feature. Using two complementary methods (including comprehensive haplotype score and complex likelihood ratio), we identified 1291 and 1285 potentially selected genes, respectively. There were 141 genes annotated in common 106 overlapping genomic regions covered 5.62 Mb, including PLAG1, PRKG2, DGAT1, PARP10, TONSL, ADCK5, and BMP3, most of which were enriched in pathways related to muscle growth and differentiation, milk production, and lipid metabolism. This study will contribute to understanding the genetic mechanism behind artificial selection and give an extensive reference for subsequent breeding.
Collapse
Affiliation(s)
- Mingyue Hu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Hao Jiang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Weining Lai
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lulu Shi
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Wenfeng Yi
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Bao Yuan
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
Chen L, Cao Y, Li G, Tian Y, Zeng T, Gu T, Xu W, Konoval O, Lu L. Population Structure and Selection Signatures of Domestication in Geese. BIOLOGY 2023; 12:532. [PMID: 37106733 PMCID: PMC10136318 DOI: 10.3390/biology12040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
The goose is an economically important poultry species and was one of the first to be domesticated. However, studies on population genetic structures and domestication in goose are very limited. Here, we performed whole genome resequencing of geese from two wild ancestral populations, five Chinese domestic breeds, and four European domestic breeds. We found that Chinese domestic geese except Yili geese originated from a common ancestor and exhibited strong geographical distribution patterns and trait differentiation patterns, while the origin of European domestic geese was more complex, with two modern breeds having Chinese admixture. In both Chinese and European domestic geese, the identified selection signatures during domestication primarily involved the nervous system, immunity, and metabolism. Interestingly, genes related to vision, skeleton, and blood-O2 transport were also found to be under selection, indicating genetic adaptation to the captive environment. A forehead knob characterized by thickened skin and protruding bone is a unique trait of Chinese domestic geese. Interestingly, our population differentiation analysis followed by an extended genotype analysis in an additional population suggested that two intronic SNPs in EXT1, an osteochondroma-related gene, may plausibly be sites responsible for knob. Moreover, CSMD1 and LHCGR genes were found to be significantly associated with broodiness in Chinese domestic geese and European domestic geese, respectively. Our results have important implications for understanding the population structure and domestication of geese, and the selection signatures and variants identified in this study might be useful in genetic breeding for forehead knob and reproduction traits.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
- China-Ukraine Joint Research Center for Protection, Exploitation and Utilization of Poultry Germplasm Resources, Hangzhou 310021, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Oksana Konoval
- China-Ukraine Joint Research Center for Protection, Exploitation and Utilization of Poultry Germplasm Resources, Hangzhou 310021, China
- Department of Information Technology, National University of Life and Environmental Sciences of Ukraine, 03041 Kiev, Ukraine
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| |
Collapse
|
16
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: de novo chromosome-length genome assembly, DNA methylome, and cranial morphology. Gigascience 2023; 12:giad018. [PMID: 36994871 PMCID: PMC10353722 DOI: 10.1093/gigascience/giad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg 06484, Germany
| | - Ksenia Skvortsova
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ozren Bogdanovic
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, Newcastle, NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital,Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Petrelli S, Buglione M, Rivieccio E, Ricca E, Baccigalupi L, Scala G, Fulgione D. Reprogramming of the gut microbiota following feralization in Sus scrofa. Anim Microbiome 2023; 5:14. [PMID: 36823657 PMCID: PMC9951470 DOI: 10.1186/s42523-023-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Wild boar has experienced several evolutionary trajectories from which domestic (under artificial selection) and the feral pig (under natural selection) originated. Strong adaptation deeply affects feral population's morphology and physiology, including the microbiota community. The gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. To date, it is unclear whether feral populations' phylogeny, development stages or lifestyle have the greatest impact in shaping the gut microbiota, as well as how this can confer adaptability to new environments. Here, in order to deepen this point, we characterized the gut microbiota of feral population discriminating between juvenile and adult samples, and we compared it to the microbiota structure of wild boar and domestic pig as the references. Gut microbiota composition was estimated through the sequencing of the partial 16S rRNA gene by DNA metabarcoding and High Throughput Sequencing on DNA extracted from fecal samples. RESULTS The comparison of microbiota communities among the three forms showed significant differences. The feral form seems to carry some bacteria of both domestic pigs, derived from its ancestral condition, and wild boars, probably as a sign of a recent re-adaptation strategy to the natural environment. In addition, interestingly, feral pigs show some exclusive bacterial taxa, also suggesting an innovative nature of the evolutionary trajectories and an ecological segregation in feral populations, as already observed for other traits. CONCLUSIONS The feral pig showed a significant change between juvenile and adult microbiota suggesting an influence of the wild environment in which these populations segregate. However, it is important to underline that we certainly cannot overlook that these variations in the structure of the microbiota also depended on the different development stages of the animal, which in fact influence the composition of the intestinal microbiota. Concluding, the feral pigs represent a new actor living in the same geographical space as the wild boars, in which its gut microbial structure suggests that it is mainly the result of environmental segregation, most different from its closest relative. This gives rise to interesting fields of exploration regarding the changed ecological complexity and the consequent evolutionary destiny of the animal communities involved in this phenomenon.
Collapse
Affiliation(s)
- Simona Petrelli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy
| | - Maria Buglione
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy
| | - Eleonora Rivieccio
- grid.4691.a0000 0001 0790 385XDepartment of Humanities, University of Naples Federico II, Via Porta Di Massa 1, 80133 Naples, Italy
| | - Ezio Ricca
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy ,grid.4691.a0000 0001 0790 385XTask Force On Microbiome Studies, University of Naples Federico II, 80100 Naples, NA Italy
| | - Loredana Baccigalupi
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, NA Italy
| | - Giovanni Scala
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, NA, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, 80100, Naples, NA, Italy.
| |
Collapse
|
18
|
Donfrancesco V, Allen BL, Appleby R, Behrendorff L, Conroy G, Crowther MS, Dickman CR, Doherty T, Fancourt BA, Gordon CE, Jackson SM, Johnson CN, Kennedy MS, Koungoulos L, Letnic M, Leung LK, Mitchell KJ, Nesbitt B, Newsome T, Pacioni C, Phillip J, Purcell BV, Ritchie EG, Smith BP, Stephens D, Tatler J, van Eeden LM, Cairns KM. Understanding conflict among experts working on controversial species: A case study on the Australian dingo. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
| | - Benjamin L. Allen
- University of Southern Queensland Institute for Life Sciences and the Environment Toowoomba Queensland Australia
- Centre for African Conservation Ecology Nelson Mandela University Port Elizabeth South Africa
| | - Rob Appleby
- Centre for Planetary Health and Food Security Griffith University Nathan Queensland Australia
| | - Linda Behrendorff
- School of Agriculture and Food Sciences University of Queensland Gatton Queensland Australia
| | - Gabriel Conroy
- Genecology Research Centre, School of Science, Technology and Engineering University of the Sunshine Coast Maroochydore DC Queensland Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences University of Sydney New South Wales Australia
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Tim Doherty
- Desert Ecology Research Group, School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Bronwyn A. Fancourt
- Ecosystem Management, School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Christopher E. Gordon
- Center for Biodiversity Dynamics in a Changing World Aarhus University Aarhus C Denmark
| | - Stephen M. Jackson
- Collection Care and Conservation Australian Museum Research Institute Sydney New South Wales Australia
| | - Chris N. Johnson
- School of Natural Sciences and Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage University of Tasmania Hobart Tasmania Australia
| | - Malcolm S. Kennedy
- Threatened Species Operations Department of Environment and Science Brisbane Queensland Australia
| | - Loukas Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry The University of Sydney Sydney New South Wales Australia
| | - Mike Letnic
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Luke K.‐P. Leung
- School of Agriculture and Food Sciences University of Queensland Gatton Queensland Australia
| | - Kieren J. Mitchell
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Bradley Nesbitt
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Thomas Newsome
- Global Ecology Lab, School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Carlo Pacioni
- Department of Environment, Land, Water and Planning Arthur Rylah Institute Heidelberg Victoria Australia
- Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
| | | | - Brad V. Purcell
- Kangaroo Management Program Office of Environment and Heritage Dubbo New South Wales Australia
| | - Euan G. Ritchie
- School of Life and Environmental Sciences and Centre for Integrative Ecology Deakin University Burwood Victoria Australia
| | - Bradley P. Smith
- College of Psychology, School of Health, Medical and Applied Sciences CQUniversity Australia Wayville South Australia Australia
| | | | - Jack Tatler
- Narla Environmental Pty Ltd Warriewood New South Wales Australia
| | - Lily M. van Eeden
- Department of Environment, Land, Water and Planning Arthur Rylah Institute Heidelberg Victoria Australia
| | - Kylie M. Cairns
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
19
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: De novo chromosome-length genome assembly, DNA methylome, and cranial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525801. [PMID: 36747621 PMCID: PMC9900879 DOI: 10.1101/2023.01.26.525801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, Australia 2006
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27 06484 Quedlinburg, Germany
| | | | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Ridgway H, Ntallis C, Chasapis CT, Kelaidonis K, Matsoukas MT, Plotas P, Apostolopoulos V, Moore G, Tsiodras S, Paraskevis D, Mavromoustakos T, Matsoukas JM. Molecular Epidemiology of SARS-CoV-2: The Dominant Role of Arginine in Mutations and Infectivity. Viruses 2023; 15:309. [PMID: 36851526 PMCID: PMC9963001 DOI: 10.3390/v15020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Background, Aims, Methods, Results, Conclusions: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global challenge due to its ability to mutate into variants that spread more rapidly than the wild-type virus. The molecular biology of this virus has been extensively studied and computational methods applied are an example paradigm for novel antiviral drug therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is coupled with accelerated hydrolysis by proteases, such as furin, trypsin, and the Transmembrane Serine Protease 2 (TMPRSS2) that augment infection rates, while inhibition of the 3-chymotrypsin-like protease (3CLpro) can prevent the viral replication. Additionally, non-RBD and non-interfacial mutations may assist the S-protein in adopting thermodynamically favorable conformations for stronger binding. This study aimed to report variant distribution of SARS-CoV-2 across European Union (EU)/European Economic Area (EEA) countries and relate mutations with the driving forces that trigger infections. Variants' distribution data for SARS-CoV-2 across EU/EEA countries were mined from the European Centre for Disease Prevention and Control (ECDC) based on the sequence or genotyping data that are deposited in the Global Science Initiative for providing genomic data (GISAID) and The European Surveillance System (TESSy) databases. Docking studies performed with AutoDock VINA revealed stabilizing interactions of putative antiviral drugs, e.g., selected anionic imidazole biphenyl tetrazoles, with the ACE2 receptor in the RBD-ACE2 complex. The driving forces of key mutations for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Lambda, and Omicron variants, which stabilize the RBD-ACE2 complex, were investigated by computational approaches. Arginine is the critical amino acid in the polybasic furin cleavage sites S1/S2 (681-PRRARS-686) S2' (814-KRS-816). Critical mutations into arginine residues that were found in the delta variant (L452R, P681R) and may be responsible for the increased transmissibility and morbidity are also present in two widely spreading omicron variants, named BA.4.6 and BQ.1, where mutation R346T in the S-protein potentially contributes to neutralization escape. Arginine binders, such as Angiotensin Receptor Blockers (ARBs), could be a class of novel drugs for treating COVID-19.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne 8001, VIC, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Charalampos Ntallis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne 3030, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne 3021, VIC, Australia
| | - Graham Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 11571 Athens, Greece
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece
- Institute for Health and Sport, Victoria University, Melbourne 3030, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
21
|
Stephens D, Fleming PJS, Sawyers E, Mayr TP. An isolated population reveals greater genetic structuring of the Australian dingo. Sci Rep 2022; 12:19105. [PMID: 36352001 PMCID: PMC9646726 DOI: 10.1038/s41598-022-23648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
The Australian dingo is a recent anthropogenic addition to the Australian fauna, which spread rapidly across the continent and has since widely interbred with modern dogs. Genetic studies of dingoes have given rise to speculation about their entry to the continent and subsequent biogeographic effects, but few studies of their contemporary population structure have been conducted. Here we investigated the dingo ancestry and population structure of free-living dogs in western Victoria and contrasted it with a wider southern Australian sample. We wished to determine whether their geographic isolation was mirrored in genetic isolation. To address this question, we analysed 34 microsatellite markers using Bayesian clustering and discriminant analysis of principal components, and summarised genetic diversity at the population and individual level. The broader southern Australia sample (n = 1138) comprised mostly hybrid animals, with 30% considered pure dingoes. All western Victorian individuals (n = 59) appeared to be hybrids with high dingo ancestry. The population showed no evidence of admixture with other populations and low genetic diversity on all measures tested. Based upon our characterisation of this unusual mainland population, we advise against assuming homogeneity of dingoes across the continent.
Collapse
Affiliation(s)
| | - Peter J. S. Fleming
- grid.1680.f0000 0004 0559 5189Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800 Australia ,grid.1020.30000 0004 1936 7371Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia ,grid.1048.d0000 0004 0473 0844Institute for Agriculture and the Environment, Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Emma Sawyers
- grid.1680.f0000 0004 0559 5189Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800 Australia ,Vertebrate Pest Research Unit, NSW Department of Primary Industries, 10 Valentine Ave, Parramatta, NSW 2150 Australia
| | - Tim P. Mayr
- grid.452205.40000 0000 9561 2798Department of Environment, Land, Water and Planning, 308-390 Koorlong Ave, Irymple, VIC 3498 Australia
| |
Collapse
|
22
|
Liu M, Yu C, Zhang Z, Song M, Sun X, Piálek J, Jacob J, Lu J, Cong L, Zhang H, Wang Y, Li G, Feng Z, Du Z, Wang M, Wan X, Wang D, Wang YL, Li H, Wang Z, Zhang B, Zhang Z. Whole-genome sequencing reveals the genetic mechanisms of domestication in classical inbred mice. Genome Biol 2022; 23:203. [PMID: 36163035 PMCID: PMC9511766 DOI: 10.1186/s13059-022-02772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background The laboratory mouse was domesticated from the wild house mouse. Understanding the genetics underlying domestication in laboratory mice, especially in the widely used classical inbred mice, is vital for studies using mouse models. However, the genetic mechanism of laboratory mouse domestication remains unknown due to lack of adequate genomic sequences of wild mice. Results We analyze the genetic relationships by whole-genome resequencing of 36 wild mice and 36 inbred strains. All classical inbred mice cluster together distinctly from wild and wild-derived inbred mice. Using nucleotide diversity analysis, Fst, and XP-CLR, we identify 339 positively selected genes that are closely associated with nervous system function. Approximately one third of these positively selected genes are highly expressed in brain tissues, and genetic mouse models of 125 genes in the positively selected genes exhibit abnormal behavioral or nervous system phenotypes. These positively selected genes show a higher ratio of differential expression between wild and classical inbred mice compared with all genes, especially in the hippocampus and frontal lobe. Using a mutant mouse model, we find that the SNP rs27900929 (T>C) in gene Astn2 significantly reduces the tameness of mice and modifies the ratio of the two Astn2 (a/b) isoforms. Conclusion Our study indicates that classical inbred mice experienced high selection pressure during domestication under laboratory conditions. The analysis shows the positively selected genes are closely associated with behavior and the nervous system in mice. Tameness may be related to the Astn2 mutation and regulated by the ratio of the two Astn2 (a/b) isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02772-1.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,International Society of Zoological Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Novogene Bioinformatics Institute, Beijing, China.,Glbizzia Biosciences, Beijing, China
| | - Mingjing Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuping Sun
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jaroslav Piálek
- House Mouse Group, Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Jiqi Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongmao Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Feng
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,International Society of Zoological Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Does the Domestication Syndrome Apply to the Domestic Pig? Not Completely. Animals (Basel) 2022; 12:ani12182458. [PMID: 36139318 PMCID: PMC9495052 DOI: 10.3390/ani12182458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/21/2023] Open
Abstract
The ‘domestication syndrome’ defines a suite of features that domesticated animals possess as the result of the artificial selection operated by Homo sapiens since the Neolithic. An interesting anthropological question is whether such features, including increased tameness and reduced aggression, apply to all domesticated forms. We investigated this issue in the domestic pig (Sus scrofa). We video-recorded and analysed aggression and social play (mostly play-fighting) sessions from piglets (three litters; n = 24) and wild boar hybrids (domestic pig mother x wild boar father; three litters; n = 27) from 6–50 days of age, raised in the same woodland/grassland habitat and extensive farming management (ethical farm ‘Parva Domus’, Cavagnolo, Torino). Play and aggression session structure was assessed via Asymmetry (AI; offensive/defensive pattern balance), Shannon (H′; pattern variability), and Pielou (J; pattern evenness) indices. We found that piglets played more (especially after the 20th day of life) and engaged in less variable and uniform sessions than wild boar hybrids. Compared to hybrids, piglets showed less variable but more frequent (especially when approaching weaning) and asymmetrical aggressive events. Thus, the domestication syndrome does not seem to fully apply to either social play or aggression, possibly because artificial selection has produced greater tameness of pigs towards humans than towards conspecifics.
Collapse
|
24
|
The Role of Socialisation in the Taming and Management of Wild Dingoes by Australian Aboriginal People. Animals (Basel) 2022; 12:ani12172285. [PMID: 36078005 PMCID: PMC9454437 DOI: 10.3390/ani12172285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The dingo (Canis dingo) is a wild-living canid endemic to mainland Australia; the descendent of an early lineage of dog introduced thousands of years ago to the continent, where it was isolated from further introductions of domestic canines until European colonisation began in 1788. Dingoes are notoriously difficult to maintain in captivity and owing to their predatory nature it is also known that they can pose a serious risk to children. Yet, written records and oral histories indicate that Aboriginal people in mainland Australia routinely practiced the rearing and keeping of dingoes in a tame state within their home communities and domestic spaces. This paper reviews historical and archaeological evidence for the management of wild and captive dingoes by Indigenous communities, revealing a substantial divide between the nature and outcomes of these interactions between historical/pre-contact Aboriginal societies and those in contemporary Australia. It is concluded that this special human-wild canid relationship has implications for the understanding of the domestication of dogs from wolves during the Late Pleistocene. Abstract Historical sources and Indigenous oral traditions indicate that Australian Aboriginal people commonly reared and kept the wild-caught pups of dingoes (C. dingo) as tamed companion animals. A review of the available evidence suggests Indigenous communities employed an intense socialisation process that forged close personal bonds between humans and their tame dingoes from an early age. This was complemented by oral traditions which passed down awareness of the dangers to children posed by wild or unfamiliar dingoes, and which communicated the importance of treating dingoes with respect. Together, these practices resulted in what can be interpreted as substantially altered behaviours in tamed dingoes, which, despite their naturally high prey drive, were not considered a serious threat to children and were thus able to be maintained as companion animals in the long term. This relationship is of importance for understanding the original domestication of the dog, as it demonstrates a means by which careful and deliberate socialisation by foragers could both manage risks to children’s safety posed by keeping wild canids in the domestic realm and retain them well into reproductive maturity—both issues which have been highlighted as obstacles to the domestication of dogs from wolves.
Collapse
|
25
|
Liu Z, Xing L, Huang W, Liu B, Wan F, Raffa KF, Hofstetter RW, Qian W, Sun J. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol 2022; 20:190. [PMID: 36002826 PMCID: PMC9400205 DOI: 10.1186/s12915-022-01388-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.
Collapse
Affiliation(s)
- Zhudong Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China
| | - Longsheng Xing
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | | | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China.
| |
Collapse
|
26
|
Smith WJ, Quilodrán CS, Jezierski MT, Sendell-Price AT, Clegg SM. The wild ancestors of domestic animals as a neglected and threatened component of biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13867. [PMID: 34811819 DOI: 10.1111/cobi.13867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Domestic animals have immense economic, cultural, and practical value and have played pivotal roles in the development of human civilization. Many domesticates have, among their wild relatives, undomesticated forms representative of their ancestors. Resurgent interest in these ancestral forms has highlighted the unclear genetic status of many, and some are threatened with extinction by hybridization with domestic conspecifics. We considered the contemporary status of these ancestral forms relative to their scientific, practical, and ecological importance; the varied impacts of wild-domestic hybridization; and the challenges and potential resolutions involved in conservation efforts. Identifying and conserving ancestral forms, particularly with respect to disentangling patterns of gene flow from domesticates, is complex because of the lack of available genomic and phenotypic baselines. Comparative behavioral, ecological, and genetic studies of ancestral-type, feral, and domestic animals should be prioritized to establish the contemporary status of the former. Such baseline information will be fundamental in ensuring successful conservation efforts.
Collapse
Affiliation(s)
- William J Smith
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Claudio S Quilodrán
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Michał T Jezierski
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Field MA, Yadav S, Dudchenko O, Esvaran M, Rosen BD, Skvortsova K, Edwards RJ, Keilwagen J, Cochran BJ, Manandhar B, Bustamante S, Rasmussen JA, Melvin RG, Chernoff B, Omer A, Colaric Z, Chan EKF, Minoche AE, Smith TPL, Gilbert MTP, Bogdanovic O, Zammit RA, Thomas T, Aiden EL, Ballard JWO. The Australian dingo is an early offshoot of modern breed dogs. SCIENCE ADVANCES 2022; 8:eabm5944. [PMID: 35452284 PMCID: PMC9032958 DOI: 10.1126/sciadv.abm5944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/09/2022] [Indexed: 06/11/2023]
Abstract
Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.
Collapse
Affiliation(s)
- Matt A. Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Sonu Yadav
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Meera Esvaran
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Blake J. Cochran
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bikash Manandhar
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- Center for Evolutionary Hologenomics, Faculty of Health and Medical Sciences, The GLOBE Institute University of Copenhagen, Copenhagen, Denmark
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Arina Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zane Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eva K. F. Chan
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle, NSW 2300, Australia
| | - Andre E. Minoche
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Timothy P. L. Smith
- U.S. Meat Animal Research Center, Agricultural Research Service, USDA, Rd 313, Clay Center, NE 68933, USA
| | - M. Thomas P. Gilbert
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Robert A. Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Erez L. Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - J. William O. Ballard
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, VIC 3086, Australia
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
28
|
Cairns KM, Crowther MS, Nesbitt B, Letnic M. The myth of wild dogs in Australia: are there any out there? AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hybridisation between wild and domestic canids is a global conservation and management issue. In Australia, dingoes are a distinct lineage of wild-living canid with a controversial domestication status. They are mainland Australia’s apex terrestrial predator. There is ongoing concern that the identity of dingoes has been threatened from breeding with domestic dogs, and that feral dogs have established populations in rural Australia. We collate the results of microsatellite DNA testing from 5039 wild canids to explore patterns of domestic dog ancestry in dingoes and observations of feral domestic dogs across the continent. Only 31 feral dogs were detected, challenging the perception that feral dogs are widespread in Australia. First generation dingo × dog hybrids were similarly rare, with only 27 individuals identified. Spatial patterns of genetic ancestry across Australia identified that dingo populations in northern, western and central Australia were largely free from domestic dog introgression. Our findings challenge the perception that dingoes are virtually extinct in the wild and that feral dogs are common. A shift in terminology from wild dog to dingo would better reflect the identity of these wild canids and allow more nuanced debate about the balance between conservation and management of dingoes in Australia.
Collapse
|
29
|
Niego A, Benítez-Burraco A. Are feralization and domestication truly mirror processes? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1975314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy Niego
- PhD Program, Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain (E-mail: )
| |
Collapse
|
30
|
Krofel M, Hatlauf J, Bogdanowicz W, Campbell LAD, Godinho R, Jhala YV, Kitchener AC, Koepfli K, Moehlman P, Senn H, Sillero‐Zubiri C, Viranta S, Werhahn G, Alvares F. Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. J Zool (1987) 2021. [DOI: 10.1111/jzo.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. Krofel
- Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - J. Hatlauf
- University of Natural Resources and Life Sciences Vienna, Department of Integrative Biology and Biodiversity Research Institute of Wildlife Biology and Game Management Vienna Austria
| | - W. Bogdanowicz
- Museum and Institute of Zoology Polish Academy of Sciences Warszawa Poland
| | - L. A. D. Campbell
- Department of Zoology Recanati‐Kaplan Centre; Tubney University of Oxford Wildlife Conservation Research Unit Oxfordshire UK
| | - R. Godinho
- InBIO Laboratório Associado, Campus de Vairão CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Y. V. Jhala
- Animal Ecology & Conservation Biology Wildlife Institute of India Dehradun India
| | - A. C. Kitchener
- Department of Natural Sciences National Museums Scotland Edinburgh UK
| | - K.‐P. Koepfli
- Smithsonian‐Mason School of Conservation George Mason University Front Royal VA USA
- Smithsonian Conservation Biology Institute Center for Species Survival National Zoological Park Front Royal VA USA
- Computer Technologies Laboratory ITMO University St. Petersburg Russia
| | - P. Moehlman
- IUCN/SSC Equid Specialist Group Tanzania Wildlife Research Institute (TAWIRI) EcoHealth Alliance and The Earth Institute Columbia University Arusha Tanzania
| | - H. Senn
- WildGenes Laboratory Conservation and Science Programmes Royal Zoological Society of Scotland, RZSS Edinburgh UK
| | - C. Sillero‐Zubiri
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
- IUCN SSC Canid Specialist Group Oxford UK
- Born Free Foundation Horsham UK
| | - S. Viranta
- Faculty of Medicine University of Helsinki Helsinki Finland
| | - G. Werhahn
- IUCN SSC Canid Specialist Group Oxford UK
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
| | - F. Alvares
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|
31
|
Janssenswillen S, Roelants K, Carpentier S, de Rooster H, Metzemaekers M, Vanschoenwinkel B, Proost P, Bossuyt F. Odorant-binding proteins in canine anal sac glands indicate an evolutionarily conserved role in mammalian chemical communication. BMC Ecol Evol 2021; 21:182. [PMID: 34565329 PMCID: PMC8474896 DOI: 10.1186/s12862-021-01910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. Results Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to ‘odorant binding proteins’ (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog’s genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. Conclusions Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01910-w.
Collapse
Affiliation(s)
- Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sebastien Carpentier
- Proteomics Core - SyBioMa, Katholieke Universiteit Leuven, Herestraat 49 - 03.313, 3000, Leuven, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mieke Metzemaekers
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Bram Vanschoenwinkel
- Community Ecology Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Center for Environmental Management, University of the Free State, Bloemfontein, 9030, South Africa
| | - Paul Proost
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
32
|
Hanot P, Bayarsaikhan J, Guintard C, Haruda A, Mijiddorj E, Schafberg R, Taylor W. Cranial shape diversification in horses: variation and covariation patterns under the impact of artificial selection. BMC Ecol Evol 2021; 21:178. [PMID: 34548035 PMCID: PMC8456661 DOI: 10.1186/s12862-021-01907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
The potential of artificial selection to dramatically impact phenotypic diversity is well known. Large-scale morphological changes in domestic species, emerging over short timescales, offer an accelerated perspective on evolutionary processes. The domestic horse (Equus caballus) provides a striking example of rapid evolution, with major changes in morphology and size likely stemming from artificial selection. However, the microevolutionary mechanisms allowing to generate this variation in a short time interval remain little known. Here, we use 3D geometric morphometrics to quantify skull morphological diversity in the horse, and investigate modularity and integration patterns to understand how morphological associations contribute to cranial evolvability in this taxon. We find that changes in the magnitude of cranial integration contribute to the diversification of the skull morphology in horse breeds. Our results demonstrate that a conserved pattern of modularity does not constrain large-scale morphological variations in horses and that artificial selection has impacted mechanisms underlying phenotypic diversity to facilitate rapid shape changes. More broadly, this study demonstrates that studying microevolutionary processes in domestic species produces important insights into extant phenotypic diversity.
Collapse
Affiliation(s)
- Pauline Hanot
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany.
| | - Jamsranjav Bayarsaikhan
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
- National Museum of Mongolia, 1 Juulchin Street, Ulaanbaatar, 15160, Mongolia
| | - Claude Guintard
- Unité d'Anatomie Comparée, Ecole Nationale Vétérinaire de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique - ONIRIS, Route de Gachet, CS 40706, 44307, Nantes Cedex 03, France
- Groupe d'Etudes Remodelage osseux et bioMateriaux (GEROM), Unité INSERM 922 LHEA/IRIS-IBS, Université d'Angers, 4 rue Larrey CHU d'Angers, Angers, France
| | - Ashleigh Haruda
- Central Natural Science Collections (ZNS), Martin-Luther University Halle-Wittenberg, Domplatz 4, 06108, Halle (Saale), Germany
- School of Archaeology, University of Oxford, 1-2 South Parks Road, Oxford, OX1 3TG, UK
| | - Enkhbayar Mijiddorj
- Department of Archaeology, Ulaanbaatar State University, Luvsantseveen Street, 5th Khoroo, 15th Khoroolol, Bayanzurkh District, Ulaanbaatar, 13343, Mongolia
| | - Renate Schafberg
- Central Natural Science Collections (ZNS), Martin-Luther University Halle-Wittenberg, Domplatz 4, 06108, Halle (Saale), Germany
| | - William Taylor
- University of Colorado-Boulder, Museum of Natural History, Boulder, CO, USA
| |
Collapse
|
33
|
Trut LN, Kharlamova AV, Pilipenko AS, Herbeck YE. The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Natoli E, Bonanni R, Cafazzo S, Mills DS, Pontier D, Pilot M. Genetic inference of the mating system of free-ranging domestic dogs. Behav Ecol 2021; 32:646-656. [PMID: 34539241 PMCID: PMC8444980 DOI: 10.1093/beheco/arab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Domestication has greatly changed the social and reproductive behavior of dogs relative to that of wild members of the genus Canis, which typically exhibit social monogamy and extended parental care. Unlike a typical gray wolf pack that consists of a single breeding pair and their offspring from multiple seasons, a group of free-ranging dogs (FRDs) can include multiple breeding individuals of both sexes. To understand the consequences of this shift in reproductive behavior, we reconstructed the genetic pedigree of an FRD population and assessed the kinship patterns in social groups, based on genome-wide single-nucleotide polymorphism genotypes. Consistent with behavioral observations, the mating system of the study population was characterized by polygynandry. Instead of the discreet family units observed in wolves, FRDs were linked by a network of kinship relationships that spread across packs. However, we also observed reproduction of the same male-female pairs in multiple seasons, retention of adult offspring in natal packs, and dispersal between neighboring packs-patterns in common with wolves. Although monogamy is the predominant mating system in wolves, polygyny and polyandry are occasionally observed in response to increased food availability. Thus, polygynandry of domestic dogs was likely influenced by the shift in ecological niche from an apex predator to a human commensal.
Collapse
Affiliation(s)
- Eugenia Natoli
- Canile Sovrazonale, ASL Roma 3 (Local Health Unit Rome 3), Via della Magliana 856H, 00148 Rome, Italy
| | | | | | - Daniel S Mills
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland
| |
Collapse
|
35
|
Scossa F, Fernie AR. When a Crop Goes Back to the Wild: Feralization. TRENDS IN PLANT SCIENCE 2021; 26:543-545. [PMID: 33674174 DOI: 10.1016/j.tplants.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
Feral plants have been known since the inception of modern agriculture, but the genetic changes during what seemed to be a simple reversion of a domesticated form are poorly understood. Recent studies, revealing the changes occurring in weedy rice, show an unexpected degree of differentiation in these feral escapes.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178 Rome, Italy.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| |
Collapse
|
36
|
Wu D, Lao S, Fan L. De-Domestication: An Extension of Crop Evolution. TRENDS IN PLANT SCIENCE 2021; 26:560-574. [PMID: 33648850 DOI: 10.1016/j.tplants.2021.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
De-domestication or feralization is an interesting phenomenon in crops and livestock. Previously, evidence for crop de-domestication was based mainly on studies using phenotypic and genotypic data from limited molecular markers or gene segments. Recent genomic studies in rice, barley, and wheat provide comprehensive landscapes of de-domestication on a whole-genome scale. Here, we summarize crop de-domestication processes, ecological roles of de-domesticates, mechanisms underlying crop de-domestication syndromes, and conditions potentially favoring de-domestication events. We further explain how recent de-domestication studies have expanded our understanding of the complexity of crop evolution, and highlight the genetic novelties of de-domesticates beneficial for modern crop breeding.
Collapse
Affiliation(s)
- Dongya Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sangting Lao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China.
| |
Collapse
|
37
|
Conroy GC, Lamont RW, Bridges L, Stephens D, Wardell-Johnson A, Ogbourne SM. Conservation concerns associated with low genetic diversity for K'gari-Fraser Island dingoes. Sci Rep 2021; 11:9503. [PMID: 33947920 PMCID: PMC8097078 DOI: 10.1038/s41598-021-89056-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
The dingo population on world heritage-listed K'gari-Fraser Island (K'gari) is amongst the most well-known in Australia. However, an absence of population genetic data limits capacity for informed conservation management. We used 9 microsatellite loci to compare the levels of genetic diversity and genetic structure of 175 K'gari dingo tissue samples with 264 samples from adjacent mainland regions. Our results demonstrated that the K'gari population has significantly lower genetic diversity than mainland dingoes (AR, HE, PAR; p < 0.05) with a fourfold reduction in effective population size (Ne = 25.7 vs 103.8). There is also strong evidence of genetic differentiation between the island and mainland populations. These results are in accordance with genetic theory for small, isolated, island populations, and most likely the result of low initial diversity and founder effects such as bottlenecks leading to decreased diversity and drift. As the first study to incorporate a large sample set of K'gari dingoes, this provides invaluable baseline data for future research, which should incorporate genetic and demographic monitoring to ensure long-term persistence. Given that human-associated activities will continue to result in dingo mortality, it is critical that genetic factors are considered in conservation management decisions to avoid deleterious consequences for this iconic dingo population.
Collapse
Affiliation(s)
- G C Conroy
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia. .,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| | - R W Lamont
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - L Bridges
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - D Stephens
- Zoological Genetics, Inglewood, Adelaide, SA, 5133, Australia
| | - A Wardell-Johnson
- Senior Professional Fellow, Curtin University, Bentley, WA, Australia
| | - S M Ogbourne
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
38
|
Wang MS, Wang S, Li Y, Jhala Y, Thakur M, Otecko NO, Si JF, Chen HM, Shapiro B, Nielsen R, Zhang YP, Wu DD. Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. Mol Biol Evol 2021; 37:2616-2629. [PMID: 32384152 DOI: 10.1093/molbev/msaa113] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic introgression not only provides material for adaptive evolution but also confounds our understanding of evolutionary history. This is particularly true for canids, a species complex in which genome sequencing and analysis has revealed a complex history of admixture and introgression. Here, we sequence 19 new whole genomes from high-altitude Tibetan and Himalayan wolves and dogs and combine these into a larger data set of 166 whole canid genomes. Using these data, we explore the evolutionary history and adaptation of these and other canid lineages. We find that Tibetan and Himalayan wolves are closely related to each other, and that ∼39% of their nuclear genome is derived from an as-yet-unrecognized wolf-like lineage that is deeply diverged from living Holarctic wolves and dogs. The EPAS1 haplotype, which is present at high frequencies in Tibetan dog breeds and wolves and confers an adaptive advantage to animals living at high altitudes, was probably derived from this ancient lineage. Our study underscores the complexity of canid evolution and demonstrates how admixture and introgression can shape the evolutionary trajectories of species.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| | | | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jing-Fang Si
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA.,Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
39
|
Zhang M, Sun G, Ren L, Yuan H, Dong G, Zhang L, Liu F, Cao P, Ko AMS, Yang MA, Hu S, Wang GD, Fu Q. Ancient DNA Evidence from China Reveals the Expansion of Pacific Dogs. Mol Biol Evol 2021; 37:1462-1469. [PMID: 31913480 DOI: 10.1093/molbev/msz311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ancestral homeland of Australian dingoes and Pacific dogs is proposed to be in South China. However, the location and timing of their dispersal and relationship to dog domestication is unclear. Here, we sequenced 7,000- to 2,000-year-old complete mitochondrial DNA (mtDNA) genomes of 27 ancient canids (one gray wolf and 26 domestic dogs) from the Yellow River and Yangtze River basins (YYRB). These are the first complete ancient mtDNA of Chinese dogs from the cradle of early Chinese civilization. We found that most ancient dogs (18/26) belong to the haplogroup A1b lineage that is found in high frequency in present-day Australian dingoes and precolonial Pacific Island dogs but low frequency in present-day China. Particularly, a 7,000-year-old dog from the Tianluoshan site in Zhejiang province possesses a haplotype basal to the entire haplogroup A1b lineage. We propose that A1b lineage dogs were once widely distributed in the YYRB area. Following their dispersal to South China, and then into Southeast Asia, New Guinea and remote Oceania, they were largely replaced by dogs belonging to other lineages in the last 2,000 years in present-day China, especially North China.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoping Sun
- Zhejiang Provincial Institute of Relics and Archaeology, Hangzhou, China
| | - Lele Ren
- School of History and Culture, Lanzhou University, Lanzhou, China
| | - Haibing Yuan
- National Demonstration Center for Experimental Archaeology Education, Department of Archaeology, Sichuan University, Chengdu, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA
| | - Songmei Hu
- Shaanxi Academy of Archaeology, Xi'an, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Edwards RJ, Field MA, Ferguson JM, Dudchenko O, Keilwagen J, Rosen BD, Johnson GS, Rice ES, Hillier LD, Hammond JM, Towarnicki SG, Omer A, Khan R, Skvortsova K, Bogdanovic O, Zammit RA, Aiden EL, Warren WC, Ballard JWO. Chromosome-length genome assembly and structural variations of the primal Basenji dog (Canis lupus familiaris) genome. BMC Genomics 2021; 22:188. [PMID: 33726677 PMCID: PMC7962210 DOI: 10.1186/s12864-021-07493-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. RESULTS Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. CONCLUSIONS The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.
Collapse
Affiliation(s)
- Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Matt A. Field
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600 Australia
| | - James M. Ferguson
- Kinghorn Center for Clinical Genomics, Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010 Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Computer Science, Rice University, Houston, TX USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX USA
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str, 27 06484 Quedlinburg, Germany
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705 USA
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211 USA
| | - Edward S. Rice
- Department of Surgery, University of Missouri, Columbia, MO 65211 USA
| | | | - Jillian M. Hammond
- Kinghorn Center for Clinical Genomics, Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010 Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Arina Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Computer Science, Rice University, Houston, TX USA
| | - Ruqayya Khan
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Computer Science, Rice University, Houston, TX USA
| | - Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010 Australia
| | - Ozren Bogdanovic
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010 Australia
| | - Robert A. Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765 Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Computer Science, Rice University, Houston, TX USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX USA
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009 Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Wesley C. Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211 Australia
| | - J. William O. Ballard
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3086 Australia
- School of Biosciences, University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
41
|
Metabolomics shows the Australian dingo has a unique plasma profile. Sci Rep 2021; 11:5245. [PMID: 33664285 PMCID: PMC7933249 DOI: 10.1038/s41598-021-84411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Dingoes occupy a wide range of the Australian mainland and play a crucial role as an apex predator with a generalist omnivorous feeding behaviour. Dingoes are ecologically, phenotypically and behaviourally distinct from modern breed dogs and have not undergone artificial selection since their arrival in Australia. In contrast, humans have selected breed dogs for novel and desirable traits. First, we examine whether the distinct evolutionary histories of dingoes and domestic dogs has lead to differences in plasma metabolomes. We study metabolite composition differences between dingoes (n = 15) and two domestic dog breeds (Basenji n = 9 and German Shepherd Dog (GSD) n = 10). Liquid chromatography mass spectrometry, type II and type III ANOVA with post-hoc tests and adjustments for multiple comparisons were used for data evaluation. After accounting for within group variation, 62 significant metabolite differences were detected between dingoes and domestic dogs, with the majority of differences in protein (n = 14) and lipid metabolites (n = 12), mostly lower in dingoes. Most differences were observed between dingoes and domestic dogs and fewest between the domestic dog breeds. Next, we collect a second set of data to investigate variation between pure dingoes (n = 10) and dingo-dog hybrids (n = 10) as hybridisation is common in regional Australia. We detected no significant metabolite differences between dingoes and dingo-dog hybrids after Bonferroni correction. However, power analysis showed that increasing the sample size to 15 could result in differences in uridine 5′-diphosphogalactose (UDPgal) levels related to galactose metabolism. We suggest this may be linked to an increase in Amylase 2B copy number in hybrids. Our study illustrates that the dingo metabolome is significantly different from domestic dog breeds and hybridisation is likely to influence carbohydrate metabolism.
Collapse
|
42
|
Cairns KM, Newman KD, Crowther MS, Letnic M. Pelage variation in dingoes across southeastern Australia: implications for conservation and management. J Zool (1987) 2021. [DOI: 10.1111/jzo.12875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. M. Cairns
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - K. D. Newman
- School of Biosciences University of Melbourne Parkville VIC Australia
| | - M. S. Crowther
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - M. Letnic
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| |
Collapse
|
43
|
Moore HA, Dunlop JA, Jolly CJ, Kelly E, Woinarski JCZ, Ritchie EG, Burnett S, van Leeuwen S, Valentine LE, Cowan MA, Nimmo DG. A brief history of the northern quoll (Dasyurus hallucatus): a systematic review. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Steindler L, Letnic M. Not so naïve: endangered mammal responds to olfactory cues of an introduced predator after less than 150 years of coexistence. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02952-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Jolly CJ, Webb JK, Gillespie GR, Phillips BL. Training fails to elicit behavioral change in a marsupial suffering evolutionary loss of antipredator behaviors. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Attempts to reintroduce threatened species from ex situ populations (zoos or predator-free sanctuaries) regularly fail because of predation. When removed from their natural predators, animals may lose their ability to recognize predators and thus fail to adopt appropriate antipredator behaviors. Recently, northern quolls (Dasyurus hallucatus; Dasyuromorpha: Dasyuridae) conserved on a predator-free “island ark” for 13 generations were found to have no recognition of dingoes, a natural predator with which they had coevolved on mainland Australia for about 8,000 years. A subsequent reintroduction attempt using quolls acquired from this island ark failed due to predation by dingoes. In this study, we tested whether instrumental conditioning could be used to improve predator recognition in captive quolls sourced from a predator-free “island ark.” We used a previously successful scent-recognition assay (a giving-up density experiment) to compare predator-scent recognition of captive-born island animals before and after antipredator training. Our training was delivered by pairing live predators (dingo and domestic dog) with an electrified cage floor in repeat trials such that, when the predators were present, foraging animals would receive a shock. Our training methodology did not result in any discernible change in the ability of quolls to recognize and avoid dingo scent after training. We conclude either that our particular training method was ineffective (though ethically permissible); or that because these quolls appear unable to recognize natural predators, predator recognition may be extremely difficult to impart in a captive setting given ethical constraints. Our results point to the difficulty of reinstating lost behaviors, and to the value of maintaining antipredator behaviors in conservation populations before they are lost.
Collapse
Affiliation(s)
- Chris J Jolly
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Jonathan K Webb
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Graeme R Gillespie
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Flora and Fauna Division, Department of Environment and Natural Resources, Northern Territory Government, Berrimah, NT, Australia
| | - Ben L Phillips
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|