1
|
Qin Q, Wei P, Usman S, Ahamefule CS, Jin C, Wang B, Yan K, van Aalten DMF, Fang W. Gfa1 (glutamine fructose-6-phosphate aminotransferase) is essential for Aspergillus fumigatus growth and virulence. BMC Biol 2025; 23:80. [PMID: 40082985 PMCID: PMC11907850 DOI: 10.1186/s12915-025-02184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Aspergillus fumigatus, the primary etiological agent of invasive aspergillosis, causes over 1.8 million deaths annually. Targeting cell wall biosynthetic pathways offers a promising antifungal strategy. Gfa1, a rate-limiting enzyme in UDP-GlcNAc synthesis, plays a pivotal role in the hexosamine biosynthetic pathway (HBP). RESULTS Deletion of gfa1 (Δgfa1) results in auxotrophy for glucosamine (GlcN) or N-acetylglucosamine (GlcNAc). Under full recovery (FR) conditions, where minimal medium is supplemented with 5 mM GlcN as the sole carbon source, the Δgfa1 mutant shows growth comparable to the wild-type (WT). However, when supplemented with 5 mM GlcN and 55 mM glucose, growth is partially repressed, likely due to carbon catabolite repression, a condition termed partial repression (PR). Under PR conditions, Δgfa1 exhibits compromised growth, reduced conidiation, defective germination, impaired cell wall integrity, and increased sensitivity to endoplasmic reticulum (ER) stress and high temperatures. Additionally, Δgfa1 demonstrates disruptions in protein homeostasis and iron metabolism. Transcriptomic analysis of the mutant under PR conditions reveals significant alterations in carbohydrate and amino acid metabolism, unfolded protein response (UPR) processes, and iron assimilation. Importantly, Gfa1 is essential for A. fumigatus virulence, as demonstrated in Caenorhabditis elegans and Galleria mellonella infection models. CONCLUSIONS These findings underscore the critical role of Gfa1 in fungal pathogenicity and suggest its potential as a therapeutic target for combating A. fumigatus infections.
Collapse
Affiliation(s)
- Qijian Qin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Pingzhen Wei
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Sayed Usman
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | | | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Kaizhou Yan
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China.
| |
Collapse
|
2
|
Thakkar N, Gajera G, Mehta D, Nair S, Kothari V. Withania somnifera root extract (LongeFera ™) confers beneficial effects on health and lifespan of the model worm Caenorhabditis legans. Drug Target Insights 2025; 19:18-30. [PMID: 40191697 PMCID: PMC11969495 DOI: 10.33393/dti.2025.3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background Withania somnifera is among the most widely prescribed medicinal plants in traditional Indian medicine. Hydroalcoholic extract of the roots of this plant was investigated for its effects on the overall health and lifespan of the model worm Caenorhabditis elegans. Methods The extract's effect on worm lifespan and fertility was observed microscopically. Worm motility was quantified through an automated worm tracker. The metabolic activity of the worms was captured using the Alamar Blue® assay. Differential gene expression in extract-treated worms was revealed through a whole transcriptome approach. Results Extract-exposed gnotobiotic worms, in the absence of any bacterial food, registered longer lifespan, higher fertility, better motility, and metabolic activity. Whole transcriptome analysis of the extract-treated worms revealed the differential expression of the genes associated with lifespan extension, eggshell assembly and integrity, progeny formation, yolk lipoproteins, collagen synthesis, cuticle molting, etc. This extract seems to exert its beneficial effect on C. elegans partly by triggering the remodeling of the developmentally programmed apical extracellular matrix (aECM). Differential expression of certain important genes (cpg-2, cpg-3, sqt-1, dpy-4, dpy-13, and col -17) was confirmed through PCR assay too. Some of the differently expressed genes (gfat-2, unc-68, dpy-4, dpy -13, col-109, col-169, and rmd-1) in worms experiencing pro-health effect of the extract were found through co-occurrence analysis to have their homologous counterpart in humans. Conclusions Our results validate the suitability of W. somnifera extract as a nutraceutical for healthy aging.
Collapse
Affiliation(s)
- Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- Contributed equally
| | - Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- Contributed equally
| | | | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad - India
| |
Collapse
|
3
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
4
|
Guo F, Xiao F, Song H, Li X, Xiao Y, Qin Y, Lei X. An Optimized Marinopyrrole A Derivative Targets 6-Phosphoglucosamine Synthetase to Inhibit Methicillin-Resistant Staphylococcus aureus. ACS CENTRAL SCIENCE 2024; 10:2090-2098. [PMID: 39634224 PMCID: PMC11613329 DOI: 10.1021/acscentsci.4c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogenic bacterium that causes clinical infection and has become one of the most prominent antibiotic-resistant bacteria in the world. There is a pressing need to develop new antibiotics based on novel modes of action to combat increasingly severe MRSA infection. Marinopyrrole A (MA), a natural product extracted from marine Streptomyces in 2008, has a unique bipyrrole chemical skeleton and shows potent antibacterial activity against MRSA. However, its mode of action is still elusive. Herein, we developed an optimized MA derivative, MA-D1, and applied a chemoproteomic approach to reveal that MA-D1 performs its anti-MRSA activity by directly targeting 6-phosphoglucosamine synthetase (GlmS) to cause the breakdown of bacterial cell wall biosynthesis. Computational and experimental studies showed that MA-D1 interacts with the key R381 and E382 residues of GlmS in a novel binding pocket. Furthermore, MA-D1 showed a low resistance frequency for MRSA treatment and was also sensitive against the linezolid-, vancomycin-, or teicoplanin-resistant MRSA strains. MA-D1 also showed in vivo antibiotic efficacy in multiple animal models. This study demonstrates the promising potential of targeting GlmS to develop a new class of antibiotics to control MRSA pathogen infection.
Collapse
Affiliation(s)
- Fusheng Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fan Xiao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Song
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyong Li
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxin Xiao
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute
for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
5
|
Wei J, Zhou S, Chen G, Chen T, Wang Y, Zou J, Zhou F, Liu J, Gong Q. GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression. Br J Cancer 2024; 131:1529-1542. [PMID: 39317702 PMCID: PMC11519369 DOI: 10.1038/s41416-024-02830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis. METHODS We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis. RESULTS The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway. CONCLUSIONS Our insights suggest GFPT2's potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.
Collapse
Affiliation(s)
- Jia Wei
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Chen
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Qixing Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
You C, Shen F, Yang P, Cui J, Ren Q, Liu M, Hu Y, Li B, Ye L, Shi Y. O-GlcNAcylation mediates Wnt-stimulated bone formation by rewiring aerobic glycolysis. EMBO Rep 2024; 25:4465-4487. [PMID: 39256595 PMCID: PMC11467389 DOI: 10.1038/s44319-024-00237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-β-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.
Collapse
Affiliation(s)
- Chengjia You
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiaoyue Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Moyu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Hu
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Geißler A, Junca H, Kany AM, Daumann LJ, Hirsch AKH, Pieper DH, Sieber SA. Isocyanides inhibit bacterial pathogens by covalent targeting of essential metabolic enzymes. Chem Sci 2024; 15:11946-11955. [PMID: 39092115 PMCID: PMC11290450 DOI: 10.1039/d4sc01940g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
Isonitrile natural products, also known as isocyanides, demonstrate potent antimicrobial activities, yet our understanding of their molecular targets remains limited. Here, we focus on the so far neglected group of monoisonitriles to gain further insights into their antimicrobial mode of action (MoA). Screening a focused monoisonitrile library revealed a potent S. aureus growth inhibitor with a different MoA compared to previously described isonitrile antibiotics. Chemical proteomics via competitive cysteine reactivity profiling, uncovered covalent modifications of two essential metabolic enzymes involved in the fatty acid biosynthetic process (FabF) and the hexosamine pathway (GlmS) at their active site cysteines. In-depth studies with the recombinant enzymes demonstrated concentration-dependent labeling, covalent binding to the catalytic site and corresponding functional inhibition by the isocyanide. Thermal proteome profiling and full proteome studies of compound-treated S. aureus further highlighted the destabilization and dysregulation of proteins related to the targeted pathways. Cytotoxicity and the inhibition of cytochrome P450 enzymes require optimization of the hit molecule prior to therapeutic application. The here described novel, covalent isocyanide MoA highlights the versatility of the functional group, making it a useful tool and out-of-the-box starting point for the development of innovative antibiotics.
Collapse
Affiliation(s)
- Alexandra Geißler
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Lena J Daumann
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Saarland University, Department of Pharmacy 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| |
Collapse
|
8
|
Zeng X, Wei T, Wang X, Liu Y, Tan Z, Zhang Y, Feng T, Cheng Y, Wang F, Ma B, Qin W, Gao C, Xiao J, Wang C. Discovery of metal-binding proteins by thermal proteome profiling. Nat Chem Biol 2024; 20:770-778. [PMID: 38409364 DOI: 10.1038/s41589-024-01563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Metal-binding proteins (MBPs) have various and important biological roles in all living species and many human diseases are intricately linked to dysfunctional MBPs. Here, we report a chemoproteomic method named 'metal extraction-triggered agitation logged by thermal proteome profiling' (METAL-TPP) to globally profile MBPs in proteomes. The method involves the extraction of metals from MBPs using chelators and monitoring the resulting protein stability changes through thermal proteome profiling. Applying METAL-TPP to the human proteome with a broad-spectrum chelator, EDTA, revealed a group of proteins with reduced thermal stability that contained both previously known MBPs and currently unannotated MBP candidates. Biochemical characterization of one potential target, glutamine-fructose-6-phosphate transaminase 2 (GFPT2), showed that zinc bound the protein, inhibited its enzymatic activity and modulated the hexosamine biosynthesis pathway. METAL-TPP profiling with another chelator, TPEN, uncovered additional MBPs in proteomes. Collectively, this study developed a robust tool for proteomic discovery of MBPs and provides a rich resource for functional studies of metals in cell biology.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tiantian Wei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhenshu Tan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yihai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tianyu Feng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Fengzhang Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bin Ma
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanping Gao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junyu Xiao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
9
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
11
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
12
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
13
|
Farshadyeganeh P, Nazim M, Zhang R, Ohkawara B, Nakajima K, Rahman MA, Nasrin F, Ito M, Takeda JI, Ohe K, Miyasaka Y, Ohno T, Masuda A, Ohno K. Splicing regulation of GFPT1 muscle-specific isoform and its roles in glucose metabolisms and neuromuscular junction. iScience 2023; 26:107746. [PMID: 37744035 PMCID: PMC10514471 DOI: 10.1016/j.isci.2023.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.
Collapse
Affiliation(s)
- Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Farhana Nasrin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Ohe
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
14
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
15
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
16
|
Wu K, Chen L, Qiu Z, Zhao B, Hou J, Lei S, Jiang M, Xia Z. Protective Effect and Mechanism of Xbp1s Regulating HBP/O-GlcNAcylation through GFAT1 on Brain Injury after SAH. Biomedicines 2023; 11:biomedicines11051259. [PMID: 37238930 DOI: 10.3390/biomedicines11051259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) SAH induces cellular stress and endoplasmic reticulum stress, activating the unfolded protein response (UPR) in nerve cells. IRE1 (inositol-requiring enzyme 1) is a protein that plays a critical role in cellular stress response. Its final product, Xbp1s, is essential for adapting to changes in the external environment. This process helps maintain proper cellular function in response to various stressors. O-GlcNAcylation, a means of protein modification, has been found to be involved in SAH pathophysiology. SAH can increase the acute O-GlcNAcylation level of nerve cells, which enhances the stress capacity of nerve cells. The GFAT1 enzyme regulates the level of O-GlcNAc modification in cells, which could be a potential target for neuroprotection in SAH. Investigating the IRE1/XBP1s/GFAT1 axis could offer a promising avenue for future research. (2) Methods: SAH was induced using a suture to perforate an artery in mice. HT22 cells with Xbp1 loss- and gain-of-function in neurons were generated. Thiamet-G was used to increase O-GlcNAcylation; (3) Results: Severe neuroinflammation caused by subarachnoid hemorrhage leads to extensive endoplasmic reticulum stress of nerve cells. Xbp1s, the final product of unfolded proteins induced by endoplasmic reticulum stress, can induce the expression of the hexosamine pathway rate limiting enzyme GFAT1, increase the level of O-GlcNAc modification of cells, and have a protective effect on neural cells; (4) Conclusions: The correlation between Xbp1s displayed by immunohistochemistry and O-GlcNAc modification suggests that the IRE1/XBP1 branch of unfolded protein reaction plays a key role in subarachnoid hemorrhage. IRE1/XBP1 branch is a new idea to regulate protein glycosylation modification, and provides a promising strategy for clinical perioperative prevention and treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Kefan Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Shaoqin Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| |
Collapse
|
17
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Mendoza-Porras O, Broadbent JA, Beale DJ, Escobar-Correas SM, Osborne SA, Simon CJ, Wade NM. Post-prandial response in hepatopancreas and haemolymph of Penaeus monodon fed different diets. Omics insights into glycoconjugate metabolism, energy utilisation, chitin biosynthesis, immune function, and autophagy. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101073. [PMID: 37018937 DOI: 10.1016/j.cbd.2023.101073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Raw materials or bioactive ingredients trigger mechanisms to assimilate nutrients and activate metabolic pathways that promote growth, immune function, or energy storage. Our understanding of these processes at a molecular level remains limited in aquaculture, especially in shrimp. Here, hepatopancreas proteomics and haemolymph metabolomics were used to investigate the post-prandial response of black tiger shrimps (Penaeus monodon) fed a conventional fishmeal diet (FM); a diet supplemented with the microbial biomass Novacq™ (NV); krill meal (KM); or, fasted (FS). Using FM as a control, a 2-fold change in abundance threshold was implemented to determine the significance of proteins and metabolites. NV fed shrimp showed preference for energy derived from carbohydrates indicated by a strong signature of glycoconjugate metabolism and activation of the amino- and nucleotide sugar metabolic pathway. KM activated the glyoxylate and dicarboxylate pathway that denoted shrimp preference for lipidic energy. KM also influenced energy generation by the TCA cycle inferred from higher abundance of the metabolites succinic semialdehyde, citric acid, isocitrate, alpha ketoglutarate and ATP and downregulation of the enzyme isocitrate dehydrogenase that catalyses oxidative decarboxylation of isocitrate. FS shrimp displayed down-regulation of oxidative phosphorylation and resorted to internal lipid reserves for energy homeostasis displaying a strong signature of autophagy. Pyrimidine metabolism was the preferred energy strategy in this group. Our study also provided evidence that during fasting or consumption of specific ingredients, shrimp share common pathways to meet their energy requirements, however, the intensity at which these pathways were impacted was diet dependent.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia.
| | - James A Broadbent
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - David J Beale
- CSIRO Land and Water, Ecosciences Precinct, Dutton Park, QLD, Australia
| | | | - Simone A Osborne
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Cedric J Simon
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| |
Collapse
|
19
|
The UDPase ENTPD5 regulates ER stress-associated renal injury by mediating protein N-glycosylation. Cell Death Dis 2023; 14:166. [PMID: 36849424 PMCID: PMC9971188 DOI: 10.1038/s41419-023-05685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Impaired protein N-glycosylation leads to the endoplasmic reticulum (ER) stress, which triggers adaptive survival or maladaptive apoptosis in renal tubules in diabetic kidney disease (DKD). Therapeutic strategies targeting ER stress are promising for the treatment of DKD. Here, we report a previously unappreciated role played by ENTPD5 in alleviating renal injury by mediating ER stress. We found that ENTPD5 was highly expressed in normal renal tubules; however, ENTPD5 was dynamically expressed in the kidney and closely related to pathological DKD progression in both human patients and mouse models. Overexpression of ENTPD5 relieved ER stress in renal tubular cells, leading to compensatory cell proliferation that resulted in hypertrophy, while ENTPD5 knockdown aggravated ER stress to induce cell apoptosis, leading to renal tubular atrophy and interstitial fibrosis. Mechanistically, ENTPD5-regulated N-glycosylation of proteins in the ER to promote cell proliferation in the early stage of DKD, and continuous hyperglycemia activated the hexosamine biosynthesis pathway (HBP) to increase the level of UDP-GlcNAc, which driving a feedback mechanism that inhibited transcription factor SP1 activity to downregulate ENTPD5 expression in the late stage of DKD. This study was the first to demonstrate that ENTPD5 regulated renal tubule cell numbers through adaptive proliferation or apoptosis in the kidney by modulating the protein N-glycosylation rate in the ER, suggesting that ENTPD5 drives cell fate in response to metabolic stress and is a potential therapeutic target for renal diseases.
Collapse
|
20
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Zou H, Zhang B, Zou C, Ma W, Zhang S, Wang Z, Bi B, Li S, Gao J, Zhang C, Zhang G, Zhang J. Knockdown of GFAT disrupts chitin synthesis in Hyphantria cunea larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105245. [PMID: 36464356 DOI: 10.1016/j.pestbp.2022.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Glutamine-fructose-6-phosphate transaminase (GFAT) has been reported to regulate the hexosamine biosynthetic pathway as the first rate-limiting enzyme. As a key enzyme that catalyzes the substrate of glycosylation modification, which has a wide-ranging effect on cellular functions. However, there are few studies on the relationship between GFAT and chitin metabolism in insects. In the present study, the GFAT gene from Hyphantria cunea was identified based on transcriptome and bioinformatic analysis. The role of HcGFAT in regulating development and chitin synthesis was analyzed by RNA interference (RNAi) in H. cunea larvae. The full-length HcGFAT gene (2028 bp) encodes a 676 amino acid (aa) polypeptide had typical structural features of the SIS and Gn_AT_II superfamily. Phylogenetic analyses showed that GFAT of H. cunea shares the highest homology and identity with GFAT of Ostrinia furnacalis. Expression profiles indicated that HcGFAT was expressed throughout larval, pupal and three tissues (midgut, fat body, epidermis), and highly expressed in the last instar of larvae and strongly expressed in epidermis among three tissues. Bioassay results showed that knockdown of HcGFAT repressed larval growth and development, resulting in a significant loss of larval body weight. Meanwhile, HcGFAT knockdown also significantly caused larval developmental deformity. Knockdown of HcGFAT regulated the expression of four other critical genes in the chitin synthesis pathway (HcGNA, HcPAGM, HcUAP, HcCHSA), and ultimately resulted in decreased chitin content in the epidermis. In summary, these findings indicated that GFAT plays a critical role in larval growth and development, as well as chitin synthesis in H. cunea.
Collapse
Affiliation(s)
- Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bowen Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Weihu Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ze Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bing Bi
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Siyi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Jinhui Gao
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun 153000, PR China
| | - Chunxia Zhang
- Kuduer Forestry Bureau of Inner Mongolia, Hulunbuir 022159, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Jie Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
22
|
Harada Y, Ohkawa Y, Maeda K, Taniguchi N. Glycan quality control in and out of the endoplasmic reticulum of mammalian cells. FEBS J 2022; 289:7147-7162. [PMID: 34492158 DOI: 10.1111/febs.16185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum (ER) is equipped with multiple quality control systems (QCS) that are necessary for shaping the glycoproteome of eukaryotic cells. These systems facilitate the productive folding of glycoproteins, eliminate defective products, and function as effectors to evoke cellular signaling in response to various cellular stresses. These ER functions largely depend on glycans, which contain sugar-based codes that, when needed, function to recruit carbohydrate-binding proteins that determine the fate of glycoproteins. To ensure their functionality, the biosynthesis of such glycans is therefore strictly monitored by a system that selectively degrades structurally defective glycans before adding them to proteins. This system, which is referred to as the glycan QCS, serves as a mechanism to reduce the risk of abnormal glycosylation under conditions where glycan biosynthesis is genetically or metabolically stalled. On the other hand, glycan QCS increases the risk of global hypoglycosylation by limiting glycan availability, which can lead to protein misfolding and the activation of unfolded protein response to maintaining cell viability or to initiate cell death programs. This review summarizes the current state of our knowledge of the mechanisms underlying glycan QCS in mammals and its physiological and pathological roles in embryogenesis, tumor progression, and congenital disorders associated with abnormal glycosylation.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
23
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
24
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
25
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
27
|
Xue Q, Yan R, Ji S, Yu S. Regulation of mitochondrial network homeostasis by O-GlcNAcylation. Mitochondrion 2022; 65:45-55. [DOI: 10.1016/j.mito.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
28
|
Zimmer BM, Barycki JJ, Simpson MA. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars. Am J Physiol Cell Physiol 2022; 322:C1201-C1213. [PMID: 35442826 DOI: 10.1152/ajpcell.00130.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is a versatile macromolecule capable of an exceptional range of functions from cushioning and hydration to dynamic signaling in development and disease. Because of its critical roles, hyaluronan production is regulated at multiple levels including epigenetic, transcriptional, and post-translational control of the three hyaluronan synthase (HAS) enzymes. Precursor availability can dictate the rate and amount of hyaluronan synthesized and shed by the cells producing it. However, the nucleotide-activated sugar substrates for hyaluronan synthesis by HAS also participate in exquisitely fine tuned cross talking pathways that intersect with central carbohydrate metabolism. Multiple UDP-sugars have alternative metabolic fates and exhibit coordinated and reciprocal allosteric control of enzymes within their biosynthetic pathways to preserve appropriate precursor ratios for accurate partitioning among downstream products, while also sensing and maintaining energy homeostasis. Since the dysregulation of nucleotide sugar and hyaluronan synthesis is associated with multiple pathologies, these pathways offer opportunities for therapeutic intervention. Recent structures of several key rate-limiting enzymes in the UDP-sugar synthesis pathways have offered new insights to the overall regulation of hyaluronan production by precursor fate decisions. The details of UDP-sugar control and the structural basis for underlying mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
29
|
Hsu YS, Wu PJ, Jeng YM, Hu CM, Lee WH. Differential effects of glucose and N-acetylglucosamine on genome instability. Am J Cancer Res 2022; 12:1556-1576. [PMID: 35530290 PMCID: PMC9077085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023] Open
Abstract
Aberrant sugar metabolism is linked to an increased risk of pancreatic cancer. Previously, we found that high glucose induces genome instability and de novo oncogenic KRAS mutation preferentially in pancreatic cells through dysregulation of O-GlcNAcylation. Increasing O-GlcNAcylation by extrinsically supplying N-acetyl-D-glucosamine (GlcNAc) causes genome instability in all kinds of cell types regardless of pancreatic origin. Since many people consume excessive amount of sugar (glucose, fructose, and sucrose) in daily life, whether high sugar consumption directly causes genome instability in animals remains to be elucidated. In this communication, we show that excess sugar in the daily drink increases DNA damage and protein O-GlcNAcylation preferentially in pancreatic tissue but not in other kinds of tissue of mice. The effect of high sugar on the pancreatic tissue may be attributed to the intrinsic ratio of GFAT and PFK activity, a limiting factor that dictates UDP-GlcNAc levels. On the other hand, GlcNAc universally induces DNA damage in all six organs examined. Either inhibiting O-GlcNAcylation or supplementing dNTP pool diminishes the induced DNA damage in these organs, indicating that the mechanism of action is similar to that of high glucose treatment in pancreatic cells. Taken together, these results suggest the potential hazards of high sugar drinks and high glucosamine intake to genomic instability and possibly cancer initiation.
Collapse
Affiliation(s)
- Yuan-Sheng Hsu
- Graduate Institute of Biomedical Science, China Medical UniversityTaichung 40402, Taiwan
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Pei-Jung Wu
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei 10041, Taiwan
| | - Chun-Mei Hu
- Graduate Institute of Biomedical Science, China Medical UniversityTaichung 40402, Taiwan
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
- Drug Development Center, China Medical UniversityTaichung 40402, Taiwan
- Department of Biological Chemistry, University of CaliforniaIrvine, California 92697, USA
| |
Collapse
|
30
|
Kroef V, Ruegenberg S, Horn M, Allmeroth K, Ebert L, Bozkus S, Miethe S, Elling U, Schermer B, Baumann U, Denzel MS. GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway. eLife 2022; 11:69223. [PMID: 35229715 PMCID: PMC8970586 DOI: 10.7554/elife.69223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP-GlcNAc levels counteract the glycosylation toxin tunicamycin (TM), and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N-acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function (LOF) is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 LOF resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Taken together, our data reveal a critical function of AMDHD2 in limiting UDP-GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP.
Collapse
Affiliation(s)
- Virginia Kroef
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Ruegenberg
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kira Allmeroth
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | | | - Stephan Miethe
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Elling
- Vienna Biocenter, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Randez-Gil F. Slt2 Is Required to Activate ER-Stress-Protective Mechanisms through TORC1 Inhibition and Hexosamine Pathway Activation. J Fungi (Basel) 2022; 8:jof8020092. [PMID: 35205847 PMCID: PMC8877190 DOI: 10.3390/jof8020092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Slt2, the MAPK of the cell wall integrity (CWI) pathway, connects different signaling pathways and performs different functions in the protective response of S. cerevisiae to stress. Previous work has evidenced the relation of the CWI pathway and the unfolded protein response (UPR), a transcriptional program activated upon endoplasmic reticulum (ER) stress. However, the mechanisms of crosstalk between these pathways and the targets regulated by Slt2 under ER stress remain unclear. Here, we demonstrated that ectopic expression of GFA1, the gene encoding the first enzyme in the synthesis of UDP-GlcNAc by the hexosamine biosynthetic pathway (HBP) or supplementation of the growth medium with glucosamine (GlcN), increases the tolerance of slt2 mutant cells to different ER-stress inducers. Remarkably, GlcN also alleviates the sensitivity phenotype of cells lacking IRE1 or HAC1, the main actors in controlling the UPR. The exogenous addition of GlcN reduced the abundance of glycosylated proteins and triggered autophagy. We also found that TORC1, the central stress and growth controller, is inhibited by tunicamycin exposure in cells of the wild-type strain but not in those lacking Slt2. Consistent with this, the tunicamycin-induced activation of autophagy and the increased synthesis of ATP in response to ER stress were absent by knock-out of SLT2. Altogether, our data placed Slt2 as an essential actor of the ER stress response by regulating the HBP activity and the TORC1-dependent signaling.
Collapse
Affiliation(s)
- Isabel E. Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
- Correspondence:
| |
Collapse
|
32
|
Li Z, Zhang J, Ai HW. Genetically Encoded Green Fluorescent Biosensors for Monitoring UDP-GlcNAc in Live Cells. ACS CENTRAL SCIENCE 2021; 7:1763-1770. [PMID: 34729420 PMCID: PMC8554846 DOI: 10.1021/acscentsci.1c00745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a nucleotide sugar used by glycosyltransferases to synthesize glycoproteins, glycosaminoglycans, glycolipids, and glycoRNA. UDP-GlcNAc also serves as the donor substrate for forming O-GlcNAc, a dynamic intracellular protein modification involved in diverse signaling and disease processes. UDP-GlcNAc is thus a central metabolite connecting nutrition, metabolism, signaling, and disease. There is a great interest in monitoring UDP-GlcNAc in biological systems. Here, we present the first genetically encoded, green fluorescent UDP-GlcNAc sensor (UGAcS), an optimized insertion of a circularly permuted green fluorescent protein (cpGFP) into an inactive mutant of an Escherichia coli UDP-GlcNAc transferase, for ratiometric monitoring of UDP-GlcNAc dynamics in live mammalian cells. Although UGAcS responds to UDP-GlcNAc quite selectively among various nucleotide sugars, UDP and uridine triphosphate (UTP) interfere with the response. We thus developed another biosensor named UXPS, which is responsive to UDP and UTP but not UDP-GlcNAc. We demonstrated the use of the biosensors to follow UDP-GlcNAc levels in cultured mammalian cells perturbed with nutritional changes, pharmacological inhibition, and knockdown or overexpression of key enzymes in the UDP-GlcNAc synthesis pathway. We further utilized the biosensors to monitor UDP-GlcNAc concentrations in pancreatic MIN6 β-cells under various culture conditions.
Collapse
|
33
|
Ruegenberg S, Mayr FAMC, Atanassov I, Baumann U, Denzel MS. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nat Commun 2021; 12:2176. [PMID: 33846315 PMCID: PMC8041777 DOI: 10.1038/s41467-021-22320-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Felix A. M. C. Mayr
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Martin S. Denzel
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Lam C, Low JY, Tran PT, Wang H. The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett 2021; 503:11-18. [PMID: 33484754 DOI: 10.1016/j.canlet.2021.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
The hexosamine biosynthetic pathway (HBP) is a glucose metabolism pathway that results in the synthesis of a nucleotide sugar UDP-GlcNAc, which is subsequently used for the post-translational modification (O-GlcNAcylation) of intracellular proteins that regulate nutrient sensing and stress response. The HBP is carried out by a series of enzymes, many of which have been extensively implicated in cancer pathophysiology. Increasing evidence suggests that elevated activation of the HBP may act as a cancer biomarker. Inhibition of HBP enzymes could suppress tumor cell growth, modulate the immune response, reduce resistance, and sensitize tumor cells to conventional cancer therapy. Therefore, targeting the HBP may serve as a novel strategy for treating cancer patients. Here, we review the current findings on the significance of HBP enzymes in various cancers and discuss future approaches for exploiting HBP inhibition for cancer treatment.
Collapse
Affiliation(s)
- Christine Lam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jin-Yih Low
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
35
|
Ukwenya VO, Adelakun SA, Elekofehinti OO. Exploring the antidiabetic potential of compounds isolated from Anacardium occidentale using computational aproach: ligand-based virtual screening. In Silico Pharmacol 2021; 9:25. [PMID: 33868895 DOI: 10.1007/s40203-021-00084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/12/2021] [Indexed: 10/21/2022] Open
Abstract
Diabetes mellitus is becoming an important public health challenge worldwide and especially in developing nations. About 8.8 percent of the world adult population has been reported to have diabetes. Glutamine-fructose-6-phosphate amidotransferase 1 (GFAT1) catalyses the first committed step in the pathway for biosynthesis of hexosamines in mammals, and its inhibition has been thought to prevent hyperglycaemia. Dipeptidyl peptidase-4 (DPP-4), on the other hand, degrades hormone glucagon-like peptide-1 (GLP-1), an enzyme that plays a major role in the enhancement of glucose-dependent insulin secretion, making these two proteins candidate targets for diabetes. To find potential inhibitors of DPP-4 and GFAT1 from Anacardium occidentale using a computational approach, glide XP (extra precision) docking, Induced Fit Docking (IFD), Binding free energy of the compounds were determined against prepared crystal structure of DPP-4 and GFAT1 using the Maestro molecular interface of Schrödinger suites. The Lipinski's rule of five (RO5) and ADME properties of the compounds were assessed. Predictive models for both protein targets were built using AutoQSAR. This study identified 8 hit compounds. Most of these compounds passed the RO5 and were within the recommended range for defined ADME parameters. In addition, the predicted pIC50 for the hit compounds were promising. The results obtained from the present study can be used to design an antidiabetic drug. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00084-z.
Collapse
Affiliation(s)
- Victor Okoliko Ukwenya
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Sunday Aderemi Adelakun
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
36
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
37
|
Oliveira IA, Allonso D, Fernandes TVA, Lucena DMS, Ventura GT, Dias WB, Mohana-Borges RS, Pascutti PG, Todeschini AR. Enzymatic and structural properties of human glutamine:fructose-6-phosphate amidotransferase 2 (hGFAT2). J Biol Chem 2020; 296:100180. [PMID: 33303629 PMCID: PMC7948480 DOI: 10.1074/jbc.ra120.015189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugates play a central role in several cellular processes, and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in Escherichia coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi–bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics, and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.
Collapse
Affiliation(s)
- Isadora A Oliveira
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Diego Allonso
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Tácio V A Fernandes
- Laboratório de Modelagem e Dinâmica Molecular, IBCCF, UFRJ, Rio de Janeiro, RJ, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | - Daniela M S Lucena
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gustavo T Ventura
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Wagner Barbosa Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Pedro G Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, IBCCF, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Horn M, Denzel SI, Srinivasan B, Allmeroth K, Schiffer I, Karthikaisamy V, Miethe S, Breuer P, Antebi A, Denzel MS. Hexosamine Pathway Activation Improves Protein Homeostasis through the Integrated Stress Response. iScience 2020; 23:100887. [PMID: 32086012 PMCID: PMC7033349 DOI: 10.1016/j.isci.2020.100887] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Activation of the hexosamine pathway (HP) through gain-of-function mutations in its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) ameliorates proteotoxicity and increases lifespan in Caenorhabditis elegans. Here, we investigate the role of the HP in mammalian protein quality control. In mouse neuronal cells, elevation of HP activity led to phosphorylation of both PERK and eIF2α as well as downstream ATF4 activation, identifying the HP as a modulator of the integrated stress response (ISR). Increasing uridine 5′-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) levels through GFAT1 gain-of-function mutations or supplementation with the precursor GlcNAc reduces aggregation of the polyglutamine (polyQ) protein Ataxin-3. Blocking PERK signaling or autophagy suppresses this effect. In C. elegans, overexpression of gfat-1 likewise activates the ISR. Consistently, co-overexpression of gfat-1 and proteotoxic polyQ peptides in muscles reveals a strong protective cell-autonomous role of the HP. Thus, the HP has a conserved role in improving protein quality control through modulation of the ISR. Hexosamine pathway (HP) activation induces the integrated stress response (ISR) HP activation ameliorates poly-glutamine aggregation via the ISR and autophagy In C. elegans, the HP/ISR axis improves cell autonomous protein homeostasis The proteoprotective role of longevity-associated HP is evolutionarily conserved
Collapse
Affiliation(s)
- Moritz Horn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Sarah I Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Balaji Srinivasan
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Isabelle Schiffer
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Vignesh Karthikaisamy
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Stephan Miethe
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Peter Breuer
- University of Bonn, Department of Neurology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany.
| |
Collapse
|