1
|
Grossi E, Marchese FP, González J, Goñi E, Fernández-Justel JM, Amadoz A, Herranz N, Puchades-Carrasco L, Montes M, Huarte M. A lncRNA-mediated metabolic rewiring of cell senescence. Cell Rep 2025; 44:115747. [PMID: 40408249 DOI: 10.1016/j.celrep.2025.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/21/2025] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Despite not proliferating, senescent cells remain metabolically active to maintain the senescence program. However, the mechanisms behind this metabolic reprogramming are not well understood. We identify senescence-induced long noncoding RNA (sin-lncRNA), a previously uncharacterized long noncoding RNA (lncRNA), a key player in this response. While strongly activated in senescence by C/EBPβ, sin-lncRNA loss reinforces the senescence program by altering oxidative phosphorylation and rewiring mitochondrial metabolism. By interacting with dihydrolipoamide S-succinyltransferase (DLST), it facilitates its mitochondrial localization. Depletion of sin-lncRNA causes DLST nuclear translocation, leading to transcriptional changes in oxidative phosphorylation (OXPHOS) genes. While not expressed in highly proliferative cancer cells, it is strongly induced upon cisplatin-induced senescence. Depletion of sin-lncRNA in ovarian cancer cells reduces oxygen consumption and increases extracellular acidification, sensitizing cells to cisplatin treatment. Altogether, these results indicate that sin-lncRNA is specifically induced in senescence to maintain metabolic homeostasis, unveiling an RNA-dependent metabolic rewiring specific to senescent cells.
Collapse
Affiliation(s)
- Elena Grossi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Francesco P Marchese
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Alicia Amadoz
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Nicolás Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Montes
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
2
|
Uusi-Mäkelä J, Kauppinen M, Seppälä J, Jaatinen S, Ryback B, Rantapero T, Rodriguez-Martinez A, Nykter M, Rautajoki KJ. Tumor-associated long non-coding RNAs show variable expression across diffuse gliomas and effect on cell growth upon silencing in glioblastoma. Sci Rep 2025; 15:16220. [PMID: 40346283 PMCID: PMC12064817 DOI: 10.1038/s41598-025-99984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recently recognized as critical components of cancer biology linked to oncogenic processes. Certain lncRNAs are known to act as oncogenes, and the disease-specific expression of many lncRNAs makes them informative biomarkers. We identified 22 uncharacterized lncRNAs from RNA-seq data of 169 glioblastoma (GBM) tumor samples sequenced by The Cancer Genome Atlas (TCGA) consortium and studied their expression in TCGA diffuse glioma cohort including also IDH-mutant astrocytomas and oligodendrogliomas as well as in normal brain samples from the Genotype-Tissue Expression cohort. All of the 22 lncRNAs were clearly upregulated in diffuse gliomas samples compared to the normal brain. Interestingly, 20 (91%) of these lncRNAs had significant expression differences between tumor grades and/or entities, and 14 (64%) were associated with overall patient survival. All 22 lncRNAs were expressed in at least one of the studied GBM cell lines and 10 (45%) were expressed in all four. When six of the lncRNAs were silenced in the SNB19 GBM cell line, the knock-down was associated with reduced growth and colony formation for three lncRNAs: TCONS_l2_00001282, lnc-GBMT-6, and lnc-NBN-1. In conclusion, the studied lncRNAs are associated with survival in patients with diffuse glioma and have functional relevance in GBM.
Collapse
Affiliation(s)
- Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Kauppinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- IT Management, Helsinki University Hospital, Helsinki, Finland
| | - Janne Seppälä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Serafiina Jaatinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Birgitta Ryback
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tommi Rantapero
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alejandra Rodriguez-Martinez
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
3
|
Zhao Z, Hu B, Deng Y, Soeung M, Yao J, Bei L, Zhang Y, Gong P, Huang LA, Jiang Z, Gao J, Peng S, Nguyen TK, Karki M, Lim B, Yee C, Burks JK, Zhang Q, Ma L, Gao J, Tannir NM, Han L, Yu D, Wang L, Curran MA, Gubbiotti MA, Genovese G, Gan B, Li W, Msaouel P, Yang L, Lin C. Sickle cell disease induces chromatin introversion and ferroptosis in CD8 + T cells to suppress anti-tumor immunity. Immunity 2025:S1074-7613(25)00183-9. [PMID: 40359940 DOI: 10.1016/j.immuni.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/22/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Understanding how genetic disorders affect CD8+ T cells in the tumor microenvironment is key to improving cancer immunotherapy. Individuals with sickle cell disease (SCD), the most prevalent inherited blood disorder, have a higher risk of developing certain cancers than the general population, but the mechanisms driving this increased risk remain unclear. Our study revealed that SCD altered CD8+ T cell 3D genome architecture, triggering ferroptosis and weakening anti-tumor immunity, thereby promoting tumor growth. Using murine and humanized SCD models, we found that disrupted chromosomal interactions in CD8+ T cells reduced the expression of anti-ferroptotic genes, including SLC7A11 and hydrogen sulfide (H2S) biogenesis genes, thereby increasing susceptibility to ferroptosis. Therapeutic restoration of H2S concentration in SCD mice rescued SLC7A11 expression, mitigated ferroptosis, and enhanced immune and anti-tumor responses. These findings highlight the impact of inherited disorders on cancer immunity and suggest precision immunotherapy strategies for affected individuals.
Collapse
Affiliation(s)
- Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benxia Hu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda Soeung
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lanxin Bei
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pengju Gong
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Gao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuang Peng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Menuka Karki
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Linghua Wang
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria A Gubbiotti
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Hu X, Wang Y, Zhang S, Gu X, Zhang X, Li L. LncRNA HOXA10-AS as a novel biomarker and therapeutic target in human cancers. Front Mol Biosci 2025; 11:1520498. [PMID: 39830983 PMCID: PMC11738949 DOI: 10.3389/fmolb.2024.1520498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulatory molecules that participate in numerous cellular development processes, and they have gathered much interest recently. HOXA10 antisense RNA (HOXA10-AS, also known as HOXA-AS4) is a novel lncRNA that was identified to be dysregulated in some prevalent malignancies. In this review, the clinical significance of HOXA10-AS for the prognosis of various cancers is analyzed. In addition, the major advances in our understanding of the cellular biological functions and mechanisms of HOXA10-AS in different human cancers are summarized. These cancers include esophageal carcinoma (ESCA), gastric cancer (GC), glioma, laryngeal squamous cell carcinoma (LSCC), acute myeloid leukemia (AML), lung adenocarcinoma (LUAD), nasopharyngeal carcinoma (NPC), oral squamous cell carcinoma (OSCC), and pancreatic cancer. We also note that the aberrant expression of HOXA10-AS promotes malignant progression through various underlying mechanisms. In conclusion, HOXA10-AS is expected to serve as an ideal clinical biomarker and an effective cancer therapy target.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Oo JA, Warwick T, Pálfi K, Lam F, McNicoll F, Prieto-Garcia C, Günther S, Cao C, Zhou Y, Gavrilov AA, Razin SV, Cabrera-Orefice A, Wittig I, Pullamsetti SS, Kurian L, Gilsbach R, Schulz MH, Dikic I, Müller-McNicoll M, Brandes RP, Leisegang MS. Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers. Nat Commun 2025; 16:131. [PMID: 39747144 PMCID: PMC11695977 DOI: 10.1038/s41467-024-55539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state. It does so while retaining the ability to respond dynamically to cellular signals. However, the mechanisms that guide SWI/SNF to specific genomic targets have remained elusive. Here we demonstrate that trans-acting long non-coding RNAs (lncRNAs) direct the SWI/SNF complex to cell type-specific enhancers. SWI/SNF preferentially binds lncRNAs and these predominantly bind DNA targets in trans. Together they localize to enhancers, many of which are cell type-specific. Knockdown of SWI/SNF- and enhancer-bound lncRNAs causes the genome-wide redistribution of SWI/SNF away from enhancers and a concomitant differential expression of spatially connected target genes. These lncRNA-SWI/SNF-enhancer networks support an enhancer hub model of SWI/SNF genomic targeting. Our findings reveal that lncRNAs competitively recruit SWI/SNF, providing a specific and dynamic layer of control over chromatin accessibility, and reinforcing their role in mediating enhancer activity and gene expression.
Collapse
Affiliation(s)
- James A Oo
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Katalin Pálfi
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
| | - Frederike Lam
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Francois McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Goethe University Frankfurt, Institute of Biochemistry II, Faculty of Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Can Cao
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Yinuo Zhou
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alfredo Cabrera-Orefice
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics Center, Frankfurt, Germany
| | - Ilka Wittig
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics Center, Frankfurt, Germany
| | - Soni Savai Pullamsetti
- Department of Internal Medicine, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), University of Giessen, Giessen, Germany
| | - Leo Kurian
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf Gilsbach
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Marcel H Schulz
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute for Computational Genomic Medicine, Frankfurt, Germany
| | - Ivan Dikic
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute of Biochemistry II, Faculty of Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute for Molecular Biosciences, Frankfurt, Germany
- Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany.
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
6
|
Iordache F, Petcu ACI, Alexandru DM. Genetic and Epigenetic Interactions Involved in Senescence of Stem Cells. Int J Mol Sci 2024; 25:9708. [PMID: 39273655 PMCID: PMC11396476 DOI: 10.3390/ijms25179708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular senescence is a permanent condition of cell cycle arrest caused by a progressive shortening of telomeres defined as replicative senescence. Stem cells may also undergo an accelerated senescence response known as premature senescence, distinct from telomere shortening, as a response to different stress agents. Various treatment protocols have been developed based on epigenetic changes in cells throughout senescence, using different drugs and antioxidants, senolytic vaccines, or the reprogramming of somatic senescent cells using Yamanaka factors. Even with all the recent advancements, it is still unknown how different epigenetic modifications interact with genetic profiles and how other factors such as microbiota physiological conditions, psychological states, and diet influence the interaction between genetic and epigenetic pathways. The aim of this review is to highlight the new epigenetic modifications that are involved in stem cell senescence. Here, we review recent senescence-related epigenetic alterations such as DNA methylation, chromatin remodeling, histone modification, RNA modification, and non-coding RNA regulation outlining new possible targets for the therapy of aging-related diseases. The advantages and disadvantages of the animal models used in the study of cellular senescence are also briefly presented.
Collapse
Affiliation(s)
- Florin Iordache
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
- Advanced Research Center for Innovative Materials, Products and Processes CAMPUS, Politehnica University, 060042 Bucharest, Romania
| | - Adriana Cornelia Ionescu Petcu
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Pharmacology and Pharmacy Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| |
Collapse
|
7
|
Yankey A, Oh M, Lee BL, Desai TK, Somarowthu S. A novel partnership between lncTCF7 and SND1 regulates the expression of the TCF7 gene via recruitment of the SWI/SNF complex. Sci Rep 2024; 14:19384. [PMID: 39169000 PMCID: PMC11339422 DOI: 10.1038/s41598-024-69792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cellular pathways and disease progression, yet their molecular mechanisms remain largely understudied. The lncRNA lncTCF7 has been shown to promote tumor progression by recruiting the SWI/SNF complex to the TCF7 promoter, activating its expression and the WNT signaling pathway. However, how lncTCF7 recruits SWI/SNF remains to be determined, and lncTCF7-specific binding partners are unknown. Using RNA-pulldown and quantitative mass spectrometry, we identified a novel interacting protein partner for lncTCF7, SND1, a multifunctional RNA binding protein that can also function as a transcription co-activator. Knockdown analysis of lncTCF7 and SND1 reveals that they are both required for the expression of TCF7. Chromatin immunoprecipitation assays suggest that both SND1 and lncTCF7 are required for recruiting the SWI/SNF chromatin remodeling complex, and these functions, in tandem, activate the expression of TCF7. Finally, using structural probing and RNA-pulldown of lncTCF7 and its subdomains, we highlight the potential binding region for SND1 in the 3'-end of lncTCF7. Overall, this study highlights the critical roles lncRNAs play in regulating gene expression and provides new insights into the complex network of interactions that underlie this process.
Collapse
Affiliation(s)
- Allison Yankey
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mihyun Oh
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Bo Lim Lee
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Tisha Kalpesh Desai
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Tameni A, Mallia S, Manicardi V, Donati B, Torricelli F, Vitale E, Salviato E, Gambarelli G, Muccioli S, Zanelli M, Ascani S, Martino G, Sanguedolce F, Sauta E, Tamagnini I, Puccio N, Neri A, Ciarrocchi A, Fragliasso V. HELLS regulates transcription in T-cell lymphomas by reducing unscheduled R-loops and by facilitating RNAPII progression. Nucleic Acids Res 2024; 52:6171-6182. [PMID: 38597676 PMCID: PMC11194065 DOI: 10.1093/nar/gkae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.
Collapse
MESH Headings
- Humans
- RNA Polymerase II/metabolism
- R-Loop Structures
- Transcription, Genetic
- DNA Damage
- Cell Line, Tumor
- Genomic Instability/genetics
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Gene Expression Regulation, Neoplastic
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Promoter Regions, Genetic
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
Collapse
Affiliation(s)
- Annalisa Tameni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Selene Mallia
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Elisa Salviato
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Giulia Gambarelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Silvia Muccioli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Magda Zanelli
- Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
- Institute of Hematology and CREO, University of Perugia, Perugia 06129, Italy
| | | | - Elisabetta Sauta
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ione Tamagnini
- Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Viale Umberto I 50, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| |
Collapse
|
9
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
10
|
Saha D, Animireddy S, Lee J, Thommen A, Murvin MM, Lu Y, Calabrese JM, Bartholomew B. Enhancer switching in cell lineage priming is linked to eRNA, Brg1's AT-hook, and SWI/SNF recruitment. Mol Cell 2024; 84:1855-1869.e5. [PMID: 38593804 PMCID: PMC11104297 DOI: 10.1016/j.molcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/24/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Anna Thommen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - McKenzie M Murvin
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA
| | - J Mauro Calabrese
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA.
| |
Collapse
|
11
|
Papoutsoglou P, Pineau R, Leroux R, Louis C, L'Haridon A, Foretek D, Morillon A, Banales JM, Gilot D, Aubry M, Coulouarn C. TGFβ-induced long non-coding RNA LINC00313 activates Wnt signaling and promotes cholangiocarcinoma. EMBO Rep 2024; 25:1022-1054. [PMID: 38332153 PMCID: PMC10933437 DOI: 10.1038/s44319-024-00075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor β (TGFβ), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFβ signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFβ target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFβ induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.
Collapse
Grants
- Recurrent Funding Institut National de la Santé et de la Recherche Médicale (Inserm)
- Recurrent Funding,PhD felloship Université de Rennes 1 (University of Rennes 1)
- PhD fellowship Conseil Régional de Bretagne (Brittany Council)
- R22026NN,R21011NN Ligue Contre le Cancer (French League Against Cancer)
- R21043NN Fondation ARC pour la Recherche sur le Cancer (ARC)
- C18007NS,C20013NS,C20014NS INCa and ITMO Cancer AVIESAN (Alliance Nationale pour les Sciences de la Vie et de la Santé) dans le cadre du Plan cancer (Non-coding RNA in cancerology: fundamental to translational)
- R21095NN French Ministry of Health and the French National Cancer Institute, PRT-K20-136, CHU Rennes, CLCC Eugene Marquis, Rennes
- FIS PI18/01075,PI21/00922,CPII19/00008 Spanish Carlos III Health Institute (ISCIII) [(FIS PI18/01075, PI21/00922, and Miguel Servet Programme CPII19/00008) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER)] and CIBERehd (ISCIII)
- HR17-00601 'la Caixa' Foundation ('la Caixa')
- EU/2019/AMMFt/001 AMMF-The Cholangiocarcinoma Charity
- 06119JB PSC Partners US and PSC Supports UK
- 825510/ESCALON European Union Horizon 2020 Research and Innovation Program
- EU TRANSCAN23-002-2023-129,INCa_18688 Institut National Du Cancer (INCa)
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Raphaël Pineau
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Raffaële Leroux
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Anaïs L'Haridon
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - David Gilot
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, SE-48183, Mölndal, Sweden
| | - Marc Aubry
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France.
| |
Collapse
|
12
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 283.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Wang B, Wang LN, Wu B, Guo R, Zhang L, Zhang JT, Wang ZH, Wu F, Feng Y, Liu H, Jin XH, Miao XH, Liu T. Astrocyte PERK and IRE1 Signaling Contributes to Morphine Tolerance and Hyperalgesia through Upregulation of Lipocalin-2 and NLRP3 Inflammasome in the Rodent Spinal Cord. Anesthesiology 2024; 140:558-577. [PMID: 38079113 DOI: 10.1097/aln.0000000000004858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
BACKGROUND Endoplasmic reticulum stress plays a crucial role in the pathogenesis of neuroinflammation and chronic pain. This study hypothesized that PRKR-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme type 1 (IRE1) regulate lipocalin-2 (LCN2) and Nod-like receptor family pyrin domain containing 3 (NLRP3) expression in astrocytes, thereby contributing to morphine tolerance and hyperalgesia. METHODS The study was performed in Sprague-Dawley rats and C57/Bl6 mice of both sexes. The expression of LCN2 and NLRP3 was assessed by Western blotting. The tail-flick, von Frey, and Hargreaves tests were used to evaluate nociceptive behaviors. Chromatin immunoprecipitation was conducted to analyze the binding of activating transcription factor 4 (ATF4) to the promoters of LCN2 and TXNIP. Whole-cell patch-clamp recordings were used to evaluate neuronal excitability. RESULTS Pharmacologic inhibition of PERK and IRE1 attenuated the development of morphine tolerance and hyperalgesia in male (tail latency on day 7, 8.0 ± 1.13 s in the morphine + GSK2656157 [10 μg] group vs. 5.8 ± 0.65 s in the morphine group; P = 0.04; n = 6 rats/group) and female (tail latency on day 7, 6.0 ± 0.84 s in the morphine + GSK2656157 [10 μg] group vs. 3.1 ± 1.09 s in the morphine group; P = 0.0005; n = 6 rats/group) rats. Activation of PERK and IRE1 upregulated expression of LCN2 and NLRP3 in vivo and in vitro. Chromatin immunoprecipitation analysis showed that ATF4 directly bound to the promoters of the LCN2 and TXNIP. Lipocalin-2 induced neuronal hyperexcitability in the spinal cord and dorsal root ganglia via melanocortin-4 receptor. CONCLUSIONS Astrocyte endoplasmic reticulum stress sensors PERK and IRE1 facilitated morphine tolerance and hyperalgesia through upregulation of LCN2 and NLRP3 in the spinal cord. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bing Wang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China; Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; and Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey (current position)
| | - Li-Na Wang
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, Jiangsu Province, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Feng Wu
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hong Jin
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Hua Miao
- Department of Pain, The Affiliated Hospital of Nantong University, Nantong, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China; and College of Life Sciences, Yanan University, Yanan, China
| |
Collapse
|
14
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023; 34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Prozzillo Y, Santopietro MV, Messina G, Dimitri P. Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cell Mol Life Sci 2023; 80:365. [PMID: 37982870 PMCID: PMC10661750 DOI: 10.1007/s00018-023-04949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentiation and development. In the last two decades, diverse experimental evidence has shown that subunits of SRCAP and p400/TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral components of the cell division apparatus. By doing so, they contribute to ensuring the correct distribution of chromosomes in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs (lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncRNAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics of cell division with a significant impact on differentiation, development, and diseases.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
- Universita degli Studi di Milano-Bicocca, Piazza dell' Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
17
|
Walewska A, Janucik A, Tynecka M, Moniuszko M, Eljaszewicz A. Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death Dis 2023; 14:720. [PMID: 37932257 PMCID: PMC10628230 DOI: 10.1038/s41419-023-06239-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Mesenchymal stem cells (mesenchymal stromal cells, MSC) are multipotent stem cells that can differentiate into cells of at least three mesodermal lineages, namely adipocytes, osteoblasts, and chondrocytes, and have potent immunomodulatory properties. Epigenetic modifications are critical regulators of gene expression and cellular differentiation of mesenchymal stem cells (MSCs). Epigenetic machinery controls MSC differentiation through direct modifications to DNA and histones. Understanding the role of epigenetic machinery in MSC is crucial for the development of effective cell-based therapies for degenerative and inflammatory diseases. In this review, we summarize the current understanding of the role of epigenetic control of MSC differentiation and immunomodulatory properties.
Collapse
Affiliation(s)
- Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Adrian Janucik
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marlena Tynecka
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland.
- Tissue and Cell Bank, Medical University of Bialystok Clinical Hospital, ul. Waszyngtona 13, 15-069, Bialystok, Poland.
| |
Collapse
|
18
|
Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, Barnawi J, Altemani FH, Alanazi M, Mustafa SK, Masoodi T, Akil ASA, Bhat AA, Macha MA. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol 2023; 11:1164301. [PMID: 37384249 PMCID: PMC10299194 DOI: 10.3389/fcell.2023.1164301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Sana Khurshid Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Sadaf Khursheed Baba
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Science (SKIMS), Soura, Kashmir, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| |
Collapse
|
19
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 953] [Impact Index Per Article: 476.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Zhang F, Wei L, Wang L, Wang T, Xie Z, Luo H, Li F, Zhang J, Dong W, Liu G, Kang Q, Zhu X, Peng W. FAR591 promotes the pathogenesis and progression of SONFH by regulating Fos expression to mediate the apoptosis of bone microvascular endothelial cells. Bone Res 2023; 11:27. [PMID: 37217464 PMCID: PMC10203311 DOI: 10.1038/s41413-023-00259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH. Then, we identified a new lncRNA in BMECs via lncRNA/mRNA microarray, termed Fos-associated lincRNA ENSRNOT00000088059.1 (FAR591). FAR591 is highly expressed during GC-induced BMEC apoptosis and femoral head necrosis. Knockout of FAR591 effectively blocked the GC-induced apoptosis of BMECs, which then alleviated the damage of GCs to the femoral head microcirculation and inhibited the pathogenesis and progression of SONFH. In contrast, overexpression of FAR591 significantly promoted the GC-induced apoptosis of BMECs, which then aggravated the damage of GCs to the femoral head microcirculation and promoted the pathogenesis and progression of SONFH. Mechanistically, GCs activate the glucocorticoid receptor, which translocates to the nucleus and directly acts on the FAR591 gene promoter to induce FAR591 gene overexpression. Subsequently, FAR591 binds to the Fos gene promoter (-245∼-51) to form a stable RNA:DNA triplet structure and then recruits TATA-box binding protein associated factor 15 and RNA polymerase II to promote Fos expression through transcriptional activation. Fos activates the mitochondrial apoptotic pathway by regulating the expression of Bcl-2 interacting mediator of cell death (Bim) and P53 upregulated modulator of apoptosis (Puma) to mediate GC-induced apoptosis of BMECs, which leads to femoral head microcirculation dysfunction and femoral head necrosis. In conclusion, these results confirm the mechanistic link between lncRNAs and the pathogenesis of SONFH, which helps reveal the pathogenesis of SONFH and provides a new target for the early prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island, 02903, USA
| | - Lei Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Fanchao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Gang Liu
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Wuxun Peng
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
22
|
Chen Q, Zeng Y, Kang J, Hu M, Li N, Sun K, Zhao Y. Enhancer RNAs in transcriptional regulation: recent insights. Front Cell Dev Biol 2023; 11:1205540. [PMID: 37266452 PMCID: PMC10229774 DOI: 10.3389/fcell.2023.1205540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Enhancers are a class of cis-regulatory elements in the genome that instruct the spatiotemporal transcriptional program. Last decade has witnessed an exploration of non-coding transcripts pervasively transcribed from active enhancers in diverse contexts, referred to as enhancer RNAs (eRNAs). Emerging evidence unequivocally suggests eRNAs are an important layer in transcriptional regulation. In this mini-review, we summarize the well-established regulatory models for eRNA actions and highlight the recent insights into the structure and chemical modifications of eRNAs underlying their functions. We also explore the potential roles of eRNAs in transcriptional condensates.
Collapse
Affiliation(s)
- Qi Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaxin Zeng
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jinjin Kang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Minghui Hu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Nianle Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
23
|
De Silva SM, Dhiman A, Sood S, Mercedes KF, Simmons W, Henen M, Vögeli B, Dykhuizen E, Musselman C. PBRM1 bromodomains associate with RNA to facilitate chromatin association. Nucleic Acids Res 2023; 51:3631-3649. [PMID: 36808431 PMCID: PMC10164552 DOI: 10.1093/nar/gkad072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
PBRM1 is a subunit of the PBAF chromatin remodeling complex, which is mutated in 40-50% of clear cell renal cell carcinoma patients. It is thought to largely function as a chromatin binding subunit of the PBAF complex, but the molecular mechanism underlying this activity is not fully known. PBRM1 contains six tandem bromodomains which are known to cooperate in binding of nucleosomes acetylated at histone H3 lysine 14 (H3K14ac). Here, we demonstrate that the second and fourth bromodomains from PBRM1 also bind nucleic acids, selectively associating with double stranded RNA elements. Disruption of the RNA binding pocket is found to compromise PBRM1 chromatin binding and inhibit PBRM1-mediated cellular growth effects.
Collapse
Affiliation(s)
- Saumya M De Silva
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Surbhi Sood
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Kilsia F Mercedes
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William J Simmons
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Catherine A Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Pei H, Dai Y, Yu Y, Tang J, Cao Z, Zhang Y, Li B, Nie J, Hei TK, Zhou G. The Tumorigenic Effect of lncRNA AFAP1-AS1 is Mediated by Translated Peptide ATMLP Under the Control of m 6 A Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300314. [PMID: 36871154 PMCID: PMC10161021 DOI: 10.1002/advs.202300314] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 05/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) in eukaryotic transcripts have long been believed to regulate various aspects of cellular processes, including carcinogenesis. Herein, it is found that lncRNA AFAP1-AS1 encodes a conserved 90-amino acid peptide located on mitochondria, named lncRNA AFAP1-AS1 translated mitochondrial-localized peptide (ATMLP), and it is not the lncRNA but the peptide that promotes the malignancy of nonsmall cell lung cancer (NSCLC). As the tumor progresses, the serum level of ATMLP increases. NSCLC patients with high levels of ATMLP display poorer prognosis. Translation of ATMLP is controlled by m6 A methylation at the 1313 adenine locus of AFAP1-AS1. Mechanistically, ATMLP binds to the 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and inhibits its transport from the inner to the outer mitochondrial membrane, which antagonizes the NIPSNAP1-mediated regulation of cell autolysosome formation. The findings uncover a complex regulatory mechanism of NSCLC malignancy orchestrated by a peptide encoded by a lncRNA. A comprehensive judgment of the application prospects of ATMLP as an early diagnostic biomarker for NSCLC is also made.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Zhifei Cao
- Department of PathologyThe Second Affiliated Hospital of Soochow UniversityJiangsuSuzhou215004P. R. China
| | - Yongsheng Zhang
- Department of PathologyThe Second Affiliated Hospital of Soochow UniversityJiangsuSuzhou215004P. R. China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Tom K. Hei
- Center for Radiological ResearchCollege of Physician and SurgeonsColumbia UniversityNew YorkNY10032USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| |
Collapse
|
25
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
27
|
Arunima A, van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol 2023; 13:1160198. [PMID: 37153158 PMCID: PMC10160451 DOI: 10.3389/fcimb.2023.1160198] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.
Collapse
Affiliation(s)
| | | | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
28
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
29
|
Liu Z, Gao L, Cheng L, Lv G, Sun B, Wang G, Tang Q. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications. Exp Mol Med 2023; 55:487-501. [PMID: 36854773 PMCID: PMC10073155 DOI: 10.1038/s12276-023-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 03/02/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the epigenetic modifications of RNA. The addition of this chemical mark to RNA molecules regulates gene expression by affecting the fate of the RNA molecules. This posttranscriptional RNA modification is reversible and regulated by methyltransferase "writers" and demethylase "erasers". The fate of m6A-modified RNAs depends on the function of different "readers" that recognize and bind to them. Research on m6A methylation modification has recently increased due to its important role in regulating cancer progression. Noncoding RNAs (ncRNAs) are a class of RNA molecules that are transcribed from the genome but whose roles have been overlooked due to their lack of well-defined potential for translation into proteins or peptides. However, this misconception has now been completely overturned. ncRNAs regulate various diseases, especially tumors, and it has been confirmed that they play either tumor-promoting or tumor-suppressing roles in almost all types of tumors. In this review, we discuss the m6A modification of different types of ncRNA and summarize the mechanisms involved. Finally, we discuss the progress of research on clinical treatment and discuss the important significance of the m6A modification of ncRNAs in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gaoyuan Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Qiushi Tang
- Chinese Journal of Practical Surgery, Chinese Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
30
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Glycation-Associated Diabetic Nephropathy and the Role of Long Noncoding RNAs. Biomedicines 2022; 10:biomedicines10102623. [PMID: 36289886 PMCID: PMC9599575 DOI: 10.3390/biomedicines10102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The glycation of various biomolecules is the root cause of many pathological conditions associated with diabetic nephropathy and end-stage kidney disease. Glycation imbalances metabolism and increases renal cell injury. Numerous therapeutic measures have narrowed down the adverse effects of endogenous glycation, but efficient and potent measures are miles away. Recent advances in the identification and characterization of noncoding RNAs, especially the long noncoding RNAs (lncRNAs), have opened a mammon of new biology to explore the mitigations for glycation-associated diabetic nephropathy. Furthermore, tissue-specific distribution and condition-specific expression make lncRNA a promising key for second-generation therapeutic interventions. Though the techniques to identify and exemplify noncoding RNAs are rapidly evolving, the lncRNA study encounters multiple methodological constraints. This review will discuss lncRNAs and their possible involvement in glycation and advanced glycation end products (AGEs) signaling pathways. We further highlight the possible approaches for lncRNA-based therapeutics and their working mechanism for perturbing glycation and conclude our review with lncRNAs biology-related future opportunities.
Collapse
|
32
|
Brooks R, Monzy J, Aaron B, Zhang X, Kossenkov A, Hayden J, Keeney F, Speicher DW, Zhang L, Dang CV. Circadian lncRNA ADIRF-AS1 binds PBAF and regulates renal clear cell tumorigenesis. Cell Rep 2022; 41:111514. [PMID: 36261012 PMCID: PMC9652615 DOI: 10.1016/j.celrep.2022.111514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
We identify ADIRF-AS1 circadian long non-coding RNA (lncRNA). Deletion of ADIRF-AS1 in U2OS cells alters rhythmicity of clock-controlled genes and expression of extracellular matrix genes. ADIRF-AS1 interacts with all components of the PBAF (PBRM1/BRG1) complex in U2OS cells. Because PBRM1 is a tumor suppressor mutated in over 40% of clear cell renal carcinoma (ccRCC) cases, we evaluate ADIRF-AS1 in ccRCC cells. Reducing ADIRF-AS1 expression in ccRCC cells decreases expression of some PBAF-suppressed genes. Expression of these genes is partially rescued by PBRM1 loss, consistent with ADIRF-AS1 acting in part to modulate PBAF. ADIRF-AS1 expression correlates with survival in human ccRCC, particularly in PBRM1 wild-type, but not mutant, tumors. Loss of ADIRF-AS1 eliminates in vivo tumorigenesis, partially rescued by concurrent loss of PBRM1 only when co-injected with Matrigel, suggesting a PBRM1-independent function of ADIRF-AS1. Our findings suggest that ADIRF-AS1 functions partly through PBAF to regulate specific genes as a BMAL1-CLOCK-regulated, oncogenic lncRNA.
Collapse
Affiliation(s)
- Rebekah Brooks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Judith Monzy
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Bailey Aaron
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Xue Zhang
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - James Hayden
- The Ludwig Institute for Cancer Research, New York, NY, USA
| | | | | | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
33
|
Guo Q, Zhang L, Zhao L, Pang X, Wang P, Sun H, Liu S. MEF2C-AS1 regulates its nearby gene MEF2C to mediate cervical cancer cell malignant phenotypes in vitro. Biochem Biophys Res Commun 2022; 632:48-54. [DOI: 10.1016/j.bbrc.2022.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
|
34
|
Hai Y, Kawachi A, He X, Yoshimi A. Pathogenic Roles of RNA-Binding Proteins in Sarcomas. Cancers (Basel) 2022; 14:cancers14153812. [PMID: 35954475 PMCID: PMC9367343 DOI: 10.3390/cancers14153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNA-binding proteins (RBPs) are proteins that physically and functionally bind to RNA to regulate the RNA metabolism such as alternative splicing, polyadenylation, transport, maintenance of stability, localization, and translation. There is accumulating evidence that dysregulated RBPs play an essential role in the pathogenesis of malignant tumors including a variety of types of sarcomas. On the other hand, prognosis of patients with sarcoma, especially with sarcoma in advanced stages, is very poor, and almost no effective standard treatment has been established for most of types of sarcomas so far, highlighting the urgent need for identifying novel therapeutic targets based on the deep understanding of pathogenesis. Therefore, defining the network of interactions between RBPs and disease-related RNA targets will contribute to a better understanding of sarcomagenesis and identification of a novel therapeutic target for sarcomas.
Collapse
Affiliation(s)
- Yu Hai
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Asuka Kawachi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Akihide Yoshimi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Correspondence: ; Tel.: +81-3-3542-2511
| |
Collapse
|
35
|
Pathania AS, Prathipati P, Pandey MK, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Semin Cancer Biol 2022; 83:227-241. [PMID: 33910063 DOI: 10.1016/j.semcancer.2021.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Siddappa N Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Children's Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
36
|
da Paixão VF, Sosa OJ, da Silva Pellegrina DV, Dazzani B, Corrêa TB, Risério Bertoldi E, da Cruz E Alves-de-Moraes LB, de Oliveira Pessoa D, de Paiva Oliveira V, Alberto Chiong Zevallos R, Russo LC, Forti FL, Eduardo Ferreira J, Carioca Freitas H, Jukemura J, Machado MCC, Dirlei Begnami M, Setubal JC, Bassères DS, Moraes Reis E. Annotation and functional characterization of long noncoding RNAs deregulated in pancreatic adenocarcinoma. Cell Oncol (Dordr) 2022; 45:479-504. [PMID: 35567709 DOI: 10.1007/s13402-022-00678-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Transcriptome analysis of pancreatic ductal adenocarcinoma (PDAC) has been useful to identify gene expression changes that sustain malignant phenotypes. Yet, most studies examined only tumor tissues and focused on protein-coding genes, leaving long non-coding RNAs (lncRNAs) largely underexplored. METHODS We generated total RNA-Seq data from patient-matched tumor and nonmalignant pancreatic tissues and implemented a computational pipeline to survey known and novel lncRNAs. siRNA-mediated knockdown in tumor cell lines was performed to assess the contribution of PDAC-associated lncRNAs to malignant phenotypes. Gene co-expression network and functional enrichment analyses were used to assign deregulated lncRNAs to biological processes and molecular pathways. RESULTS We detected 9,032 GENCODE lncRNAs as well as 523 unannotated lncRNAs, including transcripts significantly associated with patient outcome. Aberrant expression of a subset of novel and known lncRNAs was confirmed in patient samples and cell lines. siRNA-mediated knockdown of a subset of these lncRNAs (LINC01559, LINC01133, CCAT1, LINC00920 and UCA1) reduced cell proliferation, migration and invasion. Gene co-expression network analysis associated PDAC-deregulated lncRNAs with diverse biological processes, such as cell adhesion, protein glycosylation and DNA repair. Furthermore, UCA1 knockdown was shown to specifically deregulate co-expressed genes involved in DNA repair and to negatively impact DNA repair following damage induced by ionizing radiation. CONCLUSIONS Our study expands the repertoire of lncRNAs deregulated in PDAC, thereby revealing novel candidate biomarkers for patient risk stratification. It also provides a roadmap for functional assays aimed to characterize novel mechanisms of action of lncRNAs in pancreatic cancer, which could be explored for therapeutic development.
Collapse
Affiliation(s)
- Vinicius Ferreira da Paixão
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Omar Julio Sosa
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Bianca Dazzani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Thalita Bueno Corrêa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Ester Risério Bertoldi
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luís Bruno da Cruz E Alves-de-Moraes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Diogo de Oliveira Pessoa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Victoria de Paiva Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Ricardo Alberto Chiong Zevallos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Lilian Cristina Russo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Fabio Luis Forti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - João Eduardo Ferreira
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - José Jukemura
- Departamento de Gastroenterologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Maria Dirlei Begnami
- Departamento de Anatomia Patológica - AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Daniela Sanchez Bassères
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
37
|
Neyazi S, Ng M, Heckl D, Klusmann JH. Long noncoding RNAs as regulators of pediatric acute myeloid leukemia. Mol Cell Pediatr 2022; 9:10. [PMID: 35596093 PMCID: PMC9123150 DOI: 10.1186/s40348-022-00142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly emerging as regulators across human development and disease, and many have been described in the context of hematopoiesis and leukemogenesis. These studies have yielded new molecular insights into the contribution of lncRNAs to AML development and revealed connections between lncRNA expression and clinical parameters in AML patients. In this mini review, we illustrate the versatile functions of lncRNAs in AML, with a focus on pediatric AML, and present examples that may serve as future therapeutic targets or predictive factors.
Collapse
Affiliation(s)
- Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michelle Ng
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
38
|
Liu Y, Shi M, He X, Cao Y, Liu P, Li F, Zou S, Wen C, Zhan Q, Xu Z, Wang J, Sun B, Shen B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol 2022; 15:52. [PMID: 35526050 PMCID: PMC9077921 DOI: 10.1186/s13045-022-01272-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND LncRNA-PACERR plays critical role in the polarization of tissue-associated macrophages (TAMs). In this study, we found the function and molecular mechanism of PACERR in TAMs to regulate pancreatic ductal adenocarcinoma (PDAC) progression. METHODS We used qPCR to analyse the expression of PACERR in TAMs and M1-tissue-resident macrophages (M1-NTRMs) which were isolated from 46 PDAC tissues. The function of PACERR on macrophages polarization and PDAC proliferation, migration and invasion were confirmed through in vivo and in vitro assays. The molecular mechanism of PACERR was discussed via fluorescence in situ hybridization (FISH), RNA pull-down, ChIP-qPCR, RIP-qPCR and luciferase assays. RESULTS LncRNA-PACERR was high expression in TAMs and associated with poor prognosis in PDAC patients. Our finding validated that LncRNA-PACERR increased the number of M2-polarized cells and facilized cell proliferation, invasion and migration in vitro and in vivo. Mechanistically, LncRNA-PACERR activate KLF12/p-AKT/c-myc pathway by binding to miR-671-3p. And LncRNA-PACERR which bound to IGF2BP2 acts as an m6A-dependent manner to enhance the stability of KLF12 and c-myc in cytoplasm. In addition, the promoter of LncRNA-PACERR was a target of KLF12 and LncRNA-PACERR recruited EP300 to increase the acetylation of histone by interacting with KLF12 in nucleus. CONCLUSIONS This study found that LncRNA-PACERR functions as key regulator of TAMs in PDAC microenvironment and revealed the novel mechanisms in cytoplasm and in nucleus.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Zoology, College of Life Science, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xingfeng He
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiancheng Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baofa Sun
- Department of Zoology, College of Life Science, Nankai University, Tianjin, 300071, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
39
|
Yan H, Yan Y, Gao Y, Zhang N, Kumar G, Fang Q, Li Z, Li J, Zhang Y, Song L, Wang J, Sun J, Zhang HT, Ma CG. Transcriptome analysis of fasudil treatment in the APPswe/PSEN1dE9 transgenic (APP/PS1) mice model of Alzheimer's disease. Sci Rep 2022; 12:6625. [PMID: 35459923 PMCID: PMC9033779 DOI: 10.1038/s41598-022-10554-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of progressive dementia. In the present study, we showed hippocampal tissue transcriptome analysis in APPswe/PSEN1dE9 (APP/PS1, AD model) mice treated with fasudil (ADF) and compared with AD mice treated with saline (ADNS) and wild type mice (WT). The competing endogenous RNA (ceRNA) network was constructed and validated the differential expression of mRNA, lncRNA, miRNA, and circRNA. Our study showed differentially expressed mRNAs (DEMs) between WT and ADNS, while enriched in cell growth and death and nervous system pathways. DEMs between ADNS-ADF were enriched in the nervous system, glycosaminoglycan biosynthesis-keratan sulfate (KS) and Quorum sensing pathways. We validated four genes with RT-PCR, whereas enrichment of Acyl-CoA Synthetase Long Chain Family Member 4 (Acsl4, ENSMUST00000112903) in Quorum sensing pathways, and BTG anti-proliferation factor 1 (Btg1, ENSMUST00000038377) in RNA degradation pathways were conducted. Expression of these two genes were higher in ADNS, but were significantly reduced in ADF. Histone H4 transcription factor (Hinfp, ENSMUST00000216508) orchestrate G1/S transition of mitotic cell cycle and co-expressed with mmu-miR-26a-2-3p-mediated ceRNA and mmu-miR-3065-5p-mediated ceRNA; Wnt family member 4 (Wnt4, ENSMUST00000045747) was enriched in mTOR, Hippo and Wnt signaling pathway. Expression of these two genes were significantly lower in ADNS, and fasudil treatment reverse it. The present studies demonstrated four genes: Acsl4, Btg1, Hinfp, Wnt4 could be potential biomarkers of AD and the targets of fasudil treatment. These results will pave a novel direction for future clinic studies for AD and fasudil treatment.
Collapse
Affiliation(s)
- Hailong Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China. .,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Ziqing Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Jiehui Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Yuna Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiawei Wang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Jingxian Sun
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266073, China.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China. .,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
40
|
Liu K, Chen H, Wang Y, Jiang L, Li Y. Evolving Insights Into the Biological Function and Clinical Significance of Long Noncoding RNA in Glioblastoma. Front Cell Dev Biol 2022; 10:846864. [PMID: 35531099 PMCID: PMC9068894 DOI: 10.3389/fcell.2022.846864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most prevalent and aggressive cancers worldwide. The overall survival period of GBM patients is only 15 months even with standard combination therapy. The absence of validated biomarkers for early diagnosis mainly accounts for worse clinical outcomes of GBM patients. Thus, there is an urgent requirement to characterize more biomarkers for the early diagnosis of GBM patients. In addition, the detailed molecular basis during GBM pathogenesis and oncogenesis is not fully understood, highlighting that it is of great significance to elucidate the molecular mechanisms of GBM initiation and development. Recently, accumulated pieces of evidence have revealed the central roles of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of GBM by binding with DNA, RNA, or protein. Targeting those oncogenic lncRNAs in GBM may be promising to develop more effective therapeutics. Furthermore, a better understanding of the biological function and underlying molecular basis of dysregulated lncRNAs in GBM initiation and development will offer new insights into GBM early diagnosis and develop novel treatments for GBM patients. Herein, this review builds on previous studies to summarize the dysregulated lncRNAs in GBM and their unique biological functions during GBM tumorigenesis and progression. In addition, new insights and challenges of lncRNA-based diagnostic and therapeutic potentials for GBM patients were also introduced.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Wang
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yi Li, ; Liping Jiang,
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi Li, ; Liping Jiang,
| |
Collapse
|
41
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
42
|
Gray JS, Wani SA, Campbell MJ. Epigenomic alterations in cancer: mechanisms and therapeutic potential. Clin Sci (Lond) 2022; 136:473-492. [PMID: 35383835 DOI: 10.1042/cs20210449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
The human cell requires ways to specify its transcriptome without altering the essential sequence of DNA; this is achieved through mechanisms which govern the epigenetic state of DNA and epitranscriptomic state of RNA. These alterations can be found as modified histone proteins, cytosine DNA methylation, non-coding RNAs, and mRNA modifications, such as N6-methyladenosine (m6A). The different aspects of epigenomic and epitranscriptomic modifications require protein complexes to write, read, and erase these chemical alterations. Reflecting these important roles, many of these reader/writer/eraser proteins are either frequently mutated or differentially expressed in cancer. The disruption of epigenetic regulation in the cell can both contribute to cancer initiation and progression, and increase the likelihood of developing resistance to chemotherapies. Development of therapeutics to target proteins involved in epigenomic/epitranscriptomic modifications has been intensive, but further refinement is necessary to achieve ideal treatment outcomes without too many off-target effects for cancer patients. Therefore, further integration of clinical outcomes combined with large-scale genomic analyses is imperative for furthering understanding of epigenomic mechanisms in cancer.
Collapse
Affiliation(s)
- Jaimie S Gray
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Sajad A Wani
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Moray J Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
43
|
LncRNA: a new perspective on the study of neurological diseases. Biochem Soc Trans 2022; 50:951-963. [PMID: 35383841 DOI: 10.1042/bst20211181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length greater than 200 nt. It has a mRNA-like structure, formed by splicing after transcription, and contains a polyA tail and a promoter, of whom promoter plays a role by binding transcription factors. LncRNAs' sequences are low in conservation, and other species can only find a handful of the same lncRNAs as humans, and there are different splicing ways during the differentiation of identical species, with spatiotemporal expression specificity. With developing high-throughput sequencing and bioinformatics, found that more and more lncRNAs associated with nervous system disease. This article deals with the regulation of certain lncRNAs in the nervous system disease, by mean of to understand its mechanism of action, and the pathogenesis of some neurological diseases have a fresh understanding, deposit a foundation for resulting research and clinical treatment of disease.
Collapse
|
44
|
Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis. Blood 2022; 139:3532-3545. [PMID: 35297980 DOI: 10.1182/blood.2021014308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hemogen, also known as EDAG, is a hematopoietic tissue-specific gene that regulates the proliferation and differentiation of hematopoietic cells. However, the mechanism underlying hemogen function in erythropoiesis is unknown. We found that depletion of hemogen in human CD34+ erythroid progenitor cells and HUDEP2 cells significantly reduced the expression of genes associated with heme and hemoglobin synthesis, supporting a positive role of hemogen in erythroid maturation. In human K562 cells, hemogen antagonized the occupancy of co-repressors NuRD complex and facilitated LDB1 complex-mediated chromatin looping. Hemogen recruited SWI/SNF complex ATPase BRG1 as a co-activator to regulate nucleosome accessibility and H3K27ac enrichment for promoter and enhancer activity. To ask if hemogen/BRG1 cooperativity is conserved in mammalian systems, we generated hemogen KO/KI mice and investigated hemogen/BRG1 function in murine erythropoiesis. Loss of hemogen in E12.5-E16.5 fetal liver cells impeded erythroid differentiation through reducing the production of mature erythroblasts. ChIP-seq in WT and hemogen KO animal revealed BRG1 is largely dependent on hemogen to regulate chromatin accessibility at erythroid gene promoters and enhancers. In summary, hemogen/BRG1 interaction in mammals is essential for fetal erythroid maturation and hemoglobin production through its active role in promoter and enhancer activity and chromatin organization.
Collapse
|
45
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Huang CY, Jin H. Coordinated Epigenetic Regulation in Plants: A Potent Managerial Tool to Conquer Biotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:795274. [PMID: 35046981 PMCID: PMC8762163 DOI: 10.3389/fpls.2021.795274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plants have evolved variable phenotypic plasticity to counteract different pathogens and pests during immobile life. Microbial infection invokes multiple layers of host immune responses, and plant gene expression is swiftly and precisely reprogramed at both the transcriptional level and post-transcriptional level. Recently, the importance of epigenetic regulation in response to biotic stresses has been recognized. Changes in DNA methylation, histone modification, and chromatin structures have been observed after microbial infection. In addition, epigenetic modifications may be preserved as transgenerational memories to allow the progeny to better adapt to similar environments. Epigenetic regulation involves various regulatory components, including non-coding small RNAs, DNA methylation, histone modification, and chromatin remodelers. The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature. Fully unraveling epigenetic regulatory mechanisms could aid in the development of more efficient and eco-friendly strategies for crop protection in agricultural systems. In this review, we discuss the recent advances on the roles of epigenetic regulation in plant biotic stress responses.
Collapse
Affiliation(s)
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
47
|
Singh AP, Luo H, Matur M, Eshelman MA, Hamamoto K, Sharma A, Lesperance J, Huang S. A coordinated function of lncRNA HOTTIP and miRNA-196b underpinning leukemogenesis by targeting FAS signaling. Oncogene 2022; 41:718-731. [PMID: 34845377 PMCID: PMC8810734 DOI: 10.1038/s41388-021-02127-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) may modulate more than 60% of human coding genes and act as negative regulators, whereas long noncoding RNAs (lncRNAs) regulate gene expression on multiple levels by interacting with chromatin, functional proteins, and RNAs such as mRNAs and microRNAs. However, the crosstalk between HOTTIP lncRNA and miRNAs in leukemogenesis remains elusive. Using combined integrated analyses of global miRNA expression profiling and state-of-the-art genomic analyses of chromatin such as ChIRP-seq (HOTTIP binding in genomewide), ChIP-seq, and ATAC-seq, we found that some miRNA genes are directly controlled by HOTTIP. Specifically, the HOX cluster miRNAs (miR-196a, miR-196b, miR-10a, and miR-10b), located cis and trans, were most dramatically regulated and significantly decreased in HOTTIP-/- AML cells. HOTTIP bound to the miR-196b promoter and HOTTIP deletion reduced chromatin accessibility and enrichment of active histone modifications at HOX cluster-associated miRNAs in AML cells, whereas reactivation of HOTTIP restored miR gene expression and chromatin accessibility in the CTCF-boundary-attenuated AML cells. Inactivation of HOTTIP or miR-196b promotes apoptosis by altering the chromatin signature at the FAS promoter and increasing FAS expression. Transplantation of miR-196b knockdown MOLM13 cells in NSG mice increased overall survival of mice compared to wild-type cells transplanted into mice. Thus, HOTTIP remodels the chromatin architecture around miRNAs to promote their transcription and consequently represses tumor suppressors and promotes leukemogenesis.
Collapse
Affiliation(s)
- Ajeet P Singh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Meghana Matur
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Karina Hamamoto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
48
|
Zhao D, Wang C, Yan S, Chen R. Advances in the identification of long non-coding RNA binding proteins. Anal Biochem 2021; 639:114520. [PMID: 34896376 DOI: 10.1016/j.ab.2021.114520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without evident protein coding function. They play important regulatory roles in many biological processes, e.g., gene regulation, chromatin remodeling, and cell fate determination during development. Dysregulation of lncRNAs has been observed in various diseases including cancer. Interacting with proteins is a crucial way for lncRNAs to play their biological roles. Therefore, the characterization of lncRNA binding proteins is important to understand their functions and to delineate the underlying molecular mechanism. Large-scale studies based on mass spectrometry have characterized over a thousand new RNA binding proteins without known RNA-binding domains, thus revealing the complexity and diversity of RNA-protein interactions. In addition, several methods have been developed to identify the binding proteins for particular RNAs of interest. Here we review the progress of the RNA-centric methods for the identification of RNA-protein interactions, focusing on the studies involving lncRNAs, and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Dongqing Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Chunqing Wang
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Shuai Yan
- Peking University First Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
49
|
Yu NK, McClatchy DB, Diedrich JK, Romero S, Choi JH, Martínez-Bartolomé S, Delahunty CM, Muotri AR, Yates JR. Interactome analysis illustrates diverse gene regulatory processes associated with LIN28A in human iPS cell-derived neural progenitor cells. iScience 2021; 24:103321. [PMID: 34816099 PMCID: PMC8593586 DOI: 10.1016/j.isci.2021.103321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized. In the nervous system, LIN28A is known to play critical roles in proliferation and differentiation of neural progenitor cells (NPCs). We profiled the endogenous LIN28A-interacting proteins in NPCs differentiated from human induced pluripotent stem (iPS) cells using immunoprecipitation and liquid chromatography-tandem mass spectrometry. We identified over 500 LIN28A-interacting proteins, including 156 RNA-independent interactors. Functions of these proteins span a wide range of gene regulatory processes. Prompted by the interactome data, we revealed that LIN28A may impact the subcellular distribution of its interactors and stress granule formation upon oxidative stress. Overall, our analysis opens multiple avenues for elaborating molecular roles and characteristics of LIN28A.
Collapse
Affiliation(s)
- Nam-Kyung Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B. McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Romero
- Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Claire M. Delahunty
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alysson R. Muotri
- Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92037, USA
- Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, La Jolla, CA 92037, USA
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Wu R, Hu W, Chen H, Wang Y, Li Q, Xiao C, Fan L, Zhong Z, Chen X, Lv K, Zhong S, Shi Y, Chen J, Zhu W, Zhang J, Hu X, Wang J. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004629. [PMID: 34319658 PMCID: PMC8456203 DOI: 10.1002/advs.202004629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wangxing Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yingchao Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Qingju Li
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Changchen Xiao
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Lin Fan
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Zhiwei Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Xiaoying Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Kaiqi Lv
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Shuhan Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Yanna Shi
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jinghai Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wei Zhu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamSchool of Medicine and School of EngineeringBirminghamAL35294USA
| | - Xinyang Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jian'an Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|