1
|
Jang K, Kim MY, Jung C, Kim SH, Choi D, Park SC, Scheu C, Choi PP. Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 30:1047-1056. [PMID: 38702984 DOI: 10.1093/mam/ozae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 05/06/2024]
Abstract
Accurately controlling trace additives in dielectric barium titanate (BaTiO3) layers is important for optimizing the performance of multilayer ceramic capacitors (MLCCs). However, characterizing the spatial distribution and local concentration of the additives, which strongly influence the MLCC performance, poses a significant challenge. Atom probe tomography (APT) is an ideal technique for obtaining this information, but the extremely low electrical conductivity and piezoelectricity of BaTiO3 render its analysis with existing sample preparation approaches difficult. In this study, we developed a new APT sample preparation method involving W coating and heat treatment to investigate the trace additives in the BaTiO3 layer of MLCCs. This method enables determination of the local concentration and distribution of all trace elements in the BaTiO3 layer, including additives and undesired impurities. The developed method is expected to pave the way for the further optimization and advancement of MLCC technology.
Collapse
Affiliation(s)
- Kyuseon Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi-Yang Kim
- Analysis and Interface Technology group, Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd., 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Republic of Korea
| | - Chanwon Jung
- Department of Nanoanalytics and Interfaces, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
- Department of Materials Science and Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Se-Ho Kim
- Department of Nanoanalytics and Interfaces, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Daechul Choi
- Analysis and Interface Technology group, Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd., 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Republic of Korea
| | - Seong-Chan Park
- Analysis and Interface Technology group, Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd., 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Republic of Korea
| | - Christina Scheu
- Department of Nanoanalytics and Interfaces, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Pyuck-Pa Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
3
|
Zand F, Hangx SJT, Spiers CJ, van den Brink PJ, Burns J, Boebinger MG, Poplawsky JD, Monai M, Weckhuysen BM. Elucidating the Structure and Composition of Individual Bimetallic Nanoparticles in Supported Catalysts by Atom Probe Tomography. J Am Chem Soc 2023; 145:17299-17308. [PMID: 37490556 PMCID: PMC10416302 DOI: 10.1021/jacs.3c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 07/27/2023]
Abstract
Understanding and controlling the structure and composition of nanoparticles in supported metal catalysts are crucial to improve chemical processes. For this, atom probe tomography (APT) is a unique tool, as it allows for spatially resolved three-dimensional chemical imaging of materials with sub-nanometer resolution. However, thus far APT has not been applied for mesoporous oxide-supported metal catalyst materials, due to the size and number of pores resulting in sample fracture during experiments. To overcome these issues, we developed a high-pressure resin impregnation strategy and showcased the applicability to high-porous supported Pd-Ni-based catalyst materials, which are active in CO2 hydrogenation. Within the reconstructed volume of 3 × 105 nm3, we identified over 400 Pd-Ni clusters, with compositions ranging from 0 to 16 atom % Pd and a size distribution of 2.6 ± 1.6 nm. These results illustrate that APT is capable of quantitatively assessing the size, composition, and metal distribution for a large number of nanoparticles at the sub-nm scale in industrial catalysts. Furthermore, we showcase that metal segregation occurred predominately between nanoparticles, shedding light on the mechanism of metal segregation. We envision that the presented methodology expands the capabilities of APT to investigate porous functional nanomaterials, including but not limited to solid catalysts.
Collapse
Affiliation(s)
- Florian Zand
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Suzanne J. T. Hangx
- High
Pressure and Temperature Laboratory, Utrecht
University, 3584 CB Utrecht, The Netherlands
| | - Christopher J. Spiers
- High
Pressure and Temperature Laboratory, Utrecht
University, 3584 CB Utrecht, The Netherlands
| | | | - James Burns
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew G. Boebinger
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jonathan D. Poplawsky
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matteo Monai
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Palabas T, Longtin A, Ghosh D, Uzuntarla M. Controlling the spontaneous firing behavior of a neuron with astrocyte. CHAOS (WOODBURY, N.Y.) 2022; 32:051101. [PMID: 35649970 DOI: 10.1063/5.0093234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Mounting evidence in recent years suggests that astrocytes, a sub-type of glial cells, not only serve metabolic and structural support for neurons and synapses but also play critical roles in the regulation of proper functioning of the nervous system. In this work, we investigate the effect of astrocytes on the spontaneous firing activity of a neuron through a combined model that includes a neuron-astrocyte pair. First, we show that an astrocyte may provide a kind of multistability in neuron dynamics by inducing different firing modes such as random and bursty spiking. Then, we identify the underlying mechanism of this behavior and search for the astrocytic factors that may have regulatory roles in different firing regimes. More specifically, we explore how an astrocyte can participate in the occurrence and control of spontaneous irregular spiking activity of a neuron in random spiking mode. Additionally, we systematically investigate the bursty firing regime dynamics of the neuron under the variation of biophysical facts related to the intracellular environment of the astrocyte. It is found that an astrocyte coupled to a neuron can provide a control mechanism for both spontaneous firing irregularity and burst firing statistics, i.e., burst regularity and size.
Collapse
Affiliation(s)
- Tugba Palabas
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey
| | - Andre Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Muhammet Uzuntarla
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
5
|
Hurley DH, El-Azab A, Bryan MS, Cooper MWD, Dennett CA, Gofryk K, He L, Khafizov M, Lander GH, Manley ME, Mann JM, Marianetti CA, Rickert K, Selim FA, Tonks MR, Wharry JP. Thermal Energy Transport in Oxide Nuclear Fuel. Chem Rev 2021; 122:3711-3762. [PMID: 34919381 DOI: 10.1021/acs.chemrev.1c00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge as a result of both computational and experimental complexities. Here we provide a comprehensive review of thermal transport research on two actinide oxides: one currently in use in commercial nuclear reactors, uranium dioxide (UO2), and one advanced fuel candidate material, thorium dioxide (ThO2). In both materials, heat is carried by lattice waves or phonons. Crystalline defects caused by fission events effectively scatter phonons and lead to a degradation in fuel performance over time. Bolstered by new computational and experimental tools, researchers are now developing the foundational work necessary to accurately model and ultimately control thermal transport in advanced nuclear fuels. We begin by reviewing research aimed at understanding thermal transport in perfect single crystals. The absence of defects enables studies that focus on the fundamental aspects of phonon transport. Next, we review research that targets defect generation and evolution. Here the focus is on ion irradiation studies used as surrogates for damage caused by fission products. We end this review with a discussion of modeling and experimental efforts directed at predicting and validating mesoscale thermal transport in the presence of irradiation defects. While efforts in these research areas have been robust, challenging work remains in developing holistic tools to capture and predict thermal energy transport across widely varying environmental conditions.
Collapse
Affiliation(s)
- David H Hurley
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Anter El-Azab
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Matthew S Bryan
- Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Michael W D Cooper
- Materials Science and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Cody A Dennett
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Krzysztof Gofryk
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Lingfeng He
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Marat Khafizov
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Ave, Columbus, Ohio 43210, United States
| | - Gerard H Lander
- European Commission, Joint Research Center, Postfach 2340, D-76125 Karlsruhe, Germany
| | - Michael E Manley
- Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - J Matthew Mann
- U.S. Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433, United States
| | - Chris A Marianetti
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Karl Rickert
- KBR, 2601 Mission Point Boulevard, Suite 300, Dayton, Ohio 45431, United States
| | - Farida A Selim
- Department of Physics and Astronomy, Bowling Green State University, 705 Ridge Street, Bowling Green, Ohio 43403, United States
| | - Michael R Tonks
- Department of Materials Science and Engineering, University of Florida, 158 Rhines Hall, Gainesville, Florida 32611, United States
| | - Janelle P Wharry
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Lindgren K, Dömstedt P, Szakalos P, Thuvander M. The Nanostructure of the Oxide Formed on Fe-10Cr-4Al Exposed in Liquid Pb. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 28:1-14. [PMID: 33888175 DOI: 10.1017/s1431927621000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An Fe–10Cr–4Al alloy containing reactive elements developed for application in high-temperature liquid lead environments was analyzed after exposure in 600 and 750°C lead with dissolved oxygen for 1,000–2,000 h. Atom probe tomography, transmission electron microscopy, and X-ray scattering were all used to study the protective oxide formed on the surface. Exposure at 750°C resulted in a 2-μm thick oxide, whereas the 600°C exposure resulted in a 100-nm thick oxide. Both oxides were layered, with an Fe–Al spinel on top, and an alumina layer toward the metal. In the 600°C exposed material, there was a Cr-rich oxide layer between the spinel and the alumina. Metallic lead particles were found in the inner and middle parts of the oxide, related to pores. The combination of the experimental techniques, focusing on atom probe tomography, and the interpretations that can be done, are discussed in detail.
Collapse
Affiliation(s)
- Kristina Lindgren
- Department of Physics, Chalmers University of Technology, GöteborgSE-412 96, Sweden
| | - Peter Dömstedt
- Department of Chemistry, Royal Institute of Technology (KTH), StockholmSE-100 44, Sweden
| | - Peter Szakalos
- Department of Chemistry, Royal Institute of Technology (KTH), StockholmSE-100 44, Sweden
| | - Mattias Thuvander
- Department of Physics, Chalmers University of Technology, GöteborgSE-412 96, Sweden
| |
Collapse
|
7
|
Zhang Q, Klein B, Sanford NA, Chiaramonti AN. Comparative Apex Electrostatics of Atom Probe Tomography Specimens. JOURNAL OF ELECTRONIC MATERIALS 2021; 50:10.1007/s11664-021-08932-6. [PMID: 37732102 PMCID: PMC10510675 DOI: 10.1007/s11664-021-08932-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/05/2021] [Indexed: 09/22/2023]
Abstract
Rigorous electrostatic modeling of the specimen-electrode environment is required to better understand the fundamental processes of atom probe tomography (APT) and guide the analysis of APT data. We have developed a simulation tool that self-consistently solves the nonlinear electrostatic Poisson equation along with the mobile charge carrier concentrations and provides a detailed picture of the electrostatic environment of APT specimen tips. We consider cases of metals, semiconductors, and dielectrics. Traditionally in APT, and regardless of specimen composition, the apex electric field E a p e x has been approximated by the relation E a p e x = S V / ( k r ) , which was originally derived for sharp, metallic conductors; we refer to this equation as the "k-factor approximation". Here, S V is tip-electrode bias, r is the radius of curvature of the tip apex, and k is a dimensionless fitting parameter with 1.5 < k < 8.5 . As expected, our Poisson solver agrees well with the k-factor approximation for metal tips; it also agrees remarkably well for semiconductor tips-regardless of the semiconductor doping level. We ascribe this finding to the fact that even if a semiconductor tip is fully depleted of majority carriers under the typical S V conditions used in APT, an inversion layer will appear at the apex surface. The inversion forms a thin, conducting layer that screens the interior of the tip -thus mimicking metallic behavior at the apex surface. By contrast, we find that the k-factor approximation applied to a purely dielectric tip results in k values far greater than the typical range for metallic tips. We put our numerical results into further context with a brief discussion of our own, separate, experimental work and the results of other publications.
Collapse
Affiliation(s)
- Qihua Zhang
- School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Benjamin Klein
- School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Norman A Sanford
- Quantitative Nanostructure Characterization Group, National Institute of Standards and Technology, Boulder, CO 20899, United States of America
| | - Ann N Chiaramonti
- Nanoscale Reliability Group, National Institute of Standards and Technology, Boulder, CO 20899, United States of America
| |
Collapse
|
8
|
El-Zoka AA, Kim SH, Deville S, Newman RC, Stephenson LT, Gault B. Enabling near-atomic-scale analysis of frozen water. SCIENCE ADVANCES 2020; 6:6/49/eabd6324. [PMID: 33277259 PMCID: PMC7821902 DOI: 10.1126/sciadv.abd6324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Transmission electron microscopy went through a revolution enabling routine cryo-imaging of biological and (bio)chemical systems, in liquid form. Yet, these approaches typically lack advanced analytical capabilities. Here, we used atom probe tomography to analyze frozen liquids in three dimensions with subnanometer resolution. We introduce a specimen preparation strategy using nanoporous gold. We report data on 2- to 3-μm-thick layers of ice formed from both high-purity deuterated water and a solution of 50 mM NaCl in high-purity deuterated water. The analysis of the gold-ice interface reveals a substantial increase in the solute concentrations across the interface. We explore a range of experimental parameters to show that atom probe analyses of bulk aqueous specimens come with their own challenges and discuss physical processes that produce the observed phenomena. Our study demonstrates the viability of using frozen water as a carrier for near-atomic-scale analysis of objects in solution by atom probe tomography.
Collapse
Affiliation(s)
- A A El-Zoka
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.
| | - S-H Kim
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
| | - S Deville
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - R C Newman
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada
| | - L T Stephenson
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
| | - B Gault
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.
- Department of Materials, Royal School of Mines, Imperial College London, London, UK
| |
Collapse
|
9
|
Aggregated nanoparticles: Sample preparation and analysis by atom probe tomography. Ultramicroscopy 2020; 218:113082. [DOI: 10.1016/j.ultramic.2020.113082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
|