1
|
Tarduno JA, Zhou T, Huang W, Jodder J. Earth's magnetic field and its relationship to the origin of life, evolution and planetary habitability. Natl Sci Rev 2025; 12:nwaf082. [PMID: 40206209 PMCID: PMC11980988 DOI: 10.1093/nsr/nwaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Earth's magnetic field history can provide insight into why life was able to originate and evolve on our planet, and how habitability has been maintained. The magnetism of minute magnetic inclusions in zircons indicates that the geomagnetic field is at least 4.2 billion years old, corresponding with genetic estimates for the age of the last universal common ancestor. The early establishment of the field would have provided shielding from solar and cosmic radiation, fostering environments for life to develop. The field was also likely important for preserving Earth's water, essential for life as we know it. Between 3.9 and ca. 3.4 billion years ago, zircon magnetism suggests latitudinal stasis of different ancestral terrains, and stagnant lid tectonics. These data also indicate that the solid Earth was stable with respect to the spin axis, consistent with the absence of plate tectonic driving forces. Moreover, these data point to the existence of low-latitude continental nuclei with equable climate locales that could have supported early life. Near the end of the Precambrian (0.591 to 0.565 billion years ago), the dynamo nearly collapsed, but growth of the inner core during earliest Cambrian times renewed the magnetic field and shielding, helping to prevent drying of the planet. Before this renewal, the ultra-weak magnetic shielding may have had an unexpected effect on evolution. The extremely weak field could have allowed enhanced hydrogen escape to space, leading to increased oxygenation of the atmosphere and oceans. In this way, Earth's magnetic field may have assisted the radiation of the macroscopic and mobile animals of the Ediacara fauna. Whether the Ediacara fauna are genetically related to modern life is a matter of debate, but if so, magnetospheric control on atmospheric composition may have led to an acceleration in evolution that ultimately resulted in the emergence of intelligent life.
Collapse
Affiliation(s)
- John A Tarduno
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14618, USA
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14618, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - Tinghong Zhou
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14618, USA
| | - Wentao Huang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaganmoy Jodder
- Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo 0316, Norway
- Evolutionary Studies Institute, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
2
|
Liu J, Palin RM, Mitchell RN, Liu Z, Zhang J, Li Z, Cheng C, Zhang H. Archaean multi-stage magmatic underplating drove formation of continental nuclei in the North China Craton. Nat Commun 2024; 15:6231. [PMID: 39043649 PMCID: PMC11266541 DOI: 10.1038/s41467-024-50435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
The geodynamic processes that formed Earth's earliest continents are intensely debated. Particularly, the transformation from ancient crustal nuclei into mature Archaean cratons is unclear, primarily owing to the paucity of well-preserved Eoarchaean-Palaeoarchaean 'protocrust'. Here, we report a newly identified Palaeoarchaean continental fragment-the Baishanhu nucleus-in northeastern North China Craton. U-Pb geochronology shows that this nucleus preserves five major magmatic events during 3.6-2.5 Ga. Geochemistry and zircon Lu-Hf isotopes reveal ancient 4.2-3.8 Ga mantle extraction ages, as well as later intraplate crustal reworking. Crustal architecture and zircon Hf-O isotopes indicate that proto-North China first formed in a stagnant/squishy lid geodynamic regime characterised by plume-related magmatic underplating. Such cratonic growth and maturation were prerequisites for the emergence of plate tectonics. Finally, these data suggest that North China was part of the Sclavia supercraton and that the Archaean onset of subduction occurred asynchronously worldwide.
Collapse
Affiliation(s)
- Jin Liu
- College of Earth Sciences, Jilin University, Changchun, China
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Richard M Palin
- Department of Earth Sciences, University of Oxford, Oxford, UK.
| | - Ross N Mitchell
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghong Liu
- College of Earth Sciences, Jilin University, Changchun, China
- Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun, China
| | - Jian Zhang
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhongshui Li
- College of Exploration and Geomatics Engineering, Changchun Institute of Technology, Changchun, China
| | - Changquan Cheng
- School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, China
| | - Hongxiang Zhang
- College of Earth Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Jiang J, Zou X, Mitchell RN, Zhang Y, Zhao Y, Yin QZ, Yang W, Zhou X, Wang H, Spencer CJ, Shan X, Wu S, Li G, Qin K, Li XH. Sediment subduction in Hadean revealed by machine learning. Proc Natl Acad Sci U S A 2024; 121:e2405160121. [PMID: 38976765 PMCID: PMC11287277 DOI: 10.1073/pnas.2405160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Due to the scarcity of rock samples, the Hadean Era predating 4 billion years ago (Ga) poses challenges in understanding geological processes like subaerial weathering and plate tectonics that are critical for the evolution of life. The Jack Hills zircon from Western Australia, the primary Hadean samples available, offer valuable insights into magma sources and tectonic genesis through trace element signatures. However, a consensus on these signatures has not been reached. To address this, we developed a machine learning classifier capable of deciphering the geochemical fingerprints of zircon. This allowed us to identify the oldest detrital zircon originating from sedimentary-derived "S-type" granites. Our results indicate the presence of S-type granites as early as 4.24 Ga, persisting throughout the Hadean into the Archean. Examining global detrital zircon across Earth's history reveals consistent supercontinent-like cycles from the present back to the Hadean. These findings suggest that a significant amount of Hadean continental crust was exposed, weathered into sediments, and incorporated into the magma sources of Jack Hills zircon. Only the early operation of both subaerial weathering and plate subduction can account for the prevalence of S-type granites we observe. Additionally, the periodic evolution of S-type granite proportions implies that subduction-driven tectonic cycles were active during the Hadean, at least around 4.2 Ga. The evidence thus points toward an early Earth resembling the modern Earth in terms of active tectonics and habitable surface conditions. This suggests the potential for life to originate in environments like warm ponds rather than extreme hydrothermal settings.
Collapse
Affiliation(s)
- Jilian Jiang
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Xinyu Zou
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Ross N. Mitchell
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Yigang Zhang
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Yong Zhao
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau999078, People’s Republic of China
| | - Qing-Zhu Yin
- Department of Earth and Planetary Sciences, University of California, Davis, CA95616
| | - Wei Yang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Xiqiang Zhou
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Hao Wang
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Christopher J. Spencer
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Xiaocai Shan
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
| | - Shitou Wu
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Guangming Li
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Kezhang Qin
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Xian-Hua Li
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
4
|
Zhang ZJ, Chen GX, Kusky T, Yang J, Cheng QM. Lithospheric thickness records tectonic evolution by controlling metamorphic conditions. SCIENCE ADVANCES 2023; 9:eadi2134. [PMID: 38100583 PMCID: PMC10848733 DOI: 10.1126/sciadv.adi2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The lithosphere, as the outermost solid layer of our planet, preserves a progressively more fragmentary record of geological events and processes from Earth's history the further back in time one looks. Thus, the evolution of lithospheric thickness and its cascading impacts in Earth's tectonic system are presently unknown. Here, we track the lithospheric thickness history using machine learning based on global lithogeochemical data of basalt. Our results demonstrate that four marked lithospheric thinning events occurred during the Paleoarchean, early Paleoproterozoic, Neoproterozoic, and Phanerozoic with intermediate thickening scenarios. These events respectively correspond to supercontinent/supercraton breakup and assembly periods. Causality investigation further indicates that crustal metamorphic and deformation styles are the feedback of lithospheric thickness. Cross-correlation between lithospheric thickness and metamorphic thermal gradients records the transition from intraoceanic subduction systems to continental margin and intraoceanic in the Paleoarchean and Mesoarchean and a progressive emergence of large thick continents that allow supercontinent growth, which promoted assembly of the first supercontinent during the Neoarchean.
Collapse
Affiliation(s)
- Zhen-Jie Zhang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| | - Guo-Xiong Chen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Timothy Kusky
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Jie Yang
- State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| | - Qiu-Ming Cheng
- State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 51900, China
| |
Collapse
|
5
|
Tarduno JA, Cottrell RD, Bono RK, Rayner N, Davis WJ, Zhou T, Nimmo F, Hofmann A, Jodder J, Ibañez-Mejia M, Watkeys MK, Oda H, Mitra G. Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism. Nature 2023; 618:531-536. [PMID: 37316722 PMCID: PMC10266976 DOI: 10.1038/s41586-023-06024-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/27/2023] [Indexed: 06/16/2023]
Abstract
Plate tectonics is a fundamental factor in the sustained habitability of Earth, but its time of onset is unknown, with ages ranging from the Hadaean to Proterozoic eons1-3. Plate motion is a key diagnostic to distinguish between plate and stagnant-lid tectonics, but palaeomagnetic tests have been thwarted because the planet's oldest extant rocks have been metamorphosed and/or deformed4. Herein, we report palaeointensity data from Hadaean-age to Mesoarchaean-age single detrital zircons bearing primary magnetite inclusions from the Barberton Greenstone Belt of South Africa5. These reveal a pattern of palaeointensities from the Eoarchaean (about 3.9 billion years ago (Ga)) to Mesoarchaean (about 3.3 Ga) eras that is nearly identical to that defined by primary magnetizations from the Jack Hills (JH; Western Australia)6,7, further demonstrating the recording fidelity of select detrital zircons. Moreover, palaeofield values are nearly constant between about 3.9 Ga and about 3.4 Ga. This indicates unvarying latitudes, an observation distinct from plate tectonics of the past 600 million years (Myr) but predicted by stagnant-lid convection. If life originated by the Eoarchaean8, and persisted to the occurrence of stromatolites half a billion years later9, it did so when Earth was in a stagnant-lid regime, without plate-tectonics-driven geochemical cycling.
Collapse
Affiliation(s)
- John A Tarduno
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA.
- Geological Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Rory D Cottrell
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA
| | - Richard K Bono
- Geomagnetism Laboratory, University of Liverpool, Liverpool, UK
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - Nicole Rayner
- Natural Resources Canada, Geological Survey of Canada, Ottawa, Ontario, Canada
| | - William J Davis
- Natural Resources Canada, Geological Survey of Canada, Ottawa, Ontario, Canada
| | - Tinghong Zhou
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA
| | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Auckland Park, South Africa
| | - Jaganmoy Jodder
- Department of Geology, University of Johannesburg, Auckland Park, South Africa
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | | | - Michael K Watkeys
- Geological Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hirokuni Oda
- Research Institute of Geology and Geoinformation, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Gautam Mitra
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
6
|
Chowdhury W, Trail D, Miller M, Savage P. Eoarchean and Hadean melts reveal arc-like trace element and isotopic signatures. Nat Commun 2023; 14:1140. [PMID: 36854670 PMCID: PMC9975215 DOI: 10.1038/s41467-023-36538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Constraining the lithological diversity and tectonics of the earliest Earth is critical to understanding our planet's evolution. Here we use detrital Jack Hills zircon (3.7 - 4.2 Ga) analyses coupled with new experimental partitioning data to model the silica content, Si+O isotopic composition, and trace element contents of their parent melts. Comparing our derived Jack Hills zircons' parent melt Si+O isotopic compositions (-1.92 ≤ δ30SiNBS28 ≤ 0.53 ‰; 5.23 ≤ δ18OVSMOW ≤ 9.00 ‰) to younger crustal lithologies, we conclude that the chemistry of the parent melts was influenced by the assimilation of terrigenous sediments, serpentinites, cherts, and silicified basalts, followed by igneous differentiation, leading to the formation of intermediate to felsic melts in the early Earth. Trace element measurements also show that the formational regime had an arc-like chemistry, implying the presence of mobile-lid tectonics in the Hadean. Finally, we propose that these continental-crust forming processes operated uniformly from 4.2 to at least 3.7 Ga.
Collapse
Affiliation(s)
- Wriju Chowdhury
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY, 14627, USA.
| | - Dustin Trail
- grid.16416.340000 0004 1936 9174Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627 USA
| | - Martha Miller
- grid.16416.340000 0004 1936 9174Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627 USA
| | - Paul Savage
- grid.11914.3c0000 0001 0721 1626School of Earth and Environmental Sciences, University of St Andrews, Bute Building, St Andrews, Scotland KY16 9TS UK
| |
Collapse
|
7
|
Huang B, Johnson TE, Wilde SA, Polat A, Fu D, Kusky T. Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean. Nat Commun 2022; 13:6450. [PMID: 36307406 PMCID: PMC9616927 DOI: 10.1038/s41467-022-34214-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
The coexistence of divergent (spreading ridge) and convergent (subduction zone) plate boundaries at which lithosphere is respectively generated and destroyed is the hallmark of plate tectonics. Here, we document temporally- and spatially-associated Neoarchean (2.55-2.51 Ga) rock assemblages with mid-ocean ridge and supra-subduction-zone origins from the Angou Complex, southern North China Craton. These assemblages record seafloor spreading and contemporaneous subduction initiation and mature arc magmatism, respectively, analogous to modern divergent and convergent plate boundary processes. Our results provide direct evidence for lateral plate motions in the late Neoarchean, and arguably the operation of plate tectonics, albeit with warmer than average Phanerozoic subduction geotherms. Further, we surmise that plate tectonic processes played an important role in shaping Earth's surficial environments during the Neoarchean and Paleoproterozoic.
Collapse
Affiliation(s)
- Bo Huang
- Badong National Observation and Research Station for Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Tim E Johnson
- School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, 6102, Australia
| | - Simon A Wilde
- School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, 6102, Australia
| | - Ali Polat
- School of the Environment, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Dong Fu
- Badong National Observation and Research Station for Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Timothy Kusky
- Badong National Observation and Research Station for Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
8
|
Wang X, Tang M, Moyen J, Wang D, Kröner A, Hawkesworth C, Xia X, Xie H, Anhaeusser C, Hofmann A, Li J, Li L. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. Natl Sci Rev 2022; 9:nwab136. [PMID: 35265338 PMCID: PMC8900693 DOI: 10.1093/nsr/nwab136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
The recycling of supracrustal materials, and in particular hydrated rocks, has a profound impact on mantle composition and thus on the formation of continental crust, because water modifies the physical properties of lithological systems and the mechanisms of partial melting and fractional fractionation. On the modern Earth, plate tectonics offers an efficient mechanism for mass transport from the Earth's surface to its interior, but how far this mechanism dates back in the Earth's history is still uncertain. Here, we use zircon oxygen (O) isotopes to track recycling of supracrustal materials into the magma sources of early Archean igneous suites from the Kaapvaal Craton, southern Africa. The mean δ 18O values of zircon from TTG (tonalite-trondhjemite-granodiorite) rocks abruptly increase at the Paleo-Mesoarchean boundary (ca. 3230 million years ago; Ma), from mantle zircon values of 5‰-6‰ to approaching 7.1‰, and this increase occurs in ≤3230 Ma rocks with elevated Dy/Yb ratios. The 18O enrichment is a unique signature of low-temperature water-rock interaction on the Earth's surface. Because the later phase was emplaced into the same crustal level as the older one and TTG magmas would derive from melting processes in the garnet stability field (>40 km depth), we suggest that this evident shift in TTG zircon O isotopic compositions records the onset of recycling of the mafic oceanic crust that underwent seawater hydrothermal alteration at low temperature. The onset of the enhanced recycling of supracrustal materials may also have developed elsewhere in other Archean cratons and reflects a significant change in the tectonic realm during craton formation and stabilization, which may be important processes for the operation of plate tectonics on early Earth.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Jeff Moyen
- Laboratoire Magmas et Volcans UMR6524, Université de Lyon, UJM-UCA-CNRS-IRD, Saint Etienne 42023,France
| | - Di Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Alfred Kröner
- Institut für Geowissenschaften, Universität Mainz, Mainz 55099, Germany
| | - Chris Hawkesworth
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Xiaoping Xia
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hangqiang Xie
- SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Carl Anhaeusser
- Economic Geology Research Unit, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Junyong Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Linsen Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Was There Land on the Early Earth? Life (Basel) 2021; 11:life11111142. [PMID: 34833018 PMCID: PMC8623345 DOI: 10.3390/life11111142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of exposed land on the early Earth is a prerequisite for a certain type of prebiotic chemical evolution in which the oscillating activity of water, driven by short-term, day–night, and seasonal cycles, facilitates the synthesis of proto-biopolymers. Exposed land is, however, not guaranteed to exist on the early Earth, which is likely to have been drastically different from the modern Earth. This mini-review attempts to provide an up-to-date account on the possibility of exposed land on the early Earth by integrating recent geological and geophysical findings. Owing to the competing effects of the growing ocean and continents in the Hadean, a substantial expanse of the Earth’s surface (∼20% or more) could have been covered by exposed continents in the mid-Hadean. In contrast, exposed land may have been limited to isolated ocean islands in the late Hadean and early Archean. The importance of exposed land during the origins of life remains an open question.
Collapse
|
10
|
Heterogeneous Hadean crust with ambient mantle affinity recorded in detrital zircons of the Green Sandstone Bed, South Africa. Proc Natl Acad Sci U S A 2021; 118:2004370118. [PMID: 33602806 DOI: 10.1073/pnas.2004370118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nature of Earth's earliest crust and the processes by which it formed remain major issues in Precambrian geology. Due to the absence of a rock record older than ∼4.02 Ga, the only direct record of the Hadean is from rare detrital zircon and that largely from a single area: the Jack Hills and Mount Narryer region of Western Australia. Here, we report on the geochemistry of Hadean detrital zircons as old as 4.15 Ga from the newly discovered Green Sandstone Bed in the Barberton greenstone belt, South Africa. We demonstrate that the U-Nb-Sc-Yb systematics of the majority of these Hadean zircons show a mantle affinity as seen in zircon from modern plume-type mantle environments and do not resemble zircon from modern continental or oceanic arcs. The zircon trace element compositions furthermore suggest magma compositions ranging from higher temperature, primitive to lower temperature, and more evolved tonalite-trondhjemite-granodiorite (TTG)-like magmas that experienced some reworking of hydrated crust. We propose that the Hadean parental magmas of the Green Sandstone Bed zircons formed from remelting of mafic, mantle-derived crust that experienced some hydrous input during melting but not from the processes seen in modern arc magmatism.
Collapse
|
11
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
12
|
Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Sci Rep 2020; 10:9461. [PMID: 32528085 PMCID: PMC7289823 DOI: 10.1038/s41598-020-66324-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Progressive mantle melting during the Earth’s earliest evolution led to the formation of a depleted mantle and a continental crust enriched in highly incompatible elements. Re-enrichment of Earth’s mantle can occur when continental crustal materials begin to founder into the mantle by either subduction or, to a lesser degree, by delamination processes, profoundly affecting the mantle’s trace element and volatile compositions. Deciphering when mantle re-enrichment/refertilization became a global-scale process would reveal the onset of efficient mass transfer of crust to the mantle and potentially when plate tectonic processes became operative on a global-scale. Here we document the onset of mantle re-enrichment/refertilization by comparing the abundances of petrogenetically significant isotopic values and key ratios of highly incompatible elements compared to lithophile elements in Archean to Early-Proterozoic mantle-derived melts (i.e., basalts and komatiites). Basalts and komatiites both record a rapid-change in mantle chemistry around 3.2 billion years ago (Ga) signifying a fundamental change in Earth geodynamics. This rapid-change is recorded in Nd isotopes and in key trace element ratios that reflect a fundamental shift in the balance between fluid-mobile and incompatible elements (i.e., Ba/La, Ba/Nb, U/Nb, Pb/Nd and Pb/Ce) in basaltic and komatiitic rocks. These geochemical proxies display a significant increase in magnitude and variability after ~3.2 Ga. We hypothesize that rapid increases in mantle heterogeneity indicate the recycling of supracrustal materials back into Earth’s mantle via subduction. Our new observations thus point to a ≥ 3.2 Ga onset of global subduction processes via plate tectonics.
Collapse
|