1
|
Yu K, Gu Y, Yao Y, Li J, Chen S, Guo H, Li Y, Liu J. The Role of Cuproptosis in Hyperoxia-Induced Lung Injury and Its Potential for Treatment. J Inflamm Res 2025; 18:4651-4664. [PMID: 40195958 PMCID: PMC11975008 DOI: 10.2147/jir.s512187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Background Oxygen supplementation is essential for patients with a multitude of diseases but can cause severe hyperoxia-induced lung injury (HLI), necessitating the identification of therapeutic targets to improve clinical outcomes. Cuproptosis, a novel copper-dependent form of cell death characterized by proteotoxic stress resulting from lipoylated protein aggregation and loss of iron-sulfur cluster proteins, is distinct from other forms of cell death. However, the role of cuproptosis in HLI remains unclear. Methods We established an HLI model in MLE-12 cells and C57BL/6 mice to investigate the involvement of cuproptosis in hyperoxia-induced toxicity. Results We observed a time-dependent increase in the cuproptosis-related gene Fdx1 under hyperoxia. Moreover, hyperoxia activated the membrane-associated copper transporter SLC31A1 and significantly elevated copper levels in MLE-12 cells, as well as in the serum and lung tissue of C57BL/6 mice. Further analysis revealed that hyperoxia significantly altered the expression of cuproptosis-related genes without affecting DLAT levels, but significantly increased lipoylated-DLAT levels. ELISA, CCK-8 assays, HE staining, lung wet-to-dry weight ratio, and bronchoalveolar lavage fluid analysis demonstrated that treatment with the cuproptosis inhibitor TTM reduced pro-inflammatory cytokines (TNF-α and IL-1β) and alleviated hyperoxia-induced injury in both MLE-12 cells and C57BL/6 mice. Conclusion Our study identifies the involvement of cuproptosis in HLI, providing new insights into the pathogenesis of hyperoxic lung injury and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kaihua Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yunfei Gu
- Anesthesiology Department, Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu, People’s Republic of China
| | - Ying Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jianchun Li
- Department of Intensive Care Unit, Suzhou Science and Technology City Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Hong Guo
- Department of Anesthesiology, Inner Mongolia Hospital of Peking University Cancer Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yulan Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
2
|
Rowthorn-Apel N, Vridhachalam N, Connor KM, Bonilla GM, Sadreyev R, Singh C, Gnanaguru G. Microglial depletion decreases Müller cell maturation and inner retinal vascular density. Cell Commun Signal 2025; 23:90. [PMID: 39962511 PMCID: PMC11831819 DOI: 10.1186/s12964-025-02083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The neuroretinal vascular system is comprised of three interconnected layers. The initial superficial vascular plexus formation is guided by astrocytes around birth in mice. The formation of the deep and intermediate vascular plexuses occurs in the second postnatal week and is driven by Müller-cell-derived angiogenic signaling. Previously, we reported that microglia play an important role in regulating astrocyte density during superficial vascular plexus formation. Here, we investigated the role of microglia in regulating Müller-cell-dependent inner retinal vascular development. METHODOLOGY In this study, we depleted microglia during retinal development using Csf1R antagonist (PLX5622). We characterized the developmental progression of inner retinal vascular growth, effect of microglial depletion on inner retinal vascular growth and Müller cell marker expressions by immunostaining. Differential expressions of genes in the control and microglia depleted groups were analyzed by mRNA-seq and qPCR. Unpaired t-test was performed to determine the statistical differences between groups. RESULTS This study show that microglia interact with Müller cells and the growing inner retinal vasculature. Depletion of microglia resulted in reduced inner retinal vascular layers densities and decreased Vegfa isoforms transcript levels. RNA-seq analysis further revealed that microglial depletion significantly reduced specific Müller cell maturation markers including glutamine synthetase, responsible for glutamine biosynthesis, necessary for angiogenesis. CONCLUSIONS Our study reveals an important role for microglia in facilitating inner retinal angiogenesis and Müller cell maturation.
Collapse
Affiliation(s)
- Nathaniel Rowthorn-Apel
- Department of Ophthalmology, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Naveen Vridhachalam
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kip M Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, USA
| | - Gracia M Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Charandeep Singh
- Department of Ophthalmology, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Gopalan Gnanaguru
- Department of Ophthalmology, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA.
- Vice President of Retinal Strategy, Johnson & Johnson Innovation Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Heinken A, Asara JM, Gnanaguru G, Singh C. Systemic regulation of retinal medium-chain fatty acid oxidation repletes TCA cycle flux in oxygen-induced retinopathy. Commun Biol 2025; 8:25. [PMID: 39789310 PMCID: PMC11718186 DOI: 10.1038/s42003-024-07394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina. Our systems level in vivo RNA-seq, proteomics, and lipidomic profiling and ex-vivo retinal explant studies show that the medium-chain fatty acids serves as an alternative source to feed the TCA cycle. Our findings strongly implicate that medium-chain fatty acids could suppress glutamine-fueled anaplerosis and ameliorate hyperoxia-induced vascular abnormalities in conditions such as retinopathy of prematurity.
Collapse
Affiliation(s)
- Almut Heinken
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gopalan Gnanaguru
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Charandeep Singh
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Division of Biochemical and Molecular Nutrition, Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
4
|
Peña JS, Berthiaume F, Vazquez M. Müller Glia Co-Regulate Barrier Permeability with Endothelial Cells in an Vitro Model of Hyperglycemia. Int J Mol Sci 2024; 25:12271. [PMID: 39596335 PMCID: PMC11595118 DOI: 10.3390/ijms252212271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy is a complex, microvascular disease that impacts millions of working adults each year. High blood glucose levels from Diabetes Mellitus lead to the accumulation of advanced glycation end-products (AGEs), which promote inflammation and the breakdown of the inner blood retinal barrier (iBRB), resulting in vision loss. This study used an in vitro model of hyperglycemia to examine how endothelial cells (ECs) and Müller glia (MG) collectively regulate molecular transport. Changes in cell morphology, the expression of junctional proteins, and the reactive oxygen species (ROS) of ECs and MG were examined when exposed to a hyperglycemic medium containing AGEs. Trans-endothelial resistance (TEER) assays were used to measure the changes in cell barrier resistance in response to hyperglycemic and inflammatory conditions, with and without an anti-VEGF compound. Both of the cell types responded to hyperglycemic conditions with significant changes in the cell area and morphology, the ROS, and the expression of the junctional proteins ZO-1, CX-43, and CD40, as well as the receptor for AGEs. The resistivities of the individual and dual ECs and MG barriers decreased within the hyperglycemia model but were restored to that of basal, normoglycemic levels when treated with anti-VEGF. This study illustrated significant phenotypic responses to an in vitro model of hyperglycemia, as well as significant changes in the expression of the key proteins used for cell-cell communication. The results highlight important, synergistic relationships between the ECs and MG and how they contribute to changes in barrier function in combination with conventional treatments.
Collapse
Affiliation(s)
| | | | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA; (J.S.P.); (F.B.)
| |
Collapse
|
5
|
Wei Y, Zhang D, Shi H, Qian H, Chen H, Zeng Q, Jin F, Ye Y, Ou Z, Guo M, Guo B, Chen T. PDK1 promotes breast cancer progression by enhancing the stability and transcriptional activity of HIF-1α. Genes Dis 2024; 11:101041. [PMID: 38560503 PMCID: PMC10978537 DOI: 10.1016/j.gendis.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 06/04/2023] [Indexed: 04/04/2024] Open
Abstract
Pyruvate dehydrogenase kinase 1 (PDK1) phosphorylates the pyruvate dehydrogenase complex, which inhibits its activity. Inhibiting pyruvate dehydrogenase complex inhibits the tricarboxylic acid cycle and the reprogramming of tumor cell metabolism to glycolysis, which plays an important role in tumor progression. This study aims to elucidate how PDK1 promotes breast cancer progression. We found that PDK1 was highly expressed in breast cancer tissues, and PDK1 knockdown reduced the proliferation, migration, and tumorigenicity of breast cancer cells and inhibited the HIF-1α (hypoxia-inducible factor 1α) pathway. Further investigation showed that PDK1 promoted the protein stability of HIF-1α by reducing the level of ubiquitination of HIF-1α. The HIF-1α protein levels were dependent on PDK1 kinase activity. Furthermore, HIF-1α phosphorylation at serine 451 was detected in wild-type breast cancer cells but not in PDK1 knockout breast cancer cells. The phosphorylation of HIF-1α at Ser 451 stabilized its protein levels by inhibiting the interaction of HIF-1α with von Hippel-Lindau and prolyl hydroxylase domain. We also found that PDK1 enhanced HIF-1α transcriptional activity. In summary, PDK1 enhances HIF-1α protein stability by phosphorylating HIF-1α at Ser451 and promotes HIF-1α transcriptional activity by enhancing the binding of HIF-1α to P300. PDK1 and HIF-1α form a positive feedback loop to promote breast cancer progression.
Collapse
Affiliation(s)
- Yu Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongling Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Ye
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zuli Ou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Minkang Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bianqin Guo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Singh C. Systems levels analysis of lipid metabolism in oxygen-induced retinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568200. [PMID: 38045301 PMCID: PMC10690220 DOI: 10.1101/2023.11.21.568200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hyperoxia induces glutamine-fueled anaplerosis in the Muller cells, endothelial cells, and retinal explants. Anaplerosis takes away glutamine from the biosynthetic pathway to the energy-producing TCA cycle. This process depletes biosynthetic precursors from newly proliferating endothelial cells. The induction of anaplerosis in the hyperoxic retina is a compensatory response, either to decreased glycolysis or decreased flux from glycolysis to the TCA cycle. We hypothesized that by providing substrates that feed into TCA, we could reverse or prevent glutamine-fueled anaplerosis, thereby abating the glutamine wastage for energy generation. Using an oxygen-induced retinopathy (OIR) mouse model, we first compared the difference in fatty acid metabolism between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains to understand if these strains exhibit metabolic difference that protects BALB/cByJ from the hyperoxic conditions and prevents their vasculature in oxygen-induced retinopathy model. Based on our findings from the metabolic comparison between two mouse strains, we hypothesized that the medium-chain fatty acid, octanoate, can feed into the TCA and serve as an alternative energy source in response to hyperoxia. Our systems levels analysis of OIR model shows that the medium chain fatty acid can serve as an alternative source to feed TCA. We here, for the first time, demonstrate that the retina can use medium-chain fatty acid octanoate to replenish TCA in normoxic and at a higher rate in hyperoxic conditions.
Collapse
|
7
|
Nsiah NY, Morgan AB, Donkor N, Inman DM. Long-term HIF-1α stabilization reduces respiration, promotes mitophagy, and results in retinal cell death. Sci Rep 2023; 13:20541. [PMID: 37996657 PMCID: PMC10667534 DOI: 10.1038/s41598-023-47942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Ocular hypertension during glaucoma can lead to hypoxia, activation of the HIF transcription factors, and a metabolic shift toward glycolysis. This study aims to test whether chronic HIF activation and the attendant metabolic reprogramming can initiate glaucoma-associated pathology independently of ocular hypertension. HIF-1α stabilization was induced in mice for 2 and 4 weeks by inhibiting prolyl hydroxylases using the small molecule Roxadustat. HIF-1α stabilization and the expression of its downstream bioenergetic targets were investigated in the retina by immunofluorescence, capillary electrophoresis, and biochemical enzyme activity assays. Roxadustat dosing resulted in significant stabilization of HIF-1α in the retina by 4 weeks, and upregulation in glycolysis-associated proteins (GLUT3, PDK-1) and enzyme activity in both neurons and glia. Accordingly, succinate dehydrogenase, mitochondrial marker MTCO1, and citrate synthase activity were significantly decreased at 4 weeks, while mitophagy was significantly increased. TUNEL assay showed significant apoptosis of cells in the retina, and PERG amplitude was significantly decreased with 4 weeks of HIF-1α stabilization. A significant increase in AMPK activation and glial hypertrophy, concomitant with decreases in retinal ganglion cell function and inner retina cell death suggests that chronic HIF-1α stabilization alone is detrimental to retina metabolic homeostasis and cellular survival.
Collapse
Affiliation(s)
- Nana Yaa Nsiah
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Genentech, South San Francisco, CA, USA
| | - Autumn B Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nina Donkor
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
8
|
Chen M, Chen Y, Zhu W, Yan X, Xiao J, Zhang P, Liu P, Li P. Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress. Biomed Pharmacother 2023; 165:115088. [PMID: 37413900 DOI: 10.1016/j.biopha.2023.115088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes mellitus, primarily arising from type 2 diabetes (T2DM), and can progress to chronic kidney disease (CKD) and end stage renal disease (ESRD). The pathogenesis of DN involves various factors such as hemodynamic changes, oxidative stress, inflammatory response, and lipid metabolism disorders. Increasing attention is being given to DN caused by oxidative stress in the mitochondrial pathway, prompting researchers to explore drugs that can regulate these target pathways. Chinese herbal medicine, known for its accessibility, rich historical usage, and remarkable efficacy, has shown promise in ameliorating renal injury caused by DN by modulating oxidative stress in the mitochondrial pathway. This review aims to provide a reference for the prevention and treatment of DN. Firstly, we outline the mechanisms by which mitochondrial dysfunction impairs DN, focusing on outlining the damage to mitochondria by oxidative stress. Subsequently, we describe the process by which formulas, herbs and monomeric compounds protect the kidney by ameliorating oxidative stress in the mitochondrial pathway. Finally, the rich variety of Chinese herbal medicine, combined with modern extraction techniques, has great potential, and as we gradually understand the pathogenesis of DN and research techniques are constantly updated, there will be more and more promising therapeutic targets and herbal drug candidates. This paper aims to provide a reference for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peiqing Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
9
|
Das A, Bhattacharjee I, Heis F, Sears JE, Aly H. Blood urea nitrogen, a marker for severe retinopathy of prematurity? J Perinatol 2023; 43:830-832. [PMID: 36694033 PMCID: PMC10320941 DOI: 10.1038/s41372-023-01618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Affiliation(s)
- Anirudha Das
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | | | - Farah Heis
- Department of Internal Medicine, Rutgers health/ Monmouth Medical Center, Long Branch, NJ, USA
| | - Jonathan E Sears
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
10
|
Liu K, Zou H, Fan H, Hu H, Cheng Y, Liu J, Wu X, Chen B, You Z. The role of aldosterone in the pathogenesis of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1163787. [PMID: 37113483 PMCID: PMC10126408 DOI: 10.3389/fendo.2023.1163787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Aldosterone, as a mineralocorticoid of adrenal origin, has effects that are not limited to the urinary tract. As an important regulator in Vasoactive hormone pathways, aldosterone may play an effect in the pathogenesis of diabetic retinopathy (DR) through the regulation of oxidative stress, vascular regulation, and inflammatory mechanisms. This implies that mineralocorticoids, including aldosterone, have great potential and value for the diagnosis and treatment of DR. Because early studies did not focus on the intrinsic association between mineralocorticoids and DR, targeted research is still in its infancy and there are still many obstacles to its application in the clinical setting. Recent studies have improved the understanding of the effects of aldosterone on DR, and we review them with the aim of exploring possible mechanisms for the treatment and prevention of DR.
Collapse
Affiliation(s)
- Kangcheng Liu
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Hua Zou
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Huimin Fan
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Hanying Hu
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanhua Cheng
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Jingying Liu
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xiaojian Wu
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Bolin Chen
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng You
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhipeng You,
| |
Collapse
|
11
|
Liu B, He J, Zhong L, Huang L, Gong B, Hu J, Qian H, Yang Z. Single-cell transcriptome reveals diversity of Müller cells with different metabolic-mitochondrial signatures in normal and degenerated macula. Front Neurosci 2022; 16:1079498. [PMID: 36620436 PMCID: PMC9817153 DOI: 10.3389/fnins.2022.1079498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Müller cell is the most abundant glial cell in mammalian retina, supporting the functions of photoreceptors and other retinal neurons via maintaining environmental homeostasis. In response to injury and/or neuronal degeneration, Müller cells undergo morphological and functional alternations, known as reactive gliosis documented in multiple retinal diseases, including age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and traumatic retinal detachment. But the functional consequences of Müller glia cell reactivation or even the regulatory networks of the retinal gliosis are still controversial. In this study, we reveal different subpopulations of Müller cells with distinct metabolic-mitochondrial signatures by integrating single cell transcriptomic data from Early AMD patients and healthy donors. Our results show that a portion of Müller cells exhibits low mitochondrial DNA (mtDNA) expressions, reduced protein synthesis, impaired homeostatic regulation, decreased proliferative ability but enhanced proangiogenic function. Interestingly, the major alternation of Müller cells in Early AMD retina is the change of subpopulation abundance, rather than generation of new subcluster. Transcription factor enrichment analysis further highlights the key regulators of metabolic-mitochondrial states of Müller glias in Early AMD patients especially. Our study demonstrates new characteristics of retinal gliosis associated with Early AMD and suggests the possibility to prevent degeneration by intervening mitochondrial functions of Müller cells.
Collapse
Affiliation(s)
- Bei Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiali He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Jing Hu,
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Hao Qian,
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China,Zhenglin Yang,
| |
Collapse
|
12
|
Yang S, Qi S, Wang C. The role of retinal Müller cells in diabetic retinopathy and related therapeutic advances. Front Cell Dev Biol 2022; 10:1047487. [PMID: 36531955 PMCID: PMC9757137 DOI: 10.3389/fcell.2022.1047487] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/24/2022] [Indexed: 11/19/2023] Open
Abstract
Diabetic retinopathy (DR) is a significant complication of diabetes. During the pathogenesis of retinal microangiopathy and neuronopathy, activated retinal Müller cells (RMCs) undergo morphological and structural changes such as increased expression of glial fibrillary acidic protein, disturbance of potassium and water transport regulation, and onset of production of a large number of inflammatory and vascular growth factors as well as chemokines. Evidently, activated RMCs are necessary for the pathogenesis of DR; therefore, exploring the role of RMCs in DR may provide a new target for the treatment thereof. This article reviews the mechanism of RMCs involvement in DR and the progress in related treatments.
Collapse
Affiliation(s)
| | - Shounan Qi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Wang Z, Yemanyi F, Blomfield AK, Bora K, Huang S, Liu CH, Britton WR, Cho SS, Tomita Y, Fu Z, Ma JX, Li WH, Chen J. Amino acid transporter SLC38A5 regulates developmental and pathological retinal angiogenesis. eLife 2022; 11:e73105. [PMID: 36454214 PMCID: PMC9714971 DOI: 10.7554/elife.73105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Amino acid (AA) metabolism in vascular endothelium is important for sprouting angiogenesis. SLC38A5 (solute carrier family 38 member 5), an AA transporter, shuttles neutral AAs across cell membrane, including glutamine, which may serve as metabolic fuel for proliferating endothelial cells (ECs) to promote angiogenesis. Here, we found that Slc38a5 is highly enriched in normal retinal vascular endothelium, and more specifically, in pathological sprouting neovessels. Slc38a5 is suppressed in retinal blood vessels from Lrp5-/- and Ndpy/- mice, both genetic models of defective retinal vascular development with Wnt signaling mutations. Additionally, Slc38a5 transcription is regulated by Wnt/β-catenin signaling. Genetic deficiency of Slc38a5 in mice substantially delays retinal vascular development and suppresses pathological neovascularization in oxygen-induced retinopathy modeling ischemic proliferative retinopathies. Inhibition of SLC38A5 in human retinal vascular ECs impairs EC proliferation and angiogenic function, suppresses glutamine uptake, and dampens vascular endothelial growth factor receptor 2. Together these findings suggest that SLC38A5 is a new metabolic regulator of retinal angiogenesis by controlling AA nutrient uptake and homeostasis in ECs.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Alexandra K Blomfield
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Kiran Bora
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - William R Britton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Jian-xing Ma
- Department of Biochemistry, Wake Forest University School of MedicineWinston-SalemUnited States
| | - Wen-hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
14
|
Ardourel M, Pâris A, Felgerolle C, Lesne F, Ranchon-Cole I, Briault S, Perche O. FMRP-related retinal phenotypes: Evidence of glutamate-glutamine metabolic cycle impairment. Exp Eye Res 2022; 224:109238. [PMID: 36067823 DOI: 10.1016/j.exer.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
FMRP, the fragile X mental retardation protein coded by the FMR1 gene, is an RNA-binding protein that assists transport, stabilization and translational regulation of specific synaptic mRNAs. Its expression has been found in multiple cell types of central nervous system (CNS) including glial cells where its involvement in glutamate neurotransmitter homeostasis have been shown. Indeed, glutamate homeostasis deficit has been observed in absence of FMRP in-vivo in cortex and hippocampus structures as well as in vitro on astroglial cell culture. Interestingly, the retina which is an extension of the CNS is presenting electrophysiological alterations in absence of FMRP in both human and murine models suggesting neurotransmitter impairments. Therefore, we investigate the consequences of Fmrp absence on Glutamate-Glutamine cycle in whole retinas and primary retinal Müller cells culture which are the main glial cells of the retina. Using the Fmr1-/y mice, we have shown in vivo and in vitro that the absence of Fmrp in Müller cells is characterized by loss of Glutamate-Glutamine cycle homeostasis due to a lower Glutamine Synthetase protein expression and activity. The lack of Fmrp in the retina induces a reduced flow of glutamine synthesis. Our data established for the first time in literature a direct link between the lack of Fmrp and neurotransmitter homeostasis in the retina.
Collapse
Affiliation(s)
- Maryvonne Ardourel
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, F-45071, Orléans Cedex 2, France
| | - Arnaud Pâris
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, F-45071, Orléans Cedex 2, France
| | - Chloé Felgerolle
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, F-45071, Orléans Cedex 2, France
| | - Fabien Lesne
- Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - Isabelle Ranchon-Cole
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - Sylvain Briault
- Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France; UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, F-45071, Orléans Cedex 2, France
| | - Olivier Perche
- Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France; UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, F-45071, Orléans Cedex 2, France.
| |
Collapse
|
15
|
Qin M, Xie Z, Cao T, Wang Z, Zhang X, Wang F, Wei W, Jin M, Ma J, Zeng L, Wang Y, Pei S, Zhang X. Autophagy in Rat Müller Glial Cells Is Modulated by the Sirtuin 4/AMPK/mTOR Pathway and Induces Apoptosis under Oxidative Stress. Cells 2022; 11:cells11172645. [PMID: 36078054 PMCID: PMC9454555 DOI: 10.3390/cells11172645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Müller glial cells (MGCs) are a group of glial cells in the retina that provide essential support to retinal neurons; however, the understanding of MGC apoptosis and autophagy remains limited. This study was aimed at investigating the role of autophagy in MGCs under normal and oxidative conditions, and identifying the underlying mechanisms. In addition, the sirtuin 4 (SIRT4)-mediated signaling pathway was observed to regulate the autophagic process in MGCs. To assess the effect of autophagy on MGC mitochondrial function and survival, we treated rMC-1 cells—rat-derived Müller glial cells—with rapamycin and 3-methyladenine (3-MA), and found that MGC death was not induced by such treatment, while autophagic dysfunction could increase MGC apoptosis under oxidative stress, as reflected by the expression level of cleaved caspase 3 and PI staining. In addition, the downregulation of autophagy by 3-MA could influence the morphology of the mitochondrial network structure, the mitochondrial membrane potential, and generation of reactive oxygen species (ROS) under oxidative stress. Moreover, SIRT4 depletion enhanced autophagosome formation, as verified by an increase in the LC3 II/I ratio and a decrease in the expression of SQSTM1/p62, and vice versa. The inhibition of AMPK phosphorylation by compound C could reverse these changes in LC3 II/I and SQSTM1/p62 caused by SIRT4 knockdown. Our research concludes that MGCs can endure autophagic dysfunction in the absence of oxidative stress, while the downregulation of autophagy can cause MGCs to become more sensitized to oxidative stress. Simultaneous exposure to oxidative stress and autophagic dysfunction in MGCs can result in a pronounced impairment of cell survival. Mechanically, SIRT4 depletion can activate the autophagic process in MGCs by regulating the AMPK–mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengqi Qin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Zhi Xie
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Ting Cao
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Zhiruo Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoyu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Wei
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Ming Jin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Jingyuan Ma
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ling Zeng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Yanan Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Shaonan Pei
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center of Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
16
|
Singh C. Metabolism and Vascular Retinopathies: Current Perspectives and Future Directions. Diagnostics (Basel) 2022; 12:diagnostics12040903. [PMID: 35453951 PMCID: PMC9031785 DOI: 10.3390/diagnostics12040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 01/03/2023] Open
Abstract
The retina is one of the most metabolically active organs in the body. Although it is an extension of the brain, the metabolic needs of the retina and metabolic exchanges between the different cell types in the retina are not the same as that of the brain. Retinal photoreceptors convert most of the glucose into lactate via aerobic glycolysis which takes place in their cytosol, yet there are immense numbers of mitochondria in photoreceptors. The present article is a focused review of the metabolic dysregulation seen in retinopathies with underlying vascular abnormalities with aberrant mitochondrial metabolism and Hypoxia-inducible factor (HIF) dependent pathogenesis. Special emphasis has been paid to metabolic exchanges between different cell types in retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). Metabolic similarities between these proliferative retinopathies have been discussed.
Collapse
Affiliation(s)
- Charandeep Singh
- Liver Center, Division of Gastroenterology, Mass General Hospital, Boston, MA 02114, USA
| |
Collapse
|
17
|
Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol 2021; 9:732820. [PMID: 34646826 PMCID: PMC8502923 DOI: 10.3389/fcell.2021.732820] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the “neuro” and “vascular” components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - John Greenwood
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
18
|
Zhang Z, Shi C, Xia X, Du J, Fan J, Peng X. Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Anal Chem 2021; 93:13539-13547. [PMID: 34581571 DOI: 10.1021/acs.analchem.1c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monitoring the tumor oxygen level when implementing photodynamic therapy (PDT) on malignant cancer has vital significance but remains challenging yet. Herein, by structurally manipulating a 2,4-dimethylpyrrole-engineered asymmetric BODIPY scaffold with different kinds, numbers, and positions of halogen atoms, we rationally designed several monochromophore-based bifunctional photosensitizers, named BDPs (BDP-I, BDP-II, and BDP-III), with self-sensitized photooxidation characteristics for accurate oxygen reporting and photodynamic tumor ablation. We show that different ways of halogen regulation allow available tuning of BDPs' oxygen-dependent ratiometric fluorescence turn-ons upon light irradiation as well as type-II PDT efficiencies before and after self-sensitized photooxidation. Encouragingly, measuring the specific ratiometric signals of the most promising BDP-II enabled the direct observation of initial oxygen concentration in both living 4T1 cells and a tumor-bearing mice model, affording an alternative way for evaluating oxygen supplementation strategies. Meanwhile, the "always on" PDT effect of BDP-II ensured efficient tumor ablation via apoptosis. Our research was thus believed to be of instructive significance for future application of oxygen-related auxiliary strategies and the design of unimolecular multifunctional PDT agents for cancer precision therapy.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
19
|
Yang TT, Li H, Dong LJ. Role of glycolysis in retinal vascular endothelium, glia, pigment epithelium, and photoreceptor cells and as therapeutic targets for related retinal diseases. Int J Ophthalmol 2021; 14:1302-1309. [PMID: 34540603 DOI: 10.18240/ijo.2021.09.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Glycolysis produces large amounts of adenosine triphosphate (ATP) in a short time. The retinal vascular endothelium feeds itself primarily through aerobic glycolysis with less ATP. But when it generates new vessels, aerobic glycolysis provides rapid and abundant ATP support for angiogenesis, and thus inhibition of glycolysis in endothelial cells can be a target for the treatment of neovascularization. Aerobic glycolysis has a protective effect on Müller cells, and it can provide with a target for visual protection and maintenance of the blood-retinal barrier. Under physiological conditions, the mitochondria of RPE can use lactic acid produced by photoreceptor cells as an energy source to provide ATP for survival. In pathological conditions, because RPE cells avoid their oxidative damage by increasing glycolysis, a large number of glycolysis products accumulate, which in turn has a toxic effect on photoreceptor cells. This shows that stabilizing the function of RPE mitochondria may become a target for the treatment of diseases such as retinal degeneration. The decrease of aerobic glycolysis leads to the decline of photoreceptor cell function and impaired vision; therefore, aerobic glycolysis of stable photoreceptor cells provides a reliable target for delaying vision loss. It is of great significance to study the role of glycolysis in various retinal cells for the targeted treatment of ocular fundus diseases.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Editorial Department of Chinese Journal of Ocular Fundus Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
20
|
Hyperoxia Inhibits Proliferation of Retinal Endothelial Cells in a Myc-Dependent Manner. Life (Basel) 2021; 11:life11070614. [PMID: 34202240 PMCID: PMC8304924 DOI: 10.3390/life11070614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Oxygen supplementation is necessary to prevent mortality in severely premature infants. However, the supraphysiological concentration of oxygen utilized in these infants simultaneously creates retinovascular growth attenuation and vasoobliteration that induces the retinopathy of prematurity. Here, we report that hyperoxia regulates the cell cycle and retinal endothelial cell proliferation in a previously unknown Myc-dependent manner, which contributes to oxygen-induced retinopathy.
Collapse
|
21
|
Reduction of Glut1 in the Neural Retina But Not the RPE Alleviates Polyol Accumulation and Normalizes Early Characteristics of Diabetic Retinopathy. J Neurosci 2021; 41:3275-3299. [PMID: 33622781 DOI: 10.1523/jneurosci.2010-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia is a key determinant for development of diabetic retinopathy (DR). Inadequate glycemic control exacerbates retinopathy, while normalization of glucose levels delays its progression. In hyperglycemia, hexokinase is saturated and excess glucose is metabolized to sorbitol by aldose reductase via the polyol pathway. Therapies to reduce retinal polyol accumulation for the prevention of DR have been elusive because of low sorbitol dehydrogenase levels in the retina and inadequate inhibition of aldose reductase. Using systemic and conditional genetic inactivation, we targeted the primary facilitative glucose transporter in the retina, Glut1, as a preventative therapeutic in diabetic male and female mice. Unlike WT diabetics, diabetic Glut1 +/- mice did not display elevated Glut1 levels in the retina. Furthermore, diabetic Glut1 +/- mice exhibited ameliorated ERG defects, inflammation, and oxidative stress, which was correlated with a significant reduction in retinal sorbitol accumulation. Retinal pigment epithelium-specific reduction of Glut1 did not prevent an increase in retinal sorbitol content or early hallmarks of DR. However, like diabetic Glut1 +/- mice, reduction of Glut1 specifically in the retina mitigated polyol accumulation and diminished retinal dysfunction and the elevation of markers for oxidative stress and inflammation associated with diabetes. These results suggest that modulation of retinal polyol accumulation via Glut1 in photoreceptors can circumvent the difficulties in regulating systemic glucose metabolism and be exploited to prevent DR.SIGNIFICANCE STATEMENT Diabetic retinopathy affects one-third of diabetic patients and is the primary cause of vision loss in adults 20-74 years of age. While anti-VEGF and photocoagulation treatments for the late-stage vision threatening complications can prevent vision loss, a significant proportion of patients do not respond to anti-VEGF therapies, and mechanisms to stop progression of early-stage symptoms remain elusive. Glut1 is the primary facilitative glucose transporter for the retina. We determined that a moderate reduction in Glut1 levels, specifically in the retina, but not the retinal pigment epithelium, was sufficient to prevent retinal polyol accumulation and the earliest functional defects to be identified in the diabetic retina. Our study defines modulation of Glut1 in retinal neurons as a targetable molecule for prevention of diabetic retinopathy.
Collapse
|
22
|
Hoppe G, Bolok Y, McCollum L, Zhang J, Sears JE. Rank Order of Small Molecule Induced Hypoxiamimesis to Prevent Retinopathy of Prematurity. Front Cell Dev Biol 2020; 8:488. [PMID: 32656210 PMCID: PMC7324656 DOI: 10.3389/fcell.2020.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Here we rank order small molecule inhibitors of hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) using severity of oxygen induced retinopathy (OIR) as an outcome measure. Dose response analyses in cell cultures of hepatoma (Hep3B), retinal Müller cells (MIO-M1) and primary retinal endothelial cells were conducted to evaluate potency by comparing dose to HIF-1,2 protein levels by western blotting. In vivo dose response was determined using the luciferase-transgene HIF reporter (luc-ODD). Each compound was placed in rank order by their ability to reduce neovascularization and capillary drop out in the OIR mouse model. An Epas1 KO confined to retinal Müller cells was used to determine whether successful protection by HIF stabilization requires HIF-2. Two candidate small molecules can prevent OIR by stabilizing HIF-1 to prevent oxygen induced growth attenuation and vascular obliteration. Müller cell HIF-2, the mediator of pathologic retinal angiogenesis, is not required for protection. The lack of dependence on Müller cell HIF-2 predicts that inhibition of HIF PHD will not drive pathological angiogenesis.
Collapse
Affiliation(s)
- George Hoppe
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Youstina Bolok
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Leah McCollum
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jin Zhang
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jonathan E Sears
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|