1
|
Li Y, Tang J, Tang W, Liu C, Li Z. Host factors influencing sexual differentiation and transmission of Plasmodium: A comprehensive review. Acta Trop 2025; 266:107634. [PMID: 40288552 DOI: 10.1016/j.actatropica.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Malaria, a severe parasitic disease caused by Plasmodium infections, remains a major global health challenge. Efforts to eradicate malaria are complicated by the parasite's intricate life cycle, which alternates between vertebrate hosts and mosquito vectors. Host-derived factors and parasite-sourced components exert crucial roles in regulating this biological process. This review explores the critical role of host-derived factors in shaping Plasmodium sexual differentiation and transmission. We examine how vertebrate and mosquito host-specific factors either promote or restrict parasite development, influencing the transition from vertebrates to mosquitoes. Understanding these host-mediated mechanisms is crucial for developing novel transmission-blocking strategies to reduce malaria prevalence. By highlighting key interactions between hosts and parasites, this review provides insights into potential interventions that could disrupt Plasmodium transmission and contribute to malaria control efforts.
Collapse
Affiliation(s)
- Yanlin Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Shi Y, Wan L, Jiao M, Zhong CQ, Cui H, Yuan J. Elevated NAD + drives Sir2A-mediated GCβ deacetylation and OES localization for Plasmodium ookinete gliding and mosquito infection. Nat Commun 2025; 16:2259. [PMID: 40050296 PMCID: PMC11885453 DOI: 10.1038/s41467-025-57517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
cGMP signal-activated ookinete gliding is essential for mosquito midgut infection of Plasmodium in malaria transmission. During ookinete development, cGMP synthesizer GCβ polarizes to a unique localization "ookinete extrados site" (OES) until ookinete maturation and activates cGMP signaling for initiating parasite motility. However, the mechanism underlying GCβ translocation from cytosol to OES remains elusive. Here, we use protein proximity labeling to search the GCβ-interacting proteins in ookinetes of the rodent malaria parasite P. yoelii, and find the top hit Sir2A, a NAD+-dependent sirtuin family deacetylase. Sir2A interacts with GCβ throughout ookinete development. In mature ookinetes, Sir2A co-localizes with GCβ at OES in a mutually dependent manner. Parasites lacking Sir2A lose GCβ localization at OES, ookinete gliding, and mosquito infection, phenocopying GCβ deficiency. GCβ is acetylated at gametocytes but is deacetylated by Sir2A for OES localization at mature ookinetes. We further demonstrate that the level of NAD+, an essential co-substrate for sirtuin, increases during the ookinete development. NAD+ at its maximal level in mature ookinetes promotes Sir2A-catalyzed GCβ deacetylation, ensuring GCβ localization at OES. This study highlights the spatiotemporal coordination of cytosolic NAD+ level and NAD+-dependent Sir2A in regulating GCβ deacetylation and dynamic localization for Plasmodium ookinete gliding.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lin Wan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mengmeng Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Yoo R, Jore MM, Julien J. Targeting Bottlenecks in Malaria Transmission: Antibody-Epitope Descriptions Guide the Design of Next-Generation Biomedical Interventions. Immunol Rev 2025; 330:e70001. [PMID: 39907429 PMCID: PMC11796336 DOI: 10.1111/imr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Malaria continues to pose a significant burden to global health. Thus, a strong need exists for the development of a diverse panel of intervention strategies and modalities to combat malaria and achieve elimination and eradication goals. Deploying interventions that target bottlenecks in the transmission life cycle of the causative agent of malaria, Plasmodium parasites, is an attractive strategy. The development of highly potent antibody-based biologics, including vaccines, can be greatly facilitated by an in-depth molecular understanding of antibody-epitope interactions. Here, we provide an overview of structurally characterized antibodies targeting lead vaccine candidates expressed during the bottlenecks of the Plasmodium life cycle which include the pre-erythrocytic and sexual stages. The repeat region of the circumsporozoite protein (CSP), domain 1 of Pfs230 and domains 1 and 3 of Pfs48/45 are critical Plasmodium regions targeted by the most potent antibodies at the two bottlenecks of transmission, with other promising targets emerging and requiring further characterization.
Collapse
Affiliation(s)
- Randy Yoo
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
| | - Matthijs M. Jore
- Department of Medical MicrobiologyRadboudumcNijmegenThe Netherlands
| | - Jean‐Philippe Julien
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
5
|
Guizetti J. Imaging malaria parasites across scales and time. J Microsc 2025. [PMID: 39749880 DOI: 10.1111/jmi.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The idea that disease is caused at the cellular level is so fundamental to us that we might forget the critical role microscopy played in generating and developing this insight. Visually identifying diseased or infected cells lays the foundation for any effort to curb human pathology. Since the discovery of the Plasmodium-infected red blood cells, which cause malaria, microscopy has undergone an impressive development now literally resolving individual molecules. This review explores the expansive field of light microscopy, focusing on its application to malaria research. Imaging technologies have transformed our understanding of biological systems, yet navigating the complex and ever-growing landscape of techniques can be daunting. This review offers a guide for researchers, especially those working on malaria, by providing historical context as well as practical advice on selecting the right imaging approach. The review advocates an integrated methodology that prioritises the research question while considering key factors like sample preparation, fluorophore choice, imaging modality, and data analysis. In addition to presenting seminal studies and innovative applications of microscopy, the review highlights a broad range of topics, from traditional techniques like white light microscopy to advanced methods such as superresolution microscopy and time-lapse imaging. It addresses the emerging challenges of microscopy, including phototoxicity and trade-offs in resolution and speed, and offers insights into future technologies that might impact malaria research. This review offers a mix of historical perspective, technological progress, and practical guidance that appeal to novice and advanced microscopists alike. It aims to inspire malaria researchers to explore imaging techniques that could enrich their studies, thus advancing the field through enhanced visual exploration of the parasite across scales and time.
Collapse
Affiliation(s)
- Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Cabral G, Ren B, Bisio H, Otey D, Soldati-Favre D, Brown KM. Orthologs of Plasmodium ICM1 are dispensable for Ca 2+ mobilization in Toxoplasma gondii. Microbiol Spectr 2024; 12:e0122924. [PMID: 39162502 PMCID: PMC11448412 DOI: 10.1128/spectrum.01229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Marseille, France
| | - Dawson Otey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
7
|
Guan J, Wu P, Mo X, Zhang X, Liang W, Zhang X, Jiang L, Li J, Cui H, Yuan J. An axonemal intron splicing program sustains Plasmodium male development. Nat Commun 2024; 15:4697. [PMID: 38824128 PMCID: PMC11144265 DOI: 10.1038/s41467-024-49002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.
Collapse
Affiliation(s)
- Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Peijia Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wenqi Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoming Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lubin Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Guttery DS, Zeeshan M, Holder AA, Tewari R. The molecular mechanisms driving Plasmodium cell division. Biochem Soc Trans 2024; 52:593-602. [PMID: 38563493 PMCID: PMC11088906 DOI: 10.1042/bst20230403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Malaria, a vector borne disease, is a major global health and socioeconomic problem caused by the apicomplexan protozoan parasite Plasmodium. The parasite alternates between mosquito vector and vertebrate host, with meiosis in the mosquito and proliferative mitotic cell division in both hosts. In the canonical eukaryotic model, cell division is either by open or closed mitosis and karyokinesis is followed by cytokinesis; whereas in Plasmodium closed mitosis is not directly accompanied by concomitant cell division. Key molecular players and regulatory mechanisms of this process have been identified, but the pivotal role of certain protein complexes and the post-translational modifications that modulate their actions are still to be deciphered. Here, we discuss recent evidence for the function of known proteins in Plasmodium cell division and processes that are potential novel targets for therapeutic intervention. We also identify key questions to open new and exciting research to understand divergent Plasmodium cell division.
Collapse
Affiliation(s)
- David S. Guttery
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, U.K
| | - Mohammad Zeeshan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, U.K
| | - Rita Tewari
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| |
Collapse
|
9
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
10
|
Shrivastava D, Jha A, Kabrambam R, Vishwakarma J, Mitra K, Ramachandran R, Habib S. Plasmodium falciparum ZIP1 Is a Zinc-Selective Transporter with Stage-Dependent Targeting to the Apicoplast and Plasma Membrane in Erythrocytic Parasites. ACS Infect Dis 2024; 10:155-169. [PMID: 38163252 DOI: 10.1021/acsinfecdis.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Replication of the malarial parasite in human erythrocytes requires massive zinc fluxes, necessitating the action of zinc transporters across the parasite plasma and organellar membranes. Although genetic knockout studies have been conducted on a few "orphan" zinc transporters in Plasmodium spp., none of them have been functionally characterized. We used the recombinant Plasmodium falciparum Zrt-/Irt-like protein (PfZIP1) and specific antibodies generated against it to explore the subcellular localization, function, metal-ion selectivity, and response to cellular zinc levels. PfZIP1 expression was enhanced upon the depletion of cytosolic Zn2+. The protein transitioned from the processed to unprocessed form through blood stages, localizing to the apicoplast in trophozoites and to the parasite plasma membrane in schizonts and gametocytes, indicating stage-specific functional role. The PfZIP1 dimer mediated Zn2+ influx in proteoliposomes. It exhibited preferential binding to Zn2+ compared to Fe2+, with the selectivity for zinc being driven by a C-terminal histidine-rich region conserved only in primate-infecting Plasmodium species.
Collapse
Affiliation(s)
- Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Jha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rajlakshmi Kabrambam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Vishwakarma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravishankar Ramachandran
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
11
|
Kuehnel RM, Ganga E, Balestra AC, Suarez C, Wyss M, Klages N, Brusini L, Maco B, Brancucci N, Voss TS, Soldati D, Brochet M. A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages. SCIENCE ADVANCES 2023; 9:eadf2161. [PMID: 37327340 PMCID: PMC10275601 DOI: 10.1126/sciadv.adf2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.
Collapse
Affiliation(s)
- Ronja Marie Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Emma Ganga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Aurélia C. Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Nicolas Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Dominique Soldati
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| |
Collapse
|
12
|
Liang X, Du W, Huang L, Xiang L, Pan W, Yang F, Zheng F, Xie Y, Geng L, Gong S, Xu W. Helicobacter pylori promotes gastric intestinal metaplasia through activation of IRF3-mediated kynurenine pathway. Cell Commun Signal 2023; 21:141. [PMID: 37328804 PMCID: PMC10273570 DOI: 10.1186/s12964-023-01162-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. METHODS Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. RESULTS Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. CONCLUSION These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection. Video Abstract.
Collapse
Affiliation(s)
- Xinhua Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenjun Du
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Li Xiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenxu Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Yongwu Xie
- Department of Hematology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
13
|
Zhu C, Liang X, Chen X, Liang M, Zheng J, Wan B, Luo S. Characterizing the Specific Recognition of Xanthurenic Acid by GEP1 and GEP1-GCα Interactions in cGMP Signaling Pathway in Gametogenesis of Malaria Parasites. Int J Mol Sci 2023; 24:ijms24032561. [PMID: 36768882 PMCID: PMC9916804 DOI: 10.3390/ijms24032561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Gametogenesis is an essential step for malaria parasite transmission and is activated in mosquito by signals including temperature drop, pH change, and mosquito-derived xanthurenic acid (XA). Recently, a membrane protein gametogenesis essential protein 1 (GEP1) was found to be responsible for sensing these signals and interacting with a giant guanylate cyclase α (GCα) to activate the cGMP-PKG-Ca2+ signaling pathway for malaria parasite gametogenesis. However, the molecular mechanisms for this process remain unclear. In this study, we used AlphaFold2 to predict the structure of GEP1 and found that it consists of a conserved N-terminal helical domain and a transmembrane domain that adopts a structure similar to that of cationic amino acid transporters. Molecular docking results showed that XA binds to GEP1 via a pocket similar to the ligand binding sites of known amino acid transporters. In addition, truncations of this N-terminal sequence significantly enhanced the expression, solubility, and stability of GEP1. In addition, we found that GEP1 interacts with GCα via its C-terminal region, which is interrupted by mutations of a few conserved residues. These findings provide further insights into the molecular mechanism for the XA recognition by GEP1 and the activation of the gametogenesis of malaria parasites through GEP1-GCα interaction.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xiaoge Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xu Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Miaomiao Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jianting Zheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shukun Luo
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
14
|
Abstract
Serine/arginine-rich protein kinases (SRPKs) are cell cycle-regulated serine/threonine protein kinases and are important regulators of splicing factors. In this study, we functionally characterize SRPK1 of the human malaria parasite Plasmodium falciparum. P. falciparum SRPK1 (PfSRPK1) was expressed in asexual blood-stage and sexual-stage gametocytes. Pfsrpk1- parasites formed asexual schizonts that generated far fewer merozoites than wild-type parasites, causing reduced replication rates. Pfsrpk1- parasites also showed a severe defect in the differentiation of male gametes, causing a complete block in parasite transmission to mosquitoes. RNA sequencing (RNA-seq) analysis of wild-type PfNF54 and Pfsrpk1- stage V gametocytes suggested a role for PfSRPK1 in regulating transcript splicing and transcript abundance of genes coding for (i) microtubule/cilium morphogenesis-related proteins, (ii) proteins involved in cyclic nucleotide metabolic processes, (iii) proteins involved in signaling such as PfMAP2, (iv) lipid metabolism enzymes, (v) proteins of osmophilic bodies, and (vi) crystalloid components. Our study reveals an essential role for PfSRPK1 in parasite cell morphogenesis and suggests this kinase as a target to prevent malaria transmission from humans to mosquitoes. IMPORTANCE Plasmodium sexual stages represent a critical bottleneck in the parasite life cycle. Gametocytes taken up in an infectious blood meal by female anopheline mosquito get activated to form gametes and fuse to form short-lived zygotes, which transform into ookinetes to infect mosquitoes. In the present study, we demonstrate that PfSRPK1 is important for merozoite formation and critical for male gametogenesis and is involved in transcript homeostasis for numerous parasite genes. Targeting PfSRPK1 and its downstream pathways may reduce parasite replication and help achieve effective malaria transmission-blocking strategies.
Collapse
|
15
|
A Signaling Factor Linked to Toxoplasma gondii Guanylate Cyclase Complex Controls Invasion and Egress during Acute and Chronic Infection. mBio 2022; 13:e0196522. [PMID: 36200777 PMCID: PMC9600588 DOI: 10.1128/mbio.01965-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular apicomplexan parasite that relies on cyclic GMP (cGMP)-dependent signaling to trigger timely egress from host cells in response to extrinsic and intrinsic signals. A guanylate cyclase (GC) complex, conserved across the Apicomplexa, plays a pivotal role in integrating these signals, such as the key lipid mediator phosphatidic acid and changes in pH and ionic composition. This complex is composed of an atypical GC fused to a flippase-like P4-ATPase domain and assembled with the cell division control protein CDC50.1 and a unique GC organizer (UGO). While the dissemination of the fast-replicating tachyzoites responsible for acute infection is well understood, it is less clear if the cyst-forming bradyzoites can disseminate and contribute to cyst burden. Here, we characterized a novel component of the GC complex recently termed signaling linking factor (SLF). Tachyzoites conditionally depleted in SLF are impaired in microneme exocytosis, conoid extrusion, and motility and hence unable to invade and egress. A stage-specific promoter swap strategy allowed the generation of SLF- and GC-deficient bradyzoites that are viable as tachyzoites but show a reduction in cyst burden during the onset of chronic infection. Upon oral infection, SLF-deficient cysts failed to establish infection in mice, suggesting SLF's importance for the natural route of T. gondii infection. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. This life-threatening opportunistic pathogen establishes a chronic infection in human and animals that is resistant to immune attacks and chemotherapeutic intervention. The slow-growing parasites persist in tissue cysts that constitute a predominant source of transmission. Host cell invasion and egress are two critical steps of the parasite lytic cycle that are governed by a guanylate cyclase complex conserved across the Apicomplexa. A signaling linked factor is characterized here as an additional component of the complex that not only is essential during acute infection but also plays a pivotal role during natural oral infection with tissue cysts' dissemination and persistence.
Collapse
|
16
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
17
|
Wunderlich J. Updated List of Transport Proteins in Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926541. [PMID: 35811673 PMCID: PMC9263188 DOI: 10.3389/fcimb.2022.926541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria remains a leading cause of death and disease in many tropical and subtropical regions of the world. Due to the alarming spread of resistance to almost all available antimalarial drugs, novel therapeutic strategies are urgently needed. As the intracellular human malaria parasite Plasmodium falciparum depends entirely on the host to meet its nutrient requirements and the majority of its transmembrane transporters are essential and lack human orthologs, these have often been suggested as potential targets of novel antimalarial drugs. However, membrane proteins are less amenable to proteomic tools compared to soluble parasite proteins, and have thus not been characterised as well. While it had been proposed that P. falciparum had a lower number of transporters (2.5% of its predicted proteome) in comparison to most reference genomes, manual curation of information from various sources led to the identification of 197 known and putative transporter genes, representing almost 4% of all parasite genes, a proportion that is comparable to well-studied metazoan species. This transporter list presented here was compiled by collating data from several databases along with extensive literature searches, and includes parasite-encoded membrane-resident/associated channels, carriers, and pumps that are located within the parasite or exported to the host cell. It provides updated information on the substrates, subcellular localisation, class, predicted essentiality, and the presence or absence of human orthologs of P. falciparum transporters to quickly identify essential proteins without human orthologs for further functional characterisation and potential exploitation as novel drug targets.
Collapse
Affiliation(s)
- Juliane Wunderlich
- Max Planck Institute for Infection Biology, Berlin, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- *Correspondence: Juliane Wunderlich,
| |
Collapse
|
18
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
19
|
Wang PP, Jiang X, Zhu L, Zhou D, Hong M, He L, Chen L, Yao S, Zhao Y, Chen G, Wang C, Cui L, Cao Y, Zhu X. A G-Protein-Coupled Receptor Modulates Gametogenesis via PKG-Mediated Signaling Cascade in Plasmodium berghei. Microbiol Spectr 2022; 10:e0015022. [PMID: 35404079 PMCID: PMC9045217 DOI: 10.1128/spectrum.00150-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Gametogenesis is essential for malaria parasite transmission, but the molecular mechanism of this process remains to be refined. Here, we identified a G-protein-coupled receptor 180 (GPR180) that plays a critical role in signal transduction during gametogenesis in Plasmodium. The P. berghei GPR180 was predominantly expressed in gametocytes and ookinetes and associated with the plasma membrane in female gametes and ookinetes. Knockout of pbgpr180 (Δpbgpr180) had no noticeable effect on blood-stage development but impaired gamete formation and reduced transmission of the parasites to mosquitoes. Transcriptome analysis revealed that a large proportion of the dysregulated genes in the Δpbgpr180 gametocytes had assigned functions in cyclic nucleotide signal transduction. In the Δpbgpr180 gametocytes, the intracellular cGMP level was significantly reduced, and the cytosolic Ca2+ mobilization showed a delay and a reduction in the magnitude during gametocyte activation. These results suggest that PbGPR180 functions upstream of the cGMP-protein kinase G-Ca2+ signaling pathway. In line with this functional prediction, the PbGPR180 protein was found to interact with several transmembrane transporter proteins and the small GTPase Rab6 in activated gametocytes. Allele replacement of pbgpr180 with the P. vivax ortholog pvgpr180 showed equal competence of the transgenic parasite in sexual development, suggesting functional conservation of this gene in Plasmodium spp. Furthermore, an anti-PbGPR180 monoclonal antibody and the anti-PvGPR180 serum possessed robust transmission-blocking activities. These results indicate that GPR180 is involved in signal transduction during gametogenesis in malaria parasites and is a promising target for blocking parasite transmission. IMPORTANCE Environmental changes from humans to mosquitoes activate gametogenesis of the malaria parasite, an obligative process for parasite transmission, but how the signals are relayed remains poorly understood. Here, we show the identification of a Plasmodium G-protein-coupled receptor, GPR180, and the characterization of its function in gametogenesis. In P. berghei, GPR180 is dispensable for asexual development and gametocytogenesis, but its deletion impairs gametogenesis and reduces transmission to mosquitoes. GPR180 appears to function upstream of the cGMP-protein kinase G-Ca2+ signaling pathway and is required for the maximum activity of this pathway. Genetic complementation shows that the GPR180 ortholog from the human malaria parasite P. vivax was fully functional in P. berghei, indicating functional conservation of GPR180 in Plasmodium spp. With predominant expression and membrane association of GPR180 in sexual stages, GPR180 is a promising target for blocking transmission, and antibodies against GPR180 possess robust transmission-blocking activities.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Jiang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Zhou
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mingyang Hong
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Chengqi Wang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Wichers JS, Mesén-Ramírez P, Fuchs G, Yu-Strzelczyk J, Stäcker J, von Thien H, Alder A, Henshall I, Liffner B, Nagel G, Löw C, Wilson D, Spielmann T, Gao S, Gilberger TW, Bachmann A, Strauss J. PMRT1, a Plasmodium-Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. mBio 2022; 13:e0062322. [PMID: 35404116 PMCID: PMC9040750 DOI: 10.1128/mbio.00623-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | | | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jing Yu-Strzelczyk
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Stäcker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Isabelle Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| |
Collapse
|
21
|
Bisio H, Krishnan A, Marq JB, Soldati-Favre D. Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. PLoS Pathog 2022; 18:e1010438. [PMID: 35325010 PMCID: PMC8982854 DOI: 10.1371/journal.ppat.1010438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/05/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis. Biological membranes display diverse functions, including membrane fusion, which are conferred by a defined composition and organization of proteins and lipids. Apicomplexan parasites possess specialized secretory organelles (micronemes), implicated in motility, invasion and egress from host cells. Microneme exocytosis is already known to depend on phosphatidic acid for its fusion with the plasma membrane. Here we identify a type P4-ATPase and its CDC50 chaperone (ATP2B-CDC50.4) that act as a flippase and contribute to the enrichment of phosphatidylserine (PS) in the inner leaflet of the parasite plasma membrane. The disruption of PS asymmetric distribution at the plasma membrane impacts microneme exocytosis. Overall, our results shed light on the importance of membrane homeostasis and lipid composition in controlling microneme secretion.
Collapse
Affiliation(s)
- Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
22
|
5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc Natl Acad Sci U S A 2022; 119:2110713119. [PMID: 35210361 PMCID: PMC8892369 DOI: 10.1073/pnas.2110713119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
5-methylcytosine (m5C) is an important epitranscriptomic modification involved in messenger RNA (mRNA) stability and translation efficiency in various biological processes. However, it remains unclear if m5C modification contributes to the dynamic regulation of the transcriptome during the developmental cycles of Plasmodium parasites. Here, we characterize the landscape of m5C mRNA modifications at single nucleotide resolution in the asexual replication stages and gametocyte sexual stages of rodent (Plasmodium yoelii) and human (Plasmodium falciparum) malaria parasites. While different representations of m5C-modified mRNAs are associated with the different stages, the abundance of the m5C marker is strikingly enhanced in the transcriptomes of gametocytes. Our results show that m5C modifications confer stability to the Plasmodium transcripts and that a Plasmodium ortholog of NSUN2 is a major mRNA m5C methyltransferase in malaria parasites. Upon knockout of P. yoelii nsun2 (pynsun2), marked reductions of m5C modification were observed in a panel of gametocytogenesis-associated transcripts. These reductions correlated with impaired gametocyte production in the knockout rodent malaria parasites. Restoration of the nsun2 gene in the knockout parasites rescued the gametocyte production phenotype as well as m5C modification of the gametocytogenesis-associated transcripts. Together with the mRNA m5C profiles for two species of Plasmodium, our findings demonstrate a major role for NSUN2-mediated m5C modifications in mRNA transcript stability and sexual differentiation in malaria parasites.
Collapse
|
23
|
Abstract
Toxoplasma motility is both activated and suppressed by 3′,5′-cyclic nucleotide signaling. Cyclic GMP (cGMP) signaling through Toxoplasma gondii protein kinase G (TgPKG) activates motility, whereas cyclic AMP (cAMP) signaling through TgPKAc1 inhibits motility. Despite their importance, it remains unclear how cGMP and cAMP levels are maintained in Toxoplasma. Phosphodiesterases (PDEs) are known to inactivate cyclic nucleotides and are highly expanded in the Toxoplasma genome. Here, we analyzed the expression and function of the 18-member TgPDE family in tachyzoites, the virulent life stage of Toxoplasma. We detected the expression of 11 of 18 TgPDEs, confirming prior expression studies. A knockdown screen of the TgPDE family revealed four TgPDEs that contribute to lytic Toxoplasma growth (TgPDE1, TgPDE2, TgPDE5, and TgPDE9). Depletion of TgPDE1 or TgPDE2 caused severe growth defects, prompting further investigation. While TgPDE1 was important for extracellular motility, TgPDE2 was important for host cell invasion, parasite replication, host cell egress, and extracellular motility. TgPDE1 displayed a plasma membrane/cytomembranous distribution, whereas TgPDE2 displayed an endoplasmic reticulum/cytomembranous distribution. Biochemical analysis of TgPDE1 and TgPDE2 purified from Toxoplasma lysates revealed that TgPDE1 hydrolyzes both cGMP and cAMP, whereas TgPDE2 was cAMP specific. Interactome studies of TgPDE1 and TgPDE2 indicated that they do not physically interact with each other or other TgPDEs but may be regulated by kinases and proteases. Our studies have identified TgPDE1 and TgPDE2 as central regulators of tachyzoite cyclic nucleotide levels and enable future studies aimed at determining how these enzymes are regulated and cooperate to control Toxoplasma motility and growth. IMPORTANCE Apicomplexan parasites require motility to actively infect host cells and cause disease. Cyclic nucleotide signaling governs apicomplexan motility, but it is unclear how cyclic nucleotide levels are maintained in these parasites. In search of novel regulators of cyclic nucleotides in the model apicomplexan Toxoplasma, we identified and characterized two catalytically active phosphodiesterases, TgPDE1 and TgPDE2, that are important for Toxoplasma’s virulent tachyzoite life cycle. Enzymes that generate, sense, or degrade cyclic nucleotides make attractive targets for therapies aimed at paralyzing and killing apicomplexan parasites.
Collapse
|
24
|
Esposito Verza A, Miggiano R, Lombardo F, Fiorillo C, Arcà B, Purghé B, Del Grosso E, Galli U, Rizzi M, Rossi F. Biochemical and structural analysis of a cytosolic sulfotransferase of the malaria vector Anopheles gambiae overexpressed in the reproductive tissues. Curr Res Struct Biol 2022; 4:246-255. [PMID: 35941867 PMCID: PMC9356239 DOI: 10.1016/j.crstbi.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
The temporary or permanent chemical modification of biomolecules is a crucial aspect in the physiology of all living species. However, while some modules are well characterised also in insects, others did not receive the same attention. This holds true for sulfo-conjugation that is catalysed by cytosolic sulfotransferases (SULT), a central component of the metabolism of endogenous low molecular weight molecules and xenobiotics. In particular, limited information is available about the functional roles of the mosquito predicted enzymes annotated as SULTs in genomic databases. The herein described research is the first example of a biochemical and structural study of a SULT of a mosquito species, in general, and of the malaria vector Anopheles gambiae in particular. We confirmed that the AGAP001425 transcript displays a peculiar expression pattern that is suggestive of a possible involvement in modulating the mosquito reproductive tissues physiology, a fact that could raise attention on the enzyme as a potential target for insect-containment strategies. The crystal structures of the enzyme in alternative ligand-bound states revealed elements distinguishing AgSULT-001425 from other characterized SULTs, including a peculiar conformational plasticity of a discrete region that shields the catalytic cleft and that could play a main role in the dynamics of the reaction and in the substrate selectivity of the enzyme. Along with further in vitro biochemical studies, our structural investigations could provide a framework for the discovery of small-molecule inhibitors to assess the effect of interfering with AgSULT-001425-mediated catalysis at the organismal level. Mosquito cytosolic sulfotransferases (SULT) are poorly characterized. A SULT-encoding gene is highly transcribed in Anopheles male reproductive system. The corresponding enzyme is a genuine SULT acting on small phenolic molecules. We solved the AgSULT crystal structure in its substrate-free and ligand-bound states. The peculiar features of AgSULT could drive the design of isozyme-specific inhibitors.
Collapse
Affiliation(s)
- Arianna Esposito Verza
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Riccardo Miggiano
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Fabrizio Lombardo
- Sapienza University of Rome, Department of Public Health and Infectious Diseases – Division of Parasitology, Piazzale Aldo Moro, 5, Rome, Italy
| | - Carmine Fiorillo
- Sapienza University of Rome, Department of Public Health and Infectious Diseases – Division of Parasitology, Piazzale Aldo Moro, 5, Rome, Italy
| | - Bruno Arcà
- Sapienza University of Rome, Department of Public Health and Infectious Diseases – Division of Parasitology, Piazzale Aldo Moro, 5, Rome, Italy
| | - Beatrice Purghé
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Erika Del Grosso
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Ubaldina Galli
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Menico Rizzi
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Franca Rossi
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
- Corresponding author. University of Piemonte Orientale DSF - Department of Pharmaceutical Sciences, Largo Donegani, 2 - 28100, Novara, Italy.
| |
Collapse
|
25
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
26
|
Yang Z, Shi Y, Cui H, Yang S, Gao H, Yuan J. A malaria parasite phospholipid flippase safeguards midgut traversal of ookinetes for mosquito transmission. SCIENCE ADVANCES 2021; 7:7/30/eabf6015. [PMID: 34301597 PMCID: PMC8302136 DOI: 10.1126/sciadv.abf6015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Mosquito midgut epithelium traversal is essential for malaria parasite transmission. Phospholipid flippases are eukaryotic type 4 P-type adenosine triphosphatases (P4-ATPases), which, in association with CDC50, translocate phospholipids across the membrane lipid bilayers. In this study, we investigated the function of a putative P4-ATPase, ATP7, from the rodent malaria parasite Plasmodium yoelii Disruption of ATP7 blocks the parasite infection of mosquitoes. ATP7 is localized on the ookinete plasma membrane. While ATP7-depleted ookinetes are capable of invading the midgut, they are eliminated within the epithelial cells by a process independent from the mosquito complement-like immunity. ATP7 colocalizes and interacts with the flippase cofactor CDC50C. Depletion of CDC50C phenocopies ATP7 deficiency. ATP7-depleted ookinetes fail to uptake phosphatidylcholine across the plasma membrane. Ookinete microinjection into the mosquito hemocoel reverses the ATP7 deficiency phenotype. Our study identifies Plasmodium flippase as a mechanism of parasite survival in the midgut epithelium that is required for mosquito transmission.
Collapse
Affiliation(s)
- Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
27
|
Maya-Maldonado K, Cardoso-Jaime V, González-Olvera G, Osorio B, Recio-Tótoro B, Manrique-Saide P, Rodríguez-Sánchez IP, Lanz-Mendoza H, Missirlis F, Hernández-Hernández FDLC. Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Negl Trop Dis 2021; 15:e0009509. [PMID: 34161336 PMCID: PMC8221525 DOI: 10.1371/journal.pntd.0009509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti throughout their life cycle and following a blood meal. Consistent with previous reports, we found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albimanus. Sodium, potassium, iron, and copper are present at higher concentrations during larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe (bs) phenotype counterparts. A similar increase in copper and iron accumulation was also observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and after receiving Plasmodium-infected blood protected from infection and simultaneously affected follicular development in the case of iron chelation. Unexpectedly, the application of the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal chelation on P. berghei infectivity was strain-specific.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Victor Cardoso-Jaime
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Gabriela González-Olvera
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Iram Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | | |
Collapse
|
28
|
Bennink S, Pradel G. Vesicle dynamics during the egress of malaria gametocytes from the red blood cell. Mol Biochem Parasitol 2021; 243:111372. [PMID: 33961918 DOI: 10.1016/j.molbiopara.2021.111372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023]
Abstract
Malaria parasites are obligate intracellular pathogens that live in human red blood cells harbored by a parasitophorous vacuole. The parasites need to exit from the red blood cell to continue life-cycle progression and ensure human-to-mosquito transmission. Two types of blood stages are able to lyse the enveloping red blood cell to mediate egress, the merozoites and the gametocytes. The intraerythrocytic parasites exit the red blood cell via an inside-out mode during which the membrane of the parasitophorous vacuole ruptures prior to the red blood cell membrane. Membrane rupture is initiated by the exocytosis of specialized secretory vesicles following the perception of egress triggers. The molecular mechanisms of red blood cell egress have particularly been studied in malaria gametocytes. Upon activation by external factors, gametocytes successively discharge at least two types of vesicles, the osmiophilic bodies needed to rupture the parasitophorous vacuole membrane and recently identified egress vesicles that are important for the perforation of the erythrocyte membrane. In recent years, important components of the signaling cascades leading to red blood cell egress have been investigated and several proteins of the osmiophilic bodies have been identified. We here report on the newest findings on the egress of gametocytes from the red blood cell. We further focus on the content and function of the egress-related vesicles and discuss the molecular machinery that might drive vesicle discharge.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
29
|
Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021; 35:108992. [PMID: 33882310 PMCID: PMC8116483 DOI: 10.1016/j.celrep.2021.108992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/06/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.
Collapse
Affiliation(s)
- Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xiaofeng Zhou
- Human Phenome Institute, Fudan University, Shanghai 200433, PRC
| | - Yuebiao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC.
| |
Collapse
|
30
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
31
|
Li Z, Cui H, Guan J, Liu C, Yang Z, Yuan J. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes. EMBO Rep 2021; 22:e51660. [PMID: 33665945 PMCID: PMC8097350 DOI: 10.15252/embr.202051660] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
Male and female gametocytes are sexual precursor cells essential for mosquito transmission of malaria parasite. Differentiation of gametocytes into fertile gametes (known as gametogenesis) relies on the gender‐specific transcription program. How the parasites establish distinct repertoires of transcription in the male and female gametocytes remains largely unknown. Here, we report that an Apetala2 family transcription factor AP2‐O3 operates as a transcription repressor in the female gametocytes. AP2‐O3 is specifically expressed in the female gametocytes. AP2‐O3‐deficient parasites produce apparently normal female gametocytes. Nevertheless, these gametocytes fail to differentiate into fully fertile female gametes, leading to developmental arrest in fertilization and early development post‐fertilization. AP2‐O3 disruption causes massive upregulation of transcriptionally dormant male genes and simultaneously downregulation of highly transcribed female genes in the female gametocytes. AP2‐O3 targets a substantial proportion of the male genes by recognizing an 8‐base DNA motif. In addition, the maternal AP2‐O3 is removed after fertilization, which is required for the zygote to ookinete development. Therefore, the global transcriptional repression of the male genes in the female gametocytes is required for safeguarding female‐specific transcriptome and essential for the mosquito transmission of Plasmodium.
Collapse
Affiliation(s)
- Zhenkui Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress. mBio 2021; 12:e02694-20. [PMID: 33500341 PMCID: PMC7858053 DOI: 10.1128/mbio.02694-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.
Collapse
Affiliation(s)
- Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
33
|
da Silva LV, dos Santos ND, de Almeida AK, dos Santos DDE, Santos ACF, França MC, Lima DJP, Lima PR, Goulart MO. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Brochet M, Balestra AC, Brusini L. cGMP homeostasis in malaria parasites-The key to perceiving and integrating environmental changes during transmission to the mosquito. Mol Microbiol 2020; 115:829-838. [PMID: 33112460 DOI: 10.1111/mmi.14633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.
Collapse
Affiliation(s)
- Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|