1
|
Ward JS, Mailman A. Solid-State Photoconversion of a Discrete Mixed Iodine(I) System to a 1D Polymer. Angew Chem Int Ed Engl 2025; 64:e202503763. [PMID: 40167313 DOI: 10.1002/anie.202503763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/02/2025]
Abstract
The first example of a mixed halogen(I) complex (2), containing three distinct iodine(I) moieties ([N-I-N]+, O-I-N, and [O-I-O]-) within the same structure, was synthesized with 4-styrylpyridine (4-stypy) and 3,4,5,6-tetrafluorophthalate as the stabilizing Lewis bases. This complex was observed to be in equilibrium with its respective bis(OIN) complex (1a), with isolated samples of 2 also being found to convert to 1a in solution. Upon UV irradiation of 2, a single-crystal-to-single-crystal [2 + 2] cycloaddition reaction was observed, converting the discrete salt 2 to the 1D polymer 5. Complex 5 retained all the iodine(I) moieties from prior to photoconversion and represents the first example of nondestructive photoconversion of a halogen(I) complex. To facilitate comparisons to 2 and 5, several additional closely related iodine(I) complexes were synthesized, with the iodine(I) complexes characterized by NMR (1H, 1H-15N HMBC) and SCXRD, as well as by Raman and IR spectroscopy for 2, 5, and their close structural analogue 1a.
Collapse
Affiliation(s)
- Jas S Ward
- Department of Chemistry, University of Jyvaskyla, Jyväskylä, 40014, Finland
| | - Aaron Mailman
- Department of Chemistry, University of Jyvaskyla, Jyväskylä, 40014, Finland
| |
Collapse
|
2
|
Kurakula U, Naaz S, Roy S, Khan S, Puthan Peedikakkal AM, Medishetty R, Mir MH. Light-driven structural transformations in isotypical Cd(II) complexes: stereoselectivity and photosalient motion. Chem Commun (Camb) 2025; 61:7494-7497. [PMID: 40297900 DOI: 10.1039/d5cc01076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
This work describes the photoreactivity and photosalient (PS) behavior of five new isotypical Cd(II) coordination complexes [Cd(bz)2(4-nvp)2] (1), [Cd(4-clbz)2(4-nvp)2] (2) and (3), and [Cd(4-brbz)2(4-nvp)2] (4) and (5) [Hbz = benzoic acid, H4-clbz = 4-chlorobenzoic acid, and H4-brbz = 4-bromobenzoic acid]. Complexes 2 and 3 are 4-clbz based polymorphs, while 4 and 5 are 4-brbz based polymorphs. Interestingly, complexes 1, 2 and 4 form head-to-head (HH) dimers, while 3 and 5 form head-to-tail (HT) dimers through photodimerization.
Collapse
Affiliation(s)
- Uma Kurakula
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg, 491001, Chhattisgarh, India.
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Sourav Roy
- Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560 012, India
| | - Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Abdul Malik Puthan Peedikakkal
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Raghavender Medishetty
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg, 491001, Chhattisgarh, India.
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh 491001, India
| | | |
Collapse
|
3
|
Dong QS, Wang N, Young DJ, Hu FL, Mi Y. Bulkiness effect dependent photosalient behaviours of photoactive cadmium coordination polymers. Dalton Trans 2025; 54:6029-6033. [PMID: 40152709 DOI: 10.1039/d5dt00208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Three structurally related cadmium coordination polymers CP1-CP3 {[Cd3(Pebpeb)2(L1)6] (CP1), [Cd3(Pebpeb)2(L2)6] (CP2) and [Cd6(Pebpeb)4(L3)12]·HL3 (CP3)} were constructed from the photoactive alkene ligand Pebpeb (Pebpeb = 4,4'-((1E,1'E)-(5-(pyridin-3-ylethynyl)-1,3-phenylene)bis(ethene-2,1-diyl))dipyridine; HL1 = 3-chlorobenzoic acid; HL2 = 3-nitrobenzoic acid; HL3 = 3-isopropyl benzoic acid) and Cd(II) ions in the presence of different auxiliary carboxylic acids. Different conformations of the functional olefinic ligand Pebpeb were observed in CP1-CP3 despite their similar 1D chain motif. [2 + 2] Solid-state photodimerization occurred when crystals of CP1-CP3 were irradiated with UV light (365 nm) and each displayed different photosalient (PS) responses attributed to the different bulkiness of the auxiliary carboxylic acids employed. A simple photoactuating device was prepared using a CP1-PVA (PVA = Polyvinyl Alcohol) composite.
Collapse
Affiliation(s)
- Qing-Shu Dong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - Ning Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - David James Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fei-Long Hu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - Yan Mi
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
4
|
Lu Y, Lei Y, Cheng D, Long L, He X, Liu C, Wen H, Liu S, Zhu S. A Luminescent Proton Conductor Based on Dy 2 SMM. Molecules 2025; 30:1086. [PMID: 40076310 PMCID: PMC11901984 DOI: 10.3390/molecules30051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/14/2025] Open
Abstract
Multifunctional materials bearing photoluminescence, single-molecule magnet (SMM) behavior, and proton conduction have been particularly attractive for various promising applications in optics, molecular spintronics, high-density data storage, and fuel cells. However, these kinds of multifunctional systems have rarely been reported. Herein, a DyIII-SMM together with luminescent and proton-conducting properties, [Dy2(1-tza)4(phen)4]∙(ClO4)2∙(H2O)2 (1, 1-tza = 2-(1H-tetrazol-1-yl)acetic, phen = 1,10-phenanthroline), was prepared and structurally characterized. Complex 1 features a dinuclear structure bridged by carboxylate oxygen atoms of the 1-tza- ligands, and its supramolecular network contains a 1D stacking channel. Complex 1 exhibits strong room-temperature DyIII characteristic emissions and SMM behaviors. In addition, complex 1 shows a moderate proton conductivity with 4.00 × 10-6 S cm-1 at 37 °C and 100% R.H. (R.H. = Relative Humidity), which may be ascribed to the 1D-extended H-bonds in the 1D stacking channel of 1.
Collapse
Affiliation(s)
- Yingbing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (Y.L.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (Y.L.)
| | - Danpeng Cheng
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (Y.L.)
| | - Lu Long
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (Y.L.)
| | - Xiaoxuan He
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (Y.L.)
| | - Caiming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Herui Wen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Suijun Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuidong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (Y.L.)
| |
Collapse
|
5
|
Khan S, Naaz S, Ahmad S, Gomila RM, Chanthapally A, Frontera A, Mir MH. Impact of halogen⋯halogen interaction on the mechanical motion of a 3D Pb(II) coordination polymer of elusive topology. Chem Commun (Camb) 2024; 60:10370-10373. [PMID: 39219536 DOI: 10.1039/d4cc03746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we report the synthesis of a Pb(II) based three-dimensional coordination polymer (3D CP), [Pb(DCTP)]n (1) [H2DCTP = 2,5-dichloroterephthalic acid] with an unprecedented topology, which exhibits a photomechanical effect wherein crystals show jumping upon UV irradiation. The Pb(II) CP forms a type II Cl⋯Cl interaction, which weakens further upon UV irradiation to resolve the anisotropic mechanical strain. The work presented here could be a beacon to the nascent field of photoactuating smart materials.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
| | - Shamim Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | | | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | | |
Collapse
|
6
|
Wu JW, Qin Z, Dong QS, Young DJ, Hu FL, Mi Y. Photomechanical responses of coordination polymers regulated by precise organization of the photoactive centers. Chem Commun (Camb) 2024; 60:9978-9981. [PMID: 39172472 DOI: 10.1039/d4cc03471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Three photoactive Cd(II) coordination polymers (CPs), [Cd (Fsbpe)(DBBA)2]·2DMF (CP1), [Cd(Fepbpe)(DBBA)2]·2DMF (CP2) and [Cd(Fsbpeb)(DBBA)2] (CP3) (DBBA = 3,5-dibromobenzoic acid, DMF = dimethyl formamide) with similar 1D chain motifs exhibited completely different photosalient behaviors (PS) in response to UV light. Mechanical motion was triggered by [2+2] photocycloaddition and regulated by positioning of the photoactive alkene centers relative to the crystal axis. This solid-state reaction was reversed by heating and photomechanical behaviour was repeated over several cycles. A simple photoactuating device was prepared using a CP3-PVA composite.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - Zhen Qin
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - Qing-Shu Dong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - David James Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fei-Long Hu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - Yan Mi
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
7
|
Khan S, Mir MH. Photomechanical properties in metal-organic crystals. Chem Commun (Camb) 2024; 60:7555-7565. [PMID: 38953709 DOI: 10.1039/d4cc02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The emergence of materials that can effectively convert photon energy (light) into motion (mechanical work) and change their shapes on command is of great interest for their potential in the fabrication of devices (powered by light) that will revolutionize the technologies of optical actuators, smart medical devices, soft robotics, artificial muscles and flexible electronics. Recently, metal-organic crystals have emerged as desirable smart hybrid materials that can hop, split and jump. Thus, their incorporation into polymer host objects can control movement from molecules to millimetres, opening up a new world of light-switching smart materials. This feature article briefly summarizes the recent part of the fast-growing literature on photomechanical properties in metal-organic crystals, such as coordination compounds, coordination polymers (CPs), and metal-organic frameworks (MOFs). The article highlights the contributions of our group along with others in this area and aims to provide a consolidated idea of the engineering strategies and structure-property relationships of these hybrid materials for such rare phenomena with diverse potential applications.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France.
| | | |
Collapse
|
8
|
Campillo-Alvarado G. Chromic and dynamic: soft crystals of platinum(II) complexes pave the way for multi-responsive materials. IUCRJ 2024; 11:436-437. [PMID: 38958011 PMCID: PMC11220872 DOI: 10.1107/s2052252524006055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The development of smart, stimuli-responsive materials has received increased attention in the past decade for their applications as sensing technologies. This commentary discusses a timely topical review by Kato [(2024). IUCrJ, 11, 442-452] on the fabrication of multi-stimuli responsive crystals comprised of luminescent platinum(II) complexes, which exhibit intriguing chromic phenomena in response to stimuli.
Collapse
|
9
|
Brown S, Warren MR, Kubicki DJ, Fitzpatrick A, Pike SD. Photoinitiated Single-Crystal to Single-Crystal Redox Transformations of Titanium-Oxo Clusters. J Am Chem Soc 2024; 146:17325-17333. [PMID: 38865257 PMCID: PMC11212046 DOI: 10.1021/jacs.4c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Titanium-oxo clusters can undergo photochemical reactions under UV light, resulting in the reduction of the titanium-oxo core and oxidation of surface ligands. This is an important step in photocatalytic processes in light-absorbing Ti/O-based clusters, metal-organic frameworks, and (nano)material surfaces; however, studying the direct outcome of this photochemical process is challenging due to the fragility of the immediate photoproducts. In this report, titanium-oxo clusters [TiO(OiPr)(L)]n (n = 4, L = O2PPh2, or n = 6, L = O2CCH2tBu) undergo a two-electron photoredox reaction in the single-crystal state via an irreversible single-crystal to single-crystal (SC-SC) transformation initiated by a UV laser. The process is monitored by single crystal X-ray diffraction revealing the photoreduction of the cluster with coproduction of an (oxidized) acetone ligand, which is retained in the structure as a ligand to Ti(3+). The results demonstrate that photochemistry of inorganic molecules can be studied in the single crystal phase, allowing characterization of photoproducts which are unstable in the solution phase.
Collapse
Affiliation(s)
- Stephen
E. Brown
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Mark R. Warren
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - Ann Fitzpatrick
- RAL
Space, Harwell Science & Innovation Campus, Didcot OX11 0QX, U.K.
| | - Sebastian D. Pike
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
10
|
Stroek W, Keilwerth M, Malaspina LA, Grabowsky S, Meyer K, Albrecht M. Deciphering Iron-Catalyzed C-H Amination with Organic Azides: N 2 Cleavage from a Stable Organoazide Complex. Chemistry 2024; 30:e202303410. [PMID: 37916523 DOI: 10.1002/chem.202303410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Catalytic C-N bond formation by direct activation of C-H bonds offers wide synthetic potential. En route to C-H amination, complexes with organic azides are critical precursors towards the reactive nitrene intermediate. Despite their relevance, α-N coordinated organoazide complexes are scarce in general, and elusive with iron, although iron complexes are by far the most active catalysts for C-H amination with organoazides. Herein, we report the synthesis of a stable iron α-N coordinated organoazide complex from [Fe(N(SiMe3 )2 )2 ] and AdN3 (Ad=1-adamantyl) and its crystallographic, IR, NMR and zero-field 57 Fe Mössbauer spectroscopic characterization. These analyses revealed that the organoazide is in fast equilibrium between the free and coordinated state (Keq =62). Photo-crystallography experiments showed gradual dissociation of N2 , which imparted an Fe-N bond shortening and correspond to structural snapshots of the formation of an iron imido/nitrene complex. Reactivity of the organoazide complex in solution showed complete loss of N2 , and subsequent formation of a C-H aminated product via nitrene insertion into a C-H bond of the N(SiMe3 )2 ligand. Monitoring this reaction by 1 H NMR spectroscopy indicates the transient formation of the imido/nitrene intermediate, which was supported by Mössbauer spectroscopy in frozen solution.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Lorraine A Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Khan S, Das P, Naaz S, Brandão P, Choudhury A, Medishetty R, Ray PP, Mir MH. A dual-functional 2D coordination polymer exhibiting photomechanical and electrically conductive behaviours. Dalton Trans 2023; 52:17934-17941. [PMID: 37982190 DOI: 10.1039/d3dt02728g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A photoactive two-dimensional coordination polymer (2D CP) [Zn2(4-spy)2(bdc)2]n (1) [4-spy = 4-styrylpyridine and H2bdc = 1,4-benzendicarboxylic acid] undergoes a photochemical [2 + 2] cycloaddition reaction upon UV irradiation. Interestingly, the crystals of 1 show different photomechanical effects, such as jumping, swelling, and splitting, during UV irradiation. In addition, the CP was employed for conductivity measurements before and after UV irradiation via current density-voltage characteristics and impedance spectroscopy, which suggest that they are semiconducting in nature and can be used as Schottky diodes. Thus, this work demonstrates the potential dual applications of a 2D CP based on photosalient and conductivity properties.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Pubali Das
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aditya Choudhury
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | | | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | | |
Collapse
|
12
|
Kaeosamut N, Chaichana P, Watwiangkham A, Suthirakun S, Wannapaiboon S, Sammawipawekul N, Chimupala Y, Yimklan S. Synergistic Induction of Solvent and Ligand-Substitution in Single-Crystal to Single-Crystal Transformations toward a MOF with Photocatalytic Dye Degradation. Inorg Chem 2023. [PMID: 38011001 DOI: 10.1021/acs.inorgchem.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
External-stimuli responsiveness as found in natural organisms and smart materials is attractive for functional materials scientists who attempt to design and imitate fascinating behavior into their materials. Herein, we report a couple of new solvent-responsive isostructural two-dimensional cationic metal-organic frameworks (MOFs) of Mn(II) (1a) and Zn(II) (2a) that undergo unprecedented single-crystal to single-crystal (SCSC) transformation toward the corresponding isostructural three-dimensional MOFs of Mn(II) (1b) and Zn(II) (2b). The 2D MOFs 1a and 2a have been effortlessly and rapidly synthesized via the microwave-heating technique. The SCSC transformations are synergistically induced by solvent and ligand-substitution reactions and able to be triggered by water, methanol, ethanol, and n-propanol. Time-dependent SCSC transformations were studied by in situ X-ray diffraction. Investigations on photodegradation of methyl orange showed that Zn-MOF 2b has higher efficiency than Mn-MOF 1b under UV-C irradiation at 300 min, 94.27%, and 21.91%, respectively. The influence of charge on the dye molecules, heterogeneity of the catalysis, and •OH radical-scavenging test was studied. First-principles computations suggest that the high photocatalytic activity of 2b may be attributed to its suitable band-edge position for redox reactions.
Collapse
Affiliation(s)
- Nippich Kaeosamut
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Pemika Chaichana
- Research Laboratory of Pollution Treatment and Environmental Materials, Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Athis Watwiangkham
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Nakhon Ratchasima 30000, Thailand
| | - Nithiwat Sammawipawekul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yothin Chimupala
- Research Laboratory of Pollution Treatment and Environmental Materials, Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
13
|
Zhou P, Nazari Haghighi Pashaki M, Frey HM, Hauser A, Decurtins S, Cannizzo A, Feurer T, Häner R, Aschauer U, Liu SX. Photoinduced asymmetric charge trapping in a symmetric tetraazapyrene-fused bis(tetrathiafulvalene) conjugate. Chem Sci 2023; 14:12715-12722. [PMID: 38020370 PMCID: PMC10646961 DOI: 10.1039/d3sc03184e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In fused donor-acceptor (D-A) ensembles, rapid charge recombination often occurs because the D and A units are spatially close and strongly coupled. To the best of our knowledge, a long-lived charge separated (CS) state is still elusive in such systems. The results presented here show that symmetric annulation of two tetrathiafulvalene (TTF) donors to a central tetraazapyrene (TAP) acceptor via two quinoxaline units leads to a CS state lifetime of a few ns. A detailed study of the electronic interactions between TTF and TAP units in the ground and excited states was performed and compared with the asymmetric counterpart by cyclic voltammetry, optical absorption and ultrafast transient absorption spectroscopy. The results demonstrate that the photoinduced asymmetric charge trapping between two TTFs significantly stabilizes the CS state, which is also verified theoretically.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | | | - Hans-Martin Frey
- Institute of Applied Physics, University of Bern Sidlerstrasse 5 CH-3012 Bern Switzerland
| | - Andreas Hauser
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern Sidlerstrasse 5 CH-3012 Bern Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern Sidlerstrasse 5 CH-3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Ulrich Aschauer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- Department of Chemistry and Physics of Materials, University of Salzburg Jakob-Haringer-Straße 2A 5020 Salzburg Austria
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
14
|
Kim S, An J, Choi H, Jung SH, Lee SS, Park IH. Construction of Photoreactive Chiral Metal-Organic Frameworks and Their [2 + 2] Photocycloaddition Reactions. Inorg Chem 2023; 62:13173-13178. [PMID: 37552800 DOI: 10.1021/acs.inorgchem.3c02349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chiral metal-organic frameworks (CMOFs) and solid-state [2 + 2] photocyclization have been explored as independent areas in crystal engineering. We herein report the photoreactive CMOFs that undergo a [2 + 2] photocycloaddition reaction for the first time. Through the incorporation of a dipyridyl olefin ligand, 1,4-bis[2-(4-pyridyl)ethenyl]benzene, and d-camphoric acid or l-camphoric acid, we constructed a pair of homochiral Zn(II) CMOFs (d-1 or l-1) with a two-dimensional sql topology via a two-step procedure to avoid racemization. Both d-1 and l-1 were photoinert due to the large olefin bond separation. The removal of the solvent molecules between layers enabled them (d-1a and l-1a) to undergo [2 + 2] cycloaddition reactions; d-1a is more reactive (70%) than l-1a (20%) probably due to proper desolvation-induced rearrangement. The photoluminescence properties are also discussed. This work presents a new perspective on photoreactive homochiral network materials with diverse topologies and applications.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Jaewook An
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Heekyoung Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
15
|
Muralidhar JR, Salikolimi K, Adachi K, Hashizume D, Kodama K, Hirose T, Ito Y, Kawamoto M. Chemical Storage of Ammonia through Dynamic Structural Transformation of a Hybrid Perovskite Compound. J Am Chem Soc 2023; 145:16973-16977. [PMID: 37427843 DOI: 10.1021/jacs.3c04181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Toward renewable energy for global leveling, compounds that can store ammonia (NH3), a carbon-free energy carrier of hydrogen, will be of great value. Here, we report an organic-inorganic halide perovskite compound that can chemically store NH3 through dynamic structural transformation. Upon NH3 uptake, a chemical structure change occurs from a one-dimensional columnar structure to a two-dimensional layered structure by addition reaction. NH3 uptake is estimated to be 10.2 mmol g-1 at 1 bar and 25 °C. In addition, NH3 extraction can be performed by a condensation reaction at 50 °C under vacuum. X-ray diffraction analysis reveals that reversible NH3 uptake/extraction originates from a cation/anion exchange reaction. This structural transformation shows the potential to integrate efficient uptake and extraction in a hybrid perovskite compound through chemical reaction. These findings will pave the way for further exploration of dynamic, reversible, and functionally useful compounds for chemical storage of NH3.
Collapse
Affiliation(s)
- Jyorthana Rajappa Muralidhar
- RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
| | | | - Koichi Kodama
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takuji Hirose
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masuki Kawamoto
- RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
17
|
Bhandary S, Beliš M, Kaczmarek AM, Van Hecke K. Photomechanical Motions in Organoboron-Based Phosphorescent Molecular Crystals Driven by a Crystal-State [2 + 2] Cycloaddition Reaction. J Am Chem Soc 2022; 144:22051-22058. [PMID: 36417296 DOI: 10.1021/jacs.2c09285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photoluminescent molecular crystals integrated with the ability to transform light energy into macroscopic mechanical motions are a promising choice of materials for both actuating and photonic devices. However, such dynamic photomechanical effects, based on molecular organoboron compounds as well as phosphorescent crystalline materials, are not yet known. Here we present an intriguing example of photomechanical molecular single crystals of a newly synthesized organoboron containing Lewis acid-base molecular adduct (BN1, substituted triphenylboroxine and 1,2-di(4-pyridyl)ethylene) having a capsule shape molecular geometry. The single crystals of BN1 under UV light exhibit controllable rapid bending-shape recovery, delamination, violent splitting-jumping, and expanding features. The detailed structural investigation by single-crystal X-ray diffraction and 1H NMR spectroscopy reveals that the photosalient behavior of the BN1 single crystals is driven by a crystal-to-crystal [2 + 2] cycloaddition reaction, supported by four donor-acceptor type B←N bonds. The instant photomechanical reaction in the BN1 crystals occurs under UV on account of sudden release of stress associated with the strained molecular geometry, significant solid-state molecular movements (supramolecular change), and cleavage of half intermolecular B←N linkages to result in a complete photodimerized single-crystalline product via the existence of two other intermediate photoproducts. In addition, the BN1 crystals display short-lived room temperature phosphorescence, and the photodynamic events are accompanied by the enhancement of their phosphorescence intensity to yield the photoproduct. Interestingly, the molecular crystals of the final photoproduct polymerize at ambient conditions when recrystallized from the solution forming a 2D supramolecular crystalline polymer stabilized by the retention of all B←N coordination modes.
Collapse
Affiliation(s)
- Subhrajyoti Bhandary
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, B-9000 Ghent, Belgium
| | - Marek Beliš
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, B-9000 Ghent, Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, B-9000 Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, B-9000 Ghent, Belgium
| |
Collapse
|
18
|
Li NY, Liu B, Zhang ZW, Yao H, Zhang LL, Ma J, Liu LL, Liu D. Reversible Single-Crystal-to-Single-Crystal Transformation of a Coordination Polymer through Solar-Switchable Cycloaddition and Cycloreversion Reaction. Inorg Chem 2022; 61:18950-18956. [DOI: 10.1021/acs.inorgchem.2c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ni-Ya Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Bo Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Zhao-Wei Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Han Yao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Li-Li Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Jian Ma
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Lei-Lei Liu
- School of Environment and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, P. R. China
| | - Dong Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| |
Collapse
|
19
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
20
|
Murase R, Hudson TA, Aldershof TS, Nguyen KV, Gluschke JG, Kenny EP, Zhou X, Wang T, van Koeverden MP, Powell BJ, Micolich AP, Abrahams BF, D'Alessandro DM. Multi-Redox Responsive Behavior in a Mixed-Valence Semiconducting Framework Based on Bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane. J Am Chem Soc 2022; 144:13242-13253. [PMID: 35830247 DOI: 10.1021/jacs.2c03794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The two-dimensional (2-D) framework, [Cu(BTDAT)(MeOH)] {BTDAT = bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane}, possesses remarkable multi-step redox properties, with electrochemical studies revealing six quasi-stable redox states in the solid state. In situ electron paramagnetic resonance and visible-near infrared spectroelectrochemistry elucidated the mechanism for these multi-step redox processes, as well as the optical and electrochromic behavior of the BTDAT ligand and framework. In studying the structural, spectroscopic, and electronic properties of [Cu(BTDAT)(MeOH)], the as-synthesized framework was found to exist in a mixed-valence state with thermally-activated semiconducting behavior. In addition to pressed pellet conductivity measurements, single-crystal conductivity measurements using a pre-patterned polydimethylsiloxane layer on a silicon substrate provide important insights into the anisotropic conduction pathways. As an avenue to further understand the electronic state of [Cu(BTDAT)(MeOH)], computational band structure calculations predicted delocalized electronic transport in the framework. On the balance of probabilities, we propose that [Cu(BTDAT)(MeOH)] is a Mott insulator (i.e., electron correlations cause a metal-insulator transition). This implies that the conductivity is incoherent. However, we are unable to distinguish between activated transport due to Coulombically bound electron-hole pairs and a hopping mechanism. The combined electrochemical, electronic, and optical properties of [Cu(BTDAT)(MeOH)] shine a new light on the experimental and theoretical challenges for electroactive framework materials, which are implicated as the basis of advanced optoelectronic and electrochromic devices.
Collapse
Affiliation(s)
- Ryuichi Murase
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Timothy A Hudson
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas S Aldershof
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ky V Nguyen
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jan G Gluschke
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Elise P Kenny
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tiesheng Wang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam P Micolich
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Brendan F Abrahams
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Noreen S, Sumrra SH. Correlating the charge transfer efficiency of metallic sulfa-isatins to design efficient NLO materials with better drug designs. Biometals 2022; 35:519-548. [PMID: 35352236 DOI: 10.1007/s10534-022-00385-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
The present study presents synthesis, characterization and first principle studies on metal chelates, (1-12), of sulfonamide-isatin reacted ligands (S1-S3). All the products were evaluated by various physical and spectral (UV, IR, NMR, MS) means. The octahedral geometry for Co+2, Ni+2 and Zn+2, while square planner geometry for Cu+2 chelates were confirmed by their spectroscopic and magnetic data. Their physical chemistry investigation show the ability of aromatic rings to stabilize sulfonamide rings across NH-π interactions at their optimized geometries. The nonlinear optical response for all the compounds disclosed that the z-axis has the most contributions. An efficient electron injection and hole studies for Au and Al electrodes having the energies of - 0.1-3.1 and 0.0-11.8 eV respectively were noted. Their bioactive character was shown by global reactivity calculated from FMO energy gaps. The enzyme inhibitory results were found to be 45-61% and IC50 = 102-122 µL, for compound (4), (10), (8), (5) and (12) against the amylase, protease, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) respectively The antibacterial findings showed significant action having 11-17 mm for (2), (7) and (10) for bacterial species, Escherichia coli and Micrococcus luteus. The DPPH and ferric reducing power assay was used to evaluate the antioxidant capacity with 49.0 ± 0.09-66.2 ± 0.08% and IC50 = 102.3-122.4 µL range. In comparison to ligands, the results showed that all metal chelates had higher bioactivity. The chelation was the primary cause of their increased bioactivity. These findings suggested that such metal-based compounds might be used as antimicrobial, and antioxidant options in future to cope drug resistance.
Collapse
Affiliation(s)
- Sadaf Noreen
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan.
| |
Collapse
|
22
|
Wu JW, Long BF, Wang MF, Young DJ, Hu FL, Mi Y, Lang JP. Tunable photosalient behaviours within coordination polymers via functional molecular prearrangements. Chem Commun (Camb) 2022; 58:2674-2677. [PMID: 35107453 DOI: 10.1039/d1cc07139d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four Cd(II)/diene coordination polymers (CPs) with similar 1D chain motifs exhibit different photosalient (PS) behaviours in response to UV light. The [2+2] photoreaction between the CC groups within these CPs results in diverse PS behaviours of their crystals with different CC pair arrangements. The interesting PS behaviours of these CPs can be applied in design and fabrication of advanced photoactuating materials.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.
| | - Bing-Fan Long
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.
| | - Meng-Fan Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China. .,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Fei-Long Hu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.
| | - Yan Mi
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
23
|
Chen X, Xie H, Lorenzo ER, Zeman CJ, Qi Y, Syed ZH, Stone AEBS, Wang Y, Goswami S, Li P, Islamoglu T, Weiss EA, Hupp JT, Schatz GC, Wasielewski MR, Farha OK. Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. J Am Chem Soc 2022; 144:2685-2693. [DOI: 10.1021/jacs.1c11417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emmaline R. Lorenzo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles J. Zeman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron E. B. S. Stone
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Li NY, Guo XY, Liu LL, Ma J, Liu D. Topological structural transformation of a two-dimensional coordination polymer via single-crystal to single-crystal photoreaction. Dalton Trans 2022; 51:17235-17240. [DOI: 10.1039/d2dt03063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional coordination polymer can carry out photoinduced C–C coupling reaction through single-crystal to single-crystal transformation and exhibit photocontrolled fluorescence.
Collapse
Affiliation(s)
- Ni-Ya Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Xin-Yu Guo
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Lei-Lei Liu
- School of Environment and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, Shandong, P. R. China
| | - Jian Ma
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Dong Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| |
Collapse
|
25
|
Khan S, Naaz S, Ekka A, Dutta B, Roy S, Medishetty R, Mir MH. Photomechanical effect in Zn( ii) and Cd( ii) 1D coordination polymers: photosalient to non-salient behaviour. Chem Commun (Camb) 2022; 58:12102-12105. [DOI: 10.1039/d2cc04135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Zn(ii)/Cd(ii) 1D coordination polymers undergo [2+2] photodimerization, wherein Zn-CP shows mechanical motion and generates a free cyclobutane ligand, while Cd-CP does not.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Akansha Ekka
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh 492015, India
| | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
26
|
Hu JJ, Li YG, Wen HR, Liu SJ, Peng Y, Liu CM. A family of lanthanide metal-organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity. Dalton Trans 2021; 50:14714-14723. [PMID: 34586106 DOI: 10.1039/d1dt01851e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the redox-active tetrathiafulvalene ligand and lanthanide ions is an important approach to prepare photo-electro-magnetic multifunctional metal-organic framework materials. A series of isostructural lanthanide metal-organic frameworks (Ln-MOFs) based on the in situ generated tetrathiafulvalene dicarboxylate (TTF-DC) ligand, {[Ln4(TTF-DC)6(DMF)4(H2O)2]·4DMF}n (Ln = Gd (1-Gd), Tb (1-Tb), Dy (1-Dy) and Er (1-Er)), was synthesized and characterized. These Ln-MOFs display tunable redox-active properties and semiconductor performance, and their electronic conductivities have been significantly improved after oxidation. All MOFs except 2-Tb exhibit slow magnetic relaxation under an applied dc field. 1-Dy and 2-Dy show field-induced single-molecule magnet (SMM) behaviour with energy barriers (Ueff) of 30.77 K (τ0 = 5.23 × 10-8) and 26.41 K (1.04 × 10-8 s), respectively.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Yu-Guang Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
27
|
Gordillo MA, Benavides PA, Spalding K, Saha S. A New Electrically Conducting Metal-Organic Framework Featuring U-Shaped cis-Dipyridyl Tetrathiafulvalene Ligands. Front Chem 2021; 9:726544. [PMID: 34660528 PMCID: PMC8517321 DOI: 10.3389/fchem.2021.726544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis-dipyridyl-tetrathiafulvalene (Z-DPTTF) ligand. While TCPB formed Zn2(COO)4 secondary building units (SBUs), instead of connecting the Zn2-paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z-DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine-MOF architecture. The pristine sine-MOF displayed an intrinsic electrical conductivity of 1 × 10−8 S/m, which surged to 5 × 10−7 S/m after I2 doping due to partial oxidation of electron rich Z-DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I2-treated sine-MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways.
Collapse
Affiliation(s)
- Monica A Gordillo
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Paola A Benavides
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | | - Sourav Saha
- Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
28
|
Khan S, Akhtaruzzaman, Medishetty R, Ekka A, Mir MH. Mechanical Motion in Crystals Triggered by Solid State Photochemical [2+2] Cycloaddition Reaction. Chem Asian J 2021; 16:2806-2816. [PMID: 34355513 DOI: 10.1002/asia.202100807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Some special crystals respond to light by jumping, scattering or bursting just like popping of popcorn kernels on a hot surface. This rare phenomenon is called the photosalient (PS) effect. Molecular level control over the arrangement of light-responsive molecules in microscopic crystals for macroscale deformation or mechanical motion offers the possibility of using light to control smart material structures across the length scales. Photochemical [2+2] cycloaddition has recently emerged as a promising route to obtain photoswitchable structures and a wide variety of frameworks, but such reaction in crystals leading to macroscopic mechanical motion is relatively less explored. Study of chemistry of such novel soft crystals for the generation of smart materials is an imperative task. This minireview highlights recent advances in solid-state [2+2] cycloaddition in crystals to induce macroscale mechanical motion and thereby transduction of light into kinetic energy.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 156, India
| | - Akhtaruzzaman
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 156, India
| | | | - Akansha Ekka
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | | |
Collapse
|
29
|
Tian D, Wu TT, Liu YQ, Li N. Double-Walled Metal-Organic Framework with Regulable Pore Environments for Efficient Removal of Radioactive Cesium Cations. Inorg Chem 2021; 60:12067-12074. [PMID: 34346224 DOI: 10.1021/acs.inorgchem.1c01260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An anion double-walled metal-organic framework [Co2Li4(BTC)3(DMF)(H2O)·(CH3)2N]n (1) based on heterobimetallic Li+ and Co2+ ions was successfully constructed. Utilizing selective destruction and formation of Co-O/Co-N bonds in the metal chains, [Co2Li4(BTC)3(py)(H2O)·(CH3)2N]n (2) and [Co2Li4(BTC)3(pi)(H2O)·(CH3)2N]n (3) with the same skeleton but distinct pore structures can be surprisingly obtained. Additionally, compounds 2 and 3 can be transformed into [Co2Li4(BTC)3(H2O)2·(CH3)2N]n (4) by soaking them in an ethanol solution. This kind of single-crystal-to-single-crystal transformation successfully regulates the pore structure of MOFs and enriches the diversity of the pore wall on the premise of retaining the original framework. Most impressively, compound 1 shows high adsorption capacity for Cs+ cations and is a good candidate to selectively accommodate Cs+ among the common alkali metal ions, which is future identified by single-crystal X-ray diffraction and inductively coupled plasma mass spectrometry (ICP-MS) test. Meanwhile, compound 1 can selectively adsorb methylene blue (MB) and crystal violet (CV) molecules over Rhodamine B (RMB).
Collapse
Affiliation(s)
- Dan Tian
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tian-Tian Wu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yan-Qing Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
30
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Zou Q, Bao SS, Huang XD, Wen GH, Jia JG, Wu LQ, Zheng LM. Cobalt(II)-dianthracene Frameworks: Assembly, Exfoliation and Properties. Chem Asian J 2021; 16:1456-1465. [PMID: 33861508 DOI: 10.1002/asia.202100283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks containing responsive organic linkers are attractive for potential applications in sensors and molecular devices. Herein we report three cobalt(II) phosphonates incorporating responsive dianthracene linkers, namely, Co2 (amp2 H2 )2 (H2 O)4 ⋅ 6H2 O (MDAF-1), Co2 (amp2 )(H2 O)4 ⋅ 2H2 O (MDAF-2) and Co(amp2 H2 ) ⋅ 2H2 O ⋅ 0.5DMF (MDAF-3), where amp2 H4 is pre-photodimerized 9-anthrylmethylphosphonic acid. MDAF-1 shows a layer structure in which dinuclear Co2 (PO3 H)2 units are inter-connected by dianthracene ligands. In MDAF-2 and MDAF-3, inorganic chains of corner-sharing {CoO4 } (or {CoO6 }) and {PO3 C} are cross-linked by dianthracene ligands into 3D frameworks. All compounds underwent thermo-induced phase transitions, first the de-solvation and then the de-dimerization of dianthracene (as well as the release of the remaining solvent molecules for MDAF-2 and -3), associated with magnetic changes. MDAF-1 can be exfoliated into single-layer nanosheets in water which show light-triggered luminescent changes.
Collapse
Affiliation(s)
- Qian Zou
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lan-Qing Wu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
32
|
Zhang XY, Zhao SM, Li R, Xu ZH, Wang MY, Jiang YF, Chen K, Zhao Y, Sun WY. A single-crystal to single-crystal transition from a 7-fold interpenetrated coordination polymer to a non-interpenetrated one by photochemical [2 + 2] polymerization and their sensing properties. Dalton Trans 2021; 50:4408-4414. [PMID: 33704289 DOI: 10.1039/d0dt04428h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two complexes, namely [Zn(bpeb)(sda)] (1) and [Zn(poly-bpeb)(sda)] (2), were synthesized by an organic ligand with an extensively conjugated system, bpeb = 1,4-bis[2-(3-pyridyl) vinyl]-benzene, H2sda = sulfonyldibenzoic acid and d10 metal centers Zn2+. Structural analysis revealed that compound 1 was nonporous and possessed 7-fold interpenetrated three-dimensional (3D) frameworks constructed from one-dimensional (1D) Zn-bpeb and Zn-sda chains. Interestingly, due to the short distance between the vinyl groups from two neighboring bpeb ligands, compound 1 could undergo a photochemical [2 + 2] polymerization reaction to generate 2 in a single-crystal to single-crystal (SCSC) manner under the irritation of UV. Moreover, the organic polymer in 2 could be depolymerized by heating to realize the reversible transformation from 2 to 1. Furthermore, both compounds 1 and 2 could be used as fluorescent sensors for 2,4,6-trinitrophenol (TNP) with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Song WC, Geng CC, Li SY, Liang L, Wang XG, Yang EC, Zhao XJ. Photo-oligomerization by shifting the coordination site in a luminescent coordination polymer. Chem Commun (Camb) 2021; 57:2148-2151. [PMID: 33522525 DOI: 10.1039/d0cc08021g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A layered coordination polymer (CP) with the fine-tuned alignment of four diolefinic ligands has been designed by shifting the coordination site of the ligand. The trimeric and tetrameric cyclobutane derivatives were reversely achieved by the photoinitiated [2+2] cycloaddition of the CP due to the favorable Schmidt's distance. More interestingly, a dynamic fluorescence shift was observed during the photo-oligomerization and heat-cycloreversion of the CP system.
Collapse
Affiliation(s)
- Wei-Chao Song
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Chen-Chen Geng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Sheng-Yang Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Ling Liang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Xiu-Guang Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - En-Cui Yang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Xiao-Jun Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
34
|
Ding B, Chan B, Proschogo N, Solomon MB, Kepert CJ, D'Alessandro DM. A cofacial metal-organic framework based photocathode for carbon dioxide reduction. Chem Sci 2021; 12:3608-3614. [PMID: 34163634 PMCID: PMC8179387 DOI: 10.1039/d0sc04691d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/02/2021] [Indexed: 11/21/2022] Open
Abstract
Innovative and robust photosensitisation materials play a cardinal role in advancing the combined effort towards efficient solar energy harvesting. Here, we demonstrate the photocathode functionality of a Metal-Organic Framework (MOF) featuring cofacial pairs of photo- and electro-active 1,4,5,8-naphthalenediimide (NDI) ligands, which was successfully applied to markedly reduce the overpotential required for CO2 reduction to CO by a well-known rhenium molecular electrocatalyst. Reduction of [Cd(DPNDI)(TDC)] n (DPNDI = N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide, H2TDC = thiophene-2,5-dicarboxylic acid) to its mixed-valence state induces through-space Intervalence Charge Transfer (IVCT) within cofacial DPNDI units. Irradiation of the mixed-valence MOF in the visible region generates a DPNDI photoexcited radical monoanion state, which is stabilised as a persistent species by the inherent IVCT interactions and has been rationalised using Density Functional Theory (DFT). This photoexcited radical monoanion state was able to undergo charge transfer (CT) reduction of the rhenium molecular electrocatalyst to effect CO generation at a lower overpotential than that required by the discrete electrocatalyst itself. The exploitation of cofacial MOFs opens new directions for the design philosophy behind light harvesting materials.
Collapse
Affiliation(s)
- Bowen Ding
- School of Chemistry, The University of Sydney Sydney New South Wales 2006 Australia +61 3 9351 3329 +61 2 9351 3777
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University Bunkyo 1-14, Nagasaki-shi Nagasaki 852-8521 Japan
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney Sydney New South Wales 2006 Australia +61 3 9351 3329 +61 2 9351 3777
| | - Marcello B Solomon
- School of Chemistry, The University of Sydney Sydney New South Wales 2006 Australia +61 3 9351 3329 +61 2 9351 3777
| | - Cameron J Kepert
- School of Chemistry, The University of Sydney Sydney New South Wales 2006 Australia +61 3 9351 3329 +61 2 9351 3777
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney Sydney New South Wales 2006 Australia +61 3 9351 3329 +61 2 9351 3777
| |
Collapse
|
35
|
D'Alessandro DM, Usov PM. Spectroelectrochemistry: A Powerful Tool for Studying Fundamental Properties and Emerging Applications of Solid-State Materials Including Metal–Organic Frameworks. Aust J Chem 2021. [DOI: 10.1071/ch20301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spectroelectrochemistry (SEC) encompasses a broad suite of electroanalytical techniques where electrochemistry is coupled with various spectroscopic methods. This powerful and versatile array of methods is characterised as in situ, where a fundamental property is measured in real time as the redox state is varied through an applied voltage. SEC has a long and rich history and has proved highly valuable for discerning mechanistic aspects of redox reactions that underpin the function of biological, chemical, and physical systems in the solid and solution states, as well as in thin films and even in single molecules. This perspective article highlights the state of the art in solid-state SEC (ultraviolet–visible–near-infrared, infrared, Raman, photoluminescence, electron paramagnetic resonance, and X-ray absorption spectroscopy) relevant to interrogating solid state materials, particularly those in the burgeoning field of metal–organic frameworks (MOFs). Emphasis is on developments in the field over the past 10 years and prospects for application of SEC techniques to probing fundamental aspects of MOFs and MOF-derived materials, along with their emerging applications in next-generation technologies for energy storage and transformation. Along with informing the already expert practitioner of SEC, this article provides some guidance for researchers interested in entering the field.
Collapse
|
36
|
Fernandez-Bartolome E, Resines-Urien E, Murillo-Vidal M, Piñeiro-Lopez L, Sánchez Costa J. Sequential single-crystal-to-single-crystal vapochromic inclusion in a nonporous coordination polymer: unravelling dynamic rearrangement for selective pyridine sensing. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00059d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unprecedent selective and reversible pyridine solid–vapor sequential inclusion in a nonporous Fe(ii) coordination polymer accompanied by a color change is presented. Although the internal reorganization is significant, the process remains SCSC.
Collapse
|
37
|
Rath BB, Vittal JJ. Single-Crystal-to-Single-Crystal [2 + 2] Photocycloaddition Reaction in a Photosalient One-Dimensional Coordination Polymer of Pb(II). J Am Chem Soc 2020; 142:20117-20123. [PMID: 33175523 DOI: 10.1021/jacs.0c09577] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a remarkable example, we report a one-dimensional coordination polymer (CP) of Pb(II) showing photosalient (PS) properties triggered by [2 + 2] cycloaddition of olefinic ligands, which is seldom observed in CPs. Macroscopic rod-shaped crystals show various photomechanical effects such as jumping, splitting, rolling, and breaking upon UV illumination. In this rare example, we could determine the solid-state structure of the 100% dimerized product and three intermediate structures, even after the shattering of crystals into small pieces. Detailed mechanistic investigation from the single-crystal data indicates that the strain generated in the unit cell due to anisotropic expansion played a bigger role for the PS effects. Nucleated growth of the photoproduct crystal created different domains inside the single crystal, which multiplied the already developed stress leading to the photomechanical movements. This example falls in the gray area of a clean single-crystal-to-single-crystal (SCSC) transformation and violent PS effect. Such photochemical behavior has never been reported before.
Collapse
Affiliation(s)
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
38
|
Zappe L, Schönfeld S, Hörner G, Zenere KA, Leong CF, Kepert CJ, D'Alessandro DM, Weber B, Neville SM. Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py 2TTF) ligand. Chem Commun (Camb) 2020; 56:10469-10472. [PMID: 32766630 DOI: 10.1039/d0cc03788e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A one-dimensional FeII coordination polymer (CP) has been formed which includes the redox-active ligand bis-pyridyltetrathiafulvalene (py2TTF) and a Schiff base-like N2O2 ligand. This CP is both spin crossover (SCO) and redox-active in the solid-state, and chemical oxidation results in SCO modification.
Collapse
Affiliation(s)
- Lisa Zappe
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|