1
|
Gong L, Xu D, Ni K, Li J, Mao W, Zhang B, Pu Z, Fang X, Yin Y, Ji L, Wang J, Hu Y, Meng J, Zhang R, Jiao J, Zou J. Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402258. [PMID: 39629919 PMCID: PMC11789598 DOI: 10.1002/advs.202402258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Indexed: 01/30/2025]
Abstract
Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM. This results in enhanced tumor growth and resistance to chemotherapy, particularly in tumors with missense mutant p53. Acetylation of K373 is found to be essential for Smad1's oncogenic function but does not confer chemoresistance in the absence of p53. Through molecular docking, it is discovered that Smad1 and p53 both interact with the acetyltransferase domain of p300, but at different amino acid sites. Disturbing the interface of Smad1 through amino acid mutations abolishes the Smad1-p300 complex and promotes p53 acetylation. Therefore, a small molecule is identified through virtual screening that specifically disrupts the Smad1-p300 interaction, offering a promising strategy for inhibiting GBM and increasing chemosensitivity by inhibiting Smad1 acetylation and restoring p53 acetylation.
Collapse
Affiliation(s)
- Lingli Gong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Daxing Xu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Kaixiang Ni
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jie Li
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Wei Mao
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zhening Pu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jingjing Wang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jiao Meng
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
2
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Yu J, Zhao Y, Xie Y. Advances of E3 ligases in lung cancer. Biochem Biophys Rep 2024; 38:101740. [PMID: 38841185 PMCID: PMC11152895 DOI: 10.1016/j.bbrep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related death, and the most common type of lung cancer is non-small cell lung cancer, which accounts for approximately 85 % of lung cancer diagnoses. Recent studies have revealed that ubiquitination acts as a crucial part of the development and progression of lung cancer. The E1-E2-E3 three-enzyme cascade has a core function in ubiquitination, so targeted adjustments of E3 ligases could be used in lung cancer treatment. Hence, we elucidate research advances in lung cancer-related E3 ligases by briefly describing the structure and categorization of E3 ligases. Here, we provide a detailed review of the mechanisms by which lung cancer-related E3 ligases modify substrate proteins and regulate signaling pathways to facilitate or suppress cancer progression. We hope to show a new perspective on targeted precision therapy for lung cancer.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yiqi Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yue Xie
- Liaoning Academy of Chinese Medicine, Liaoning University Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
4
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
5
|
Wang H, Xiong X, Zhang J, Wu M, Gu Y, Chen Y, Gu Y, Wang P. Near-Infrared Light-Driven Nanoparticles for Cancer Photoimmunotherapy by Synergizing Immune Cell Death and Epigenetic Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309202. [PMID: 38100237 DOI: 10.1002/smll.202309202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Indexed: 05/25/2024]
Abstract
Histone deacetylases (HDACs) are a class of epigenetic enzymes that are closely related to tumorigenesis and suppress the expression of tumor suppressor genes. Whereas the HDACs inhibitors can release DNA into the cytoplasm and trigger innate immunity. However, the high density of chromatin limits DNA damage and release. In this study, suitable nanosized CycNHOH NPs (150 nm) and CypNHOH NPs (85 nm) efficiently accumulate at the tumor site due to the enhanced permeability and retention (EPR) effect. In addition, robust single-linear oxygen generation and good photothermal conversion efficiency under NIR laser irradiation accelerated the DNA damage process. By effectively initiating immune cell death, CypNHOH NPs activated both innate and adaptive immunity by maturing dendritic cells, infiltrating tumors with natural killer cells, and activating cytotoxic T lymphocytes, which offer a fresh perspective for the development of photo-immunotherapy.
Collapse
Affiliation(s)
- Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Xiong
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Meicen Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Yinhui Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanli Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - YueQing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
6
|
Yu J, Li M, Ju L, Zhou F, Wang Y, Zhang Y, Zhang R, Du W, Huang R, Qian K, Wang G, Xiao Y, Wang X. TRAIP suppresses bladder cancer progression by catalyzing K48-linked polyubiquitination of MYC. Oncogene 2024; 43:470-483. [PMID: 38123820 DOI: 10.1038/s41388-023-02922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
TRAF-interacting protein (TRAIP), an E3 ligase containing a RING domain, has emerged as a significant contributor to maintaining genome integrity and is closely associated with cancer. Our study reveals that TRAIP shows reduced expression in bladder cancer (BLCA), which correlates with an unfavorable prognosis. In vitro and in vivo, TRAIP inhibits proliferation and migration of BLCA cells. MYC has been identified as a novel target for TRAIP, wherein direct interaction promotes K48-linked polyubiquitination at neighboring K428 and K430 residues, ultimately resulting in proteasome-dependent degradation and downregulation of MYC transcriptional activity. This mechanism effectively impedes the progression of BLCA. Restoring MYC expression reverses suppressed proliferation and migration of BLCA cells induced by TRAIP. Moreover, our results suggest that MYC may bind to the transcriptional start region of TRAIP, thereby exerting regulatory control over TRAIP transcription. Consequently, this interaction establishes a negative feedback loop that regulates MYC expression, preventing excessive levels. Taken together, this study reveals a mechanism that TRAIP inhibits proliferation and migration of BLCA by promoting ubiquitin-mediated degradation of MYC.
Collapse
Affiliation(s)
- Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Renjie Zhang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhi Du
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ruoyu Huang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
7
|
Deng Y, Liu L, Xiao X, Zhao Y. A four-gene-based methylation signature associated with lymph node metastasis predicts overall survival in lung squamous cell carcinoma. Genes Genet Syst 2023; 98:209-219. [PMID: 37839873 DOI: 10.1266/ggs.22-00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
We aimed to identify prognostic methylation genes associated with lymph node metastasis (LNM) in lung squamous cell carcinoma (LUSC). Bioinformatics methods were used to obtain optimal prognostic genes for risk model construction using data from the Cancer Genome Atlas database. ROC curves were adopted to predict the prognostic value of the risk model. Multivariate regression was carried out to identify independent prognostic factors and construct a prognostic nomogram. The differences in overall survival, gene mutation and pathways between high- and low-risk groups were analyzed. Finally, the expression and methylation level of the optimal prognostic genes among different LNM stages were analyzed. FGA, GPR39, RRAD and TINAGL1 were identified as the optimal prognostic genes and were applied to establish a prognostic risk model. Significant differences were found among the different LNM stages. The risk model could predict overall survival, showing a moderate performance with AUC of 0.64-0.68. The model possessed independent prognostic value, and could accurately predict 1-, 3- and 5-year survival. Patients with a high risk score showed poorer survival. Lower gene mutation frequencies and enrichment of leukocyte transendothelial migration and the VEGF signaling pathway in the high-risk group may lead to the poor prognosis. This study identified several specific methylation markers associated with LNM in LUSC and generated a prognostic model to predict overall survival for LUSC patients.
Collapse
Affiliation(s)
- Yufei Deng
- Department of Pharmacy, Wuxi No.2 People's Hospital
| | - Lifeng Liu
- Department of Pharmacy, Wuxi No.2 People's Hospital
| | - Xia Xiao
- Department of Oncology, Wuxi No.2 People's Hospital
| | - Yin Zhao
- Department of Pharmacy, Wuxi No.2 People's Hospital
| |
Collapse
|
8
|
Rodkin S, Nwosu C, Raevskaya M, Khanukaev M, Bekova K, Vasilieva I, Vishnyak D, Tolmacheva A, Efremova E, Gasanov M, Tyurin A. The Role of Hydrogen Sulfide in the Localization and Expression of p53 and Cell Death in the Nervous Tissue in Traumatic Brain Injury and Axotomy. Int J Mol Sci 2023; 24:15708. [PMID: 37958692 PMCID: PMC10650615 DOI: 10.3390/ijms242115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine β-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Maxim Khanukaev
- Department of Instrumentation and Biomedical Engineering, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Khava Bekova
- Department of Nervous Diseases and Neurosurgery, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- Department of Polyclinic Therapy, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Diana Vishnyak
- Department of Internal Diseases, Surgut State University, Lenina, 1, Nephrology Department, Surgut District Clinical Hospital, Energetikov, 24/3, 628400 Surgut, Russia
| | - Anastasia Tolmacheva
- Department of Faculty Therapy Named after Professor G.D. Zalessky, Novosibirsk State Medical University, Krasny Prospekt, 52, Department of Medical Rehabilitation, Novosibirsk Regional Clinical Hospital of War Veterans No. 3, Demyan the Poor, 71, 630005 Novosibirsk, Russia
| | - Elena Efremova
- Department of Therapy and Occupational Diseases, Ulyanovsk State University, Lev Tolstoy Street 42, 432017 Ulyanovsk, Russia;
| | - Mitkhat Gasanov
- Internal Medicine Department, Institute of Medical Education, The Yaroslav-the-Wise Novgorod State University, Derzhavina St. 6, 173020 Veliky Novgorod, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
9
|
Wakayama S, Ouchi K, Takahashi S, Yamada Y, Komatsu Y, Shimada K, Yamaguchi T, Shirota H, Takahashi M, Ishioka C. TP53 Gain-of-Function Mutation is a Poor Prognostic Factor in High-Methylated Metastatic Colorectal Cancer. Clin Colorectal Cancer 2023; 22:327-338. [PMID: 37355363 DOI: 10.1016/j.clcc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neither TP53 mutation nor DNA methylation status has been established as a biomarker alone of metastatic colorectal cancer. We analyzed the association between TP53 mutation functional subtypes and genome-wide DNA methylation status (GWMS) as combined prognostic markers. METHODS Patient clinical data were obtained from the TRICOLORE study, a randomized phase III trial. The TP53 mutations were classified into wild-type, gain-of-function (GOF) mutations, and non-gain-of-function (non-GOF) mutations. GWMS of the tumor tissues classified them into high-methylated colorectal cancer (HMCC) and low-methylated colorectal cancer (LMCC). Overall survival (OS) was compared based on these subgroups. RESULTS Of the 209 patients, 60 (28.7%) were HMCC and 149 (71.3%) were LMCC, 35 (16.7%) were TP53 wild-type and 174 (83.3%) were TP53 mutants including 79 (45.4%) GOF mutations and 95 (54.6%) non-GOF mutations. The OS of the HMCC group was shorter than that of the LMCC group (median 25.3 vs. 40.3 months, P < .001, hazard ratio 1.87) in the total cohort. The combined subgroup analyses of GWMS and TP53 mutation subtypes showed that the HMCC/GOF group had significantly shorter OS than the HMCC/non-GOF group, the LMCC/GOF group, and the LMCC/non-GOF group (median 17.7; 35.3, 40.3, and 41.2 months, P = .007, P < .001, and P < .001, respectively), regardless of the primary tumor location. By the multivariate analysis, only HMCC (P = .009) was a poor prognostic factor in the GOF mutation group. CONCLUSIONS TP53 GOF with HMCC is a newly identified poorest prognostic molecular subset in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Shonosuke Wakayama
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhide Yamada
- Comprehensive Cancer Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshito Komatsu
- Department of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Hokkaido, Japan
| | - Ken Shimada
- Department of Internal Medicine, Division of Medical Oncology, Showa University Koto Toyosu Hospital, Koto-ku, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan; Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan; Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Xu D, Qian W, Yang Z, Zhang Z, Sun P, Wan Q, Yin Y, Hu Y, Gong L, Zhang B, Yang X, Pu Z, Lu P, Zou J. Acetylation halts missense mutant p53 aggregation and rescues tumor suppression in non-small cell lung cancers. iScience 2023; 26:107003. [PMID: 37534137 PMCID: PMC10391690 DOI: 10.1016/j.isci.2023.107003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
TP53 mutations are ubiquitous with tumorigenesis in non-small cell lung cancers (NSCLC). By analyzing the TCGA database, we reported that TP53 missense mutations are correlated with chromosomal instability and tumor mutation burden in NSCLC. The inability of wild-type nor mutant p53 expression can't predict survival in lung cancer cohorts, however, an examination of primary NSCLC tissues found that acetylated p53 did yield an association with improved survival outcomes. Molecularly, we demonstrated that acetylation drove the ubiquitination and degradation of mutant p53 but enhanced stability of wild-type p53. Moreover, acetylation of a missense p53 mutation prevented the gain of oncogenic function observed in typical TP53 mutant-expressing cells and enhanced tumor suppressor functions. Consequently, acetylation inducer targeting of missense mutant p53 may be a viable therapeutic goal for NSCLC treatment and may improve the accuracy of current efforts to utilize p53 mutations in a prognostic manner.
Collapse
Affiliation(s)
- Daxing Xu
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Wei Qian
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhenhao Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, Jiangsu 214023, China
| | - Quan Wan
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214023, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yaling Hu
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Lingli Gong
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Bo Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xusheng Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhening Pu
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Peihua Lu
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Department of Medical Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| |
Collapse
|
11
|
Kabir M, Sun N, Hu X, Martin TC, Yi J, Zhong Y, Xiong Y, Kaniskan HÜ, Gu W, Parsons R, Jin J. Acetylation Targeting Chimera Enables Acetylation of the Tumor Suppressor p53. J Am Chem Soc 2023; 145:14932-14944. [PMID: 37365684 PMCID: PMC10357929 DOI: 10.1021/jacs.3c04640] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
With advances in chemically induced proximity technologies, heterobifunctional modalities such as proteolysis targeting chimeras (PROTACs) have been successfully advanced to clinics for treating cancer. However, pharmacologic activation of tumor-suppressor proteins for cancer treatment remains a major challenge. Here, we present a novel Acetylation Targeting Chimera (AceTAC) strategy to acetylate the p53 tumor suppressor protein. We discovered and characterized the first p53Y220C AceTAC, MS78, which recruits histone acetyltransferase p300/CBP to acetylate the p53Y220C mutant. MS78 effectively acetylated p53Y220C lysine 382 (K382) in a concentration-, time-, and p300-dependent manner and suppressed proliferation and clonogenicity of cancer cells harboring the p53Y220C mutation with little toxicity in cancer cells with wild-type p53. RNA-seq studies revealed novel p53Y220C-dependent upregulation of TRAIL apoptotic genes and downregulation of DNA damage response pathways upon acetylation induced by MS78. Altogether, the AceTAC strategy could provide a generalizable platform for targeting proteins, such as tumor suppressors, via acetylation.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ning Sun
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jingjie Yi
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | - Yue Zhong
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
12
|
Van Egeren D, Kohli K, Warner JL, Bedard PL, Riely G, Lepisto E, Schrag D, LeNoue-Newton M, Catalano P, Kehl KL, Michor F, Fiandalo M, Foti M, Khotskaya Y, Lee J, Peters N, Sweeney S, Abraham J, Brenton JD, Caldas C, Doherty G, Nimmervoll B, Pinilla K, Martin JE, Rueda OM, Sammut SJ, Silva D, Cao K, Heath AP, Li M, Lilly J, MacFarland S, Maris JM, Mason JL, Morgan AM, Resnick A, Welsh M, Zhu Y, Johnson B, Li Y, Sholl L, Beaudoin R, Biswas R, Cerami E, Cushing O, Dand D, Ducar M, Gusev A, Hahn WC, Haigis K, Hassett M, Janeway KA, Jänne P, Jawale A, Johnson J, Kehl KL, Kumari P, Laucks V, Lepisto E, Lindeman N, Lindsay J, Lueders A, Macconaill L, Manam M, Mazor T, Miller D, Newcomb A, Orechia J, Ovalle A, Postle A, Quinn D, Reardon B, Rollins B, Shivdasani P, Tramontano A, Van Allen E, Van Nostrand SC, Bell J, Datto MB, Green M, Hubbard C, McCall SJ, Mettu NB, Strickler JH, Andre F, Besse B, Deloger M, Dogan S, Italiano A, Loriot Y, Ludovic L, Michels S, Scoazec J, Tran-Dien A, Vassal G, Freeman CE, Hsiao SJ, Ingham M, Pang J, Rabadan R, et alVan Egeren D, Kohli K, Warner JL, Bedard PL, Riely G, Lepisto E, Schrag D, LeNoue-Newton M, Catalano P, Kehl KL, Michor F, Fiandalo M, Foti M, Khotskaya Y, Lee J, Peters N, Sweeney S, Abraham J, Brenton JD, Caldas C, Doherty G, Nimmervoll B, Pinilla K, Martin JE, Rueda OM, Sammut SJ, Silva D, Cao K, Heath AP, Li M, Lilly J, MacFarland S, Maris JM, Mason JL, Morgan AM, Resnick A, Welsh M, Zhu Y, Johnson B, Li Y, Sholl L, Beaudoin R, Biswas R, Cerami E, Cushing O, Dand D, Ducar M, Gusev A, Hahn WC, Haigis K, Hassett M, Janeway KA, Jänne P, Jawale A, Johnson J, Kehl KL, Kumari P, Laucks V, Lepisto E, Lindeman N, Lindsay J, Lueders A, Macconaill L, Manam M, Mazor T, Miller D, Newcomb A, Orechia J, Ovalle A, Postle A, Quinn D, Reardon B, Rollins B, Shivdasani P, Tramontano A, Van Allen E, Van Nostrand SC, Bell J, Datto MB, Green M, Hubbard C, McCall SJ, Mettu NB, Strickler JH, Andre F, Besse B, Deloger M, Dogan S, Italiano A, Loriot Y, Ludovic L, Michels S, Scoazec J, Tran-Dien A, Vassal G, Freeman CE, Hsiao SJ, Ingham M, Pang J, Rabadan R, Roman LC, Carvajal R, DuBois R, Arcila ME, Benayed R, Berger MF, Bhuiya M, Brannon AR, Brown S, Chakravarty D, Chu C, de Bruijn I, Galle J, Gao J, Gardos S, Gross B, Kundra R, Kung AL, Ladanyi M, Lavery JA, Li X, Lisman A, Mastrogiacomo B, McCarthy C, Nichols C, Ochoa A, Panageas KS, Philip J, Pillai S, Riely GJ, Rizvi H, Rudolph J, Sawyers CL, Schrag D, Schultz N, Schwartz J, Sheridan R, Solit D, Wang A, Wilson M, Zehir A, Zhang H, Zhao G, Ahmed L, Bedard PL, Bruce JP, Chow H, Cooke S, Del Rossi S, Felicen S, Hakgor S, Jagannathan P, Kamel-Reid S, Krishna G, Leighl N, Lu Z, Nguyen A, Oldfield L, Plagianakos D, Pugh TJ, Rizvi A, Sabatini P, Shah E, Singaravelan N, Siu L, Srivastava G, Stickle N, Stockley T, Tang M, Virtaenen C, Watt S, Yu C, Bernard B, Bifulco C, Cramer JL, Lee S, Piening B, Reynolds S, Slagel J, Tittel P, Urba W, VanCampen J, Weerasinghe R, Acebedo A, Guinney J, Guo X, Hunter-Zinck H, Yu T, Dang K, Anagnostou V, Baras A, Brahmer J, Gocke C, Scharpf RB, Tao J, Velculescu VE, Alexander S, Bailey N, Gold P, Bierkens M, de Graaf J, Hudeček J, Meijer GA, Monkhorst K, Samsom KG, Sanders J, Sonke G, ten Hoeve J, van de Velde T, van den Berg J, Voest E, Steinhardt G, Kadri S, Pankhuri W, Wang P, Segal J, Moung C, Espinosa-Mendez C, Martell HJ, Onodera C, Quintanar Alfaro A, Sweet-Cordero EA, Talevich E, Turski M, Van’t Veer L, Wren A, Aguilar S, Dienstmann R, Mancuso F, Nuciforo P, Tabernero J, Viaplana C, Vivancos A, Anderson I, Chaugai S, Coco J, Fabbri D, Johnson D, Jones L, Li X, Lovly C, Mishra S, Mittendorf K, Wen L, Yang YJ, Ye C, Holt M, LeNoue-Newton ML, Micheel CM, Park BH, Rubinstein SM, Stricker T, Wang L, Warner J, Guan M, Jin G, Liu L, Topaloglu U, Urtis C, Zhang W, D’Eletto M, Hutchison S, Longtine J, Walther Z, for the AACR Project GENIE Consortium represented by Shawn Sweeney. Genomic analysis of early-stage lung cancer reveals a role for TP53 mutations in distant metastasis. Sci Rep 2022; 12:19055. [PMID: 36351964 PMCID: PMC9646734 DOI: 10.1038/s41598-022-21448-1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) who have distant metastases have a poor prognosis. To determine which genomic factors of the primary tumor are associated with metastasis, we analyzed data from 759 patients originally diagnosed with stage I-III NSCLC as part of the AACR Project GENIE Biopharma Collaborative consortium. We found that TP53 mutations were significantly associated with the development of new distant metastases. TP53 mutations were also more prevalent in patients with a history of smoking, suggesting that these patients may be at increased risk for distant metastasis. Our results suggest that additional investigation of the optimal management of patients with early-stage NSCLC harboring TP53 mutations at diagnosis is warranted in light of their higher likelihood of developing new distant metastases.
Collapse
Affiliation(s)
- Debra Van Egeren
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Systems Biology, Harvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Stem Cell Program, Boston Children’s Hospital, Boston, MA USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Khushi Kohli
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA
| | - Jeremy L. Warner
- grid.152326.10000 0001 2264 7217Department of Medicine, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
| | - Philippe L. Bedard
- grid.17063.330000 0001 2157 2938Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Gregory Riely
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Eva Lepisto
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.429426.f0000 0000 9350 5788Present Address: Multiple Myeloma Research Foundation, Norwalk, CT USA
| | - Deborah Schrag
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michele LeNoue-Newton
- grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Paul Catalano
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA
| | - Kenneth L. Kehl
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Franziska Michor
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.65499.370000 0001 2106 9910The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XThe Ludwig Center at Harvard, Boston, MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
GOF Mutant p53 in Cancers: A Therapeutic Challenge. Cancers (Basel) 2022; 14:cancers14205091. [PMID: 36291874 PMCID: PMC9600758 DOI: 10.3390/cancers14205091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In normal cells, p53 is a protein which regulates the cell cycle progression to ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge of these strategies is important in improving the overall therapeutic response of cancers with mutant p53. This review highlights new strategies and discusses the progression of such therapies. Abstract TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.
Collapse
|
14
|
Lima APB, Melo AS, Ferreira GM, da Silva GN. Chrysin inhibits the cell viability, induces apoptosis and modulates expression of genes related to epigenetic events in bladder cancer cells. Nat Prod Res 2022; 37:1877-1881. [PMID: 36093567 DOI: 10.1080/14786419.2022.2121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study was conducted with the aim of exploring the molecular and cellular mechanisms of action of the chrysin (natural flavonoid compound) on bladder tumour cell lines with different status of TP53 (RT4, 5637 and T24). The cells were treated with different concentrations of chrysin (20, 40, 60, 80 and 100 µM) to analyze the cell viability, nuclear division index, mutagenicity, apoptosis rates and expression of genes related to epigenetic events (DNMT1, HAT1 and HDAC1). Results showed that the treatment with chrysin reduced the cell viability and caused apoptosis, regardless TP53. Moreover, in the TP53-mutated cell lines, chrysin modulated the expression of the DNMT1, HAT1 and HDAC1 epigenetic genes, which might be a plus to the death observed in the cells with p53 mutation.
Collapse
Affiliation(s)
- Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - André Sacramento Melo
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Gabriel Monteze Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (CBIOL), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
15
|
Hu Y, Zhang B, Lu P, Wang J, Chen C, Yin Y, Wan Q, Wang J, Jiao J, Fang X, Pu Z, Gong L, Ji L, Zhu L, Zhang R, Zhang J, Yang X, Wang Q, Huang Z, Zou J. The positive regulatory loop of TCF4N/p65 promotes glioblastoma tumourigenesis and chemosensitivity. Clin Transl Med 2022; 12:e1042. [PMID: 36116131 PMCID: PMC9482802 DOI: 10.1002/ctm2.1042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background NF‐κB signaling is widely linked to the pathogenesis and treatment resistance in cancers. Increasing attention has been paid to its anti‐oncogenic roles, due to its key functions in cellular senescence and the senescence‐associated secretory phenotype (SASP). Therefore, thoroughly understanding the function and regulation of NF‐κB in cancers is necessary prior to the application of NF‐κB inhibitors. Methods We established glioblastoma (GBM) cell lines expressing ectopic TCF4N, an isoform of the β‐catenin interacting transcription factor TCF7L2, and evaluated its functions in GBM tumorigenesis and chemotherapy in vitro and in vivo. In p65 knock‐out or phosphorylation mimic (S536D) cell lines, the dual role and correlation of TCF4N and NF‐κB signaling in promoting tumorigenesis and chemosensitivity was investigated by in vitro and in vivo functional experiments. RNA‐seq and computational analysis, immunoprecipitation and ubiquitination assay, minigene splicing assay and luciferase reporter assay were performed to identify the underlying mechanism of positive feedback regulation loop between TCF4N and the p65 subunit of NF‐κB. A eukaryotic cell‐penetrating peptide targeting TCF4N, 4N, was used to confirm the therapeutic significance. Results Our results indicated that p65 subunit phosphorylation at Ser 536 (S536) and nuclear accumulation was a promising prognostic marker for GBM, and endowed the dual functions of NF‐κB in promoting tumorigenesis and chemosensitivity. p65 S536 phosphorylation and nuclear stability in GBM was regulated by TCF4N. TCF4N bound p65, induced p65 phosphorylation and nuclear translocation, inhibited its ubiquitination/degradation, and subsequently promoted NF‐κB activity. p65 S536 phosphorylation was essential for TCF4N‐led senescence‐independent SASP, GBM tumorigenesis, tumor stem‐like cell differentiation and chemosensitivity. Activation of p65 was closely connected to alterative splicing of TCF4N, a likely positive feedback regulation loop between TCF4N and p65 in GBM. 4N increased chemosensitivity, highlighting a novel anti‐cancer strategy. Conclusion Our study defined key roles of TCF4N as a novel regulator of NF‐κB through mutual regulation with p65 and provided a new avenue for GBM inhibition.
Collapse
Affiliation(s)
- Yaling Hu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peihua Lu
- Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China.,Department of Medical Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingying Wang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Clinical Laboratory, Taixing People's Hospital, Taizhou, Jiangsu, China
| | - Cheng Chen
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Quan Wan
- Department of Neurosurgery, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingjing Wang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhening Pu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lingli Gong
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Ji
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Rui Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jia Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xusheng Yang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhaohui Huang
- Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China.,Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Center for Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Li L, Du W, Wang H, Zhao Y, Huang Z, Peng Y, Zeng S, Zhang G. Small-molecule MX-C2/3 suppresses non-small cell lung cancer progression via p53 activation. Chem Biol Interact 2022; 366:110142. [PMID: 36058261 DOI: 10.1016/j.cbi.2022.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
p53 inactivation is a common feature in non-small cell lung cancer (NSCLC) resulting in NSCLC malignant transformation. Targeting serine 392 phosphorylation to restore p53 anticancer activity has proven to be an effective therapeutic strategy against NSCLC. A synthetic p53 activator, NA-17, has been developed that shows promise in preclinical models of NSCLC. However, NA-17 exhibits limited therapeutic efficacy in oncogene-driven tumors as well as relatively high toxicity to normal cells. It is possible that high efficiency and low toxicity p53 activators can be obtained by optimizing the leading molecule. Here, we performed high-throughput screening of compounds optimized based on NA-17 to identify new p53 activators. Two promising candidates named MX-C2 and MX-C3 were identified, both exhibited considerable therapeutic efficacy in oncogene-driven tumor models. Similar to NA-17, MX-C2/3 induced p53 activation via phosphorylating serine-392 without DNA damage. Both compounds showed broad antitumor activity in NSCLC cells and limited toxicity in normal cell lines. Moreover, MX-C2/3 suppressed tumor progression by arresting the cell cycle at G2/M phase, exhibiting a different mechanism of cell cycle arrest than NA-17. In addition, MX-C2/3 promoted the enrichment of p-p53 (s392) in mitochondria, leading to the conformational activation of Bak for cell apoptosis, which is consistent with NA-17. Finally, we demonstrated that MX-C2 significantly inhibited tumor growth without obvious systemic toxicity in oncogene-driven HCC-827 xenograft models. Collectively, we report two p53 activators with high-efficiency and low-toxicity that target p53 serine 392 phosphorylation for anticancer translational investigation.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wenqing Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yufei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zetian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
17
|
Li L, Li P, Ma X, Zeng S, Peng Y, Zhang G. Therapeutic restoring p53 function with small molecule for oncogene-driven non-small cell lung cancer by targeting serine 392 phosphorylation. Biochem Pharmacol 2022; 203:115188. [PMID: 35902040 DOI: 10.1016/j.bcp.2022.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
p53 inactivation by disabling its function is a hallmark in lung carcinomas, emphasizing the significance of restoring p53 function as an attractive therapeutic strategy. However, the clinical efficacy of existing p53 activators is limited due to their inability to effectively activate p53 within the tumors. Here, we established a p53 activator screening assay in EGFR-driven lung cancer cells and identified a small molecular, MX-C4, as a promising candidate. Using high throughput compound screening and combination analyses, we found that MX-C4 effectively promoted the phosphorylation of p53 at serine-392 (s392). It exhibited potent antitumor activity in a variety of cancer cell lines, but only limited toxicity to NCI-H1299 (p53-null) and normal cell lines such as LX2 and HL-7702. Overexpression of p53 in NCI-H1299 cells by a p53 expressing virus vector sensitized cells to MX-C4 treatment, suggesting a p53-dependent anticancer activity. Furthermore, we demonstrated that MX-C4 bound to p53 and exerted its anticancer activity through cell cycle arrest at G2/M phase and apoptosis induction. Mechanistic study indicated that p53 activation regulated cell cycle and cell survival related targets at protein levels. Moreover, p53 activation raised phospho-p53 translocation to mitochondria and subsequently reorganized the Bcl-xl-Bak complex, thus conformationally activating Bak and inducing apoptosis. It is noteworthy that MX-C4 could effectively activate p53 within the tumors in EGFR-driven xenograft models, where tumor was significantly suppressed without obvious toxicity. Our study identified a promising candidate for lung cancer therapy by restoring p53 function.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
18
|
Sun J, Ji Y, Liang Q, Ming M, Chen Y, Zhang Q, Zhou S, Shen M, Ding F. Expression of Protein Acetylation Regulators During Peripheral Nerve Development, Injury, and Regeneration. Front Mol Neurosci 2022; 15:888523. [PMID: 35663264 PMCID: PMC9157241 DOI: 10.3389/fnmol.2022.888523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Protein acetylation, regulated by acetyltransferases and deacetylases, is an important post-translational modification that is involved in numerous physiological and pathological changes in peripheral nerves. There is still no systematical analysis on the expression changes of protein acetylation regulators during sciatic nerve development, injury, and regeneration. Here, we sequenced and analyzed the transcriptome of mouse sciatic nerves during development and after injury. We found that the changes in the expression of most regulators followed the rule that “development is consistent with regeneration and opposite to injury.” Immunoblotting with pan-acetylated antibodies also revealed that development and regeneration are a process of increased acetylation, while injury is a process of decreased acetylation. Moreover, we used bioinformatics methods to analyze the possible downstream molecules of two key regulators, histone deacetylase 1 (Hdac1) and lysine acetyltransferase 2b (Kat2b), and found that they were associated with many genes that regulate the cell cycle. Our findings provide an insight into the association of sciatic nerve development, injury, and regeneration from the perspective of protein acetylation.
Collapse
|
19
|
Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, Wang B, Feng Q, Zheng X, Gong M, Gong Q, Xiao K, Luo K, Li W. Targeted Drug/Gene/Photodynamic Therapy via a Stimuli-Responsive Dendritic-Polymer-Based Nanococktail for Treatment of EGFR-TKI-Resistant Non-Small-Cell Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201516. [PMID: 35481881 DOI: 10.1002/adma.202201516] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Yes-associated protein (YAP) has been identified as a key driver for epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance. Inhibition of YAP expression could be a potential therapeutic option for treating non-small-cell lung cancer (NSCLC). Herein, a nanococktail therapeutic strategy is proposed by employing amphiphilic and block-dendritic-polymer-based nanoparticles (NPs) for targeted co-delivery of EGFR-TKI gefitinib (Gef) and YAP-siRNA to achieve a targeted drug/gene/photodynamic therapy. The resulting NPs are effectively internalized into Gef-resistant NSCLC cells, successfully escape from late endosomes/lysosomes, and responsively release Gef and YAP-siRNA in an intracellular reductive environment. They preferentially accumulate at the tumor site after intravenous injection in both cell-line-derived xenograft (CDX) and patient-derived xenograft (PDX) models of Gef-resistant NSCLC, resulting in potent antitumor efficacy without distinct toxicity after laser irradiation. Mechanism studies reveal that the cocktail therapy could block the EGFR signaling pathway with Gef, inhibit activation of the EGFR bypass signaling pathway via YAP-siRNA, and induce tumor cell apoptosis through photodynamic therapy (PDT). Furthermore, this combination nanomedicine can sensitize PDT and impair glycolysis by downregulating HIF-1α. These results suggest that this stimuli-responsive dendritic-polymer-based nanococktail therapy may provide a promising approach for the treatment of EGFR-TKI resistant NSCLC.
Collapse
Affiliation(s)
- Jinxing Huang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhuang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Chen
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanming Chen
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojie Li
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyi Feng
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Gong
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kai Xiao
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Precision Medicine Research Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
20
|
A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomed Pharmacother 2021; 138:111355. [DOI: 10.1016/j.biopha.2021.111355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
|
21
|
Cui Y, Gao H, Han S, Yuan R, He J, Zhuo Y, Feng YL, Tang M, Feng J, Yang S. Oleuropein Attenuates Lipopolysaccharide-Induced Acute Kidney Injury In Vitro and In Vivo by Regulating Toll-Like Receptor 4 Dimerization. Front Pharmacol 2021; 12:617314. [PMID: 33841147 PMCID: PMC8024564 DOI: 10.3389/fphar.2021.617314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is a common critical illness that involves multiple systems and multiple organs with a rapid decline in kidney function over short period. It has a high mortality rate and presents a great treatment challenge for physicians. Oleuropein, the main active constituent of Ilex pubescens Hook. et Arn. var. kwangsiensis Hand.-Mazz. displays significant anti-inflammatory activity, although oleuropein’s therapeutic effect and mechanism of action in AKI remain to be elucidated. The present study aimed to further clarify the mechanism by which oleuropein exerts effects on inflammation in vitro and in vivo. In vitro, the inflammatory effect and mechanism were investigated through ELISA, Western blotting, the thermal shift assay, co-immunoprecipitation, and immunofluorescence staining. Lipopolysaccharide (LPS) induced acute kidney injury was employed in an animal model to investigate oleuropein’s therapeutic effect on AKI and mechanism in vivo. The underlying mechanisms were investigated by Western blot analysis of kidney tissue. In LPS-stimulated macrophages, our data demonstrated that oleuropein significantly reduced the expression of inflammatory mediators like NO, IL-6, TNF-α, iNOS, and COX-2. Moreover, oleuropein inhibited NF-κB/p65 translocation, and had a negative regulatory effect on key proteins in the NF-κB and MAPK pathways. In addition, the thermal shift and co-immunoprecipitation assays revealed that oleuropein played an essential role in binding to the active sites of TLR4, as well as inhibiting TLR4 dimerization and suppressing the binding of TLR4 to MyD88. Oleuropein markedly alleviated LPS induced acute kidney injury, decreased serum creatinine and blood urea nitrogen (BUN) levels and proinflammatory cytokines. More importantly, the TLR4-MyD88-NF-κB/MAPK pathways were confirmed to play an important role in the oleuropein treatment of AKI. In this study, oleuropein exhibited excellent anti-inflammatory effects by regulating TLR4-MyD88-NF-κB/MAPK axis in vitro and in vivo, suggesting oleuropein as a candidate molecule for treating AKI.
Collapse
Affiliation(s)
- Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Yu-Lin Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Meiwen Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
22
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E, García-Carrancá A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol 2021; 8:607670. [PMID: 33644030 PMCID: PMC7905058 DOI: 10.3389/fcell.2020.607670] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Programa de Posgrado en Ciencias Bioquímicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus and Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
23
|
Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12102945. [PMID: 33065960 PMCID: PMC7599787 DOI: 10.3390/cancers12102945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Balkan endemic nephropathy (BEN) is chronic kidney disease caused by intoxication with Aristolochia plant. Apart from subtle decline of renal function that eventually results in kidney failure, the patients are at increased risk for urothelial carcinoma (UC) development. Based on the observed UC markers, the aim of this study was to examine urinary and plasma levels of some these markers in BEN patients without carcinoma, in order to potentially identify those with predictive value. Our study revealed either plasma or urinary survivin levels as a potential predictors of future malignant transformation of urothelium. Abstract Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial disease frequently accompanied by urothelial carcinoma (UC). In light of the increased UC incidence and the markers observed in BEN patients with developed UC, the aim of the current case–control study is to assess survivin, p53 protein, growth factors and receptors (VEGF, VEGFR1, IGF I, IGF-1R and IGFBP5), tumor marker (TF)/CD142, circulating soluble Fas receptor and neopterin, as potentially predictive markers for UC in patients with BEN (52 patients), compared to healthy, age-matched subjects (40). A threefold increase was registered in both circulating and urinary survivin level in BEN patients. Especially noticeable was the ratio of U survivin/U Cr level five times the ratio of BEN patients associated with standard renal markers in multivariate regression models. The concentrations of VEGF, VEGFR1, (TF)/CD142, (sFas) were not significantly different in BEN patients, while urinary/plasma level demonstrated a significant decrease for VEGF. The levels of IGF I, IGFBP5 and IGF-1R were significantly reduced in the urine of BEN patients. Plasma concentration of neopterin was significantly higher, while urinary neopterin value was significantly lower in BEN patients compared to healthy controls, which reflected a significantly lower urine/plasma ratio and low local predictive value. As BEN is a slow-progressing chronic kidney disease, early detection of survivin may be proposed as potential predictor for malignant alteration and screening tool in BEN patients without the diagnosis of UC.
Collapse
|
24
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|