1
|
Cockbain B, Fidler S, Lyall H. Preventing perinatal HIV acquisition; current gaps and future perspectives. Curr Opin HIV AIDS 2024; 19:293-304. [PMID: 39196368 PMCID: PMC11451969 DOI: 10.1097/coh.0000000000000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
PURPOSE OF REVIEW Although current treatment could eradicate vertical transmission, in 2022, 130 000 infants acquired HIV globally. HIV suppression with antiretroviral therapy (ART) transforms survival for people living with HIV (PLWH), and prevents transmission, including vertical. International guidelines recommend lifelong ART for PLWH, consequently perinatal HIV acquisition reflects implementation gaps in the HIV care cascade. We summarize these gaps, exploring potential novel approaches and therapeutic innovations towards eliminating vertical HIV transmission. RECENT FINDINGS Multifactorial challenges continue to underpin gaps in the HIV care cascade, including accessibility, availability and sustainability of HIV testing, prevention and treatment, alongside stigma, gender-based violence and poverty. Long-acting ART may be important in preventing perinatal HIV acquisition, with early data demonstrating tolerability and efficacy of injectable ART throughout pregnancy, both as HIV treatment and prevention. Carefully selected long-acting broadly neutralizing antibodies (bNAbs) matching circulating, exposing viral envelope sequences have demonstrated safety, clinical trials are ongoing to demonstrate efficacy. SUMMARY Emerging clinical studies should prioritize pregnant/lactating people and infants to ensure such therapies are well tolerated and efficacious. Alongside therapeutic innovation, programmatic strategies must address social and economic challenges, ensuring sustainable HIV treatment/prevention programmes and facilitating global elimination of blood-borne viruses.
Collapse
Affiliation(s)
- Beatrice Cockbain
- Department of Infectious Disease, Imperial College London, Imperial College NIHR BRC
- Chelsea and Westminster Hospital NHS Foundation Trust
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, Imperial College NIHR BRC
- Department of Infectious Disease and NIHR Imperial BRC, Imperial College London, UK
| | - Hermione Lyall
- Department of Infectious Disease and NIHR Imperial BRC, Imperial College London, UK
| |
Collapse
|
2
|
Bengu N, Cromhout G, Adland E, Govender K, Herbert N, Lim N, Fillis R, Sprenger K, Vieira V, Kannie S, van Lobenstein J, Chinniah K, Kapongo C, Bhoola R, Krishna M, Mchunu N, Pascucci GR, Cotugno N, Palma P, Tagarro A, Rojo P, Roider J, Garcia-Guerrero MC, Ochsenbauer C, Groll A, Reddy K, Giaquinto C, Rossi P, Hong S, Dong K, Ansari MA, Puertas MC, Ndung'u T, Capparelli E, Lichterfeld M, Martinez-Picado J, Kappes JC, Archary M, Goulder P. Sustained aviremia despite anti-retroviral therapy non-adherence in male children after in utero HIV transmission. Nat Med 2024; 30:2796-2804. [PMID: 38843818 PMCID: PMC11485204 DOI: 10.1038/s41591-024-03105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
After sporadic reports of post-treatment control of HIV in children who initiated combination anti-retroviral therapy (cART) early, we prospectively studied 284 very-early-cART-treated children from KwaZulu-Natal, South Africa, after vertical HIV transmission to assess control of viremia. Eighty-four percent of the children achieved aviremia on cART, but aviremia persisting to 36 or more months was observed in only 32%. We observed that male infants have lower baseline plasma viral loads (P = 0.01). Unexpectedly, a subset (n = 5) of males maintained aviremia despite unscheduled complete discontinuation of cART lasting 3-10 months (n = 4) or intermittent cART adherence during 17-month loss to follow-up (n = 1). We further observed, in vertically transmitted viruses, a negative correlation between type I interferon (IFN-I) resistance and viral replication capacity (VRC) (P < 0.0001) that was markedly stronger for males than for females (r = -0.51 versus r = -0.07 for IFN-α). Although viruses transmitted to male fetuses were more IFN-I sensitive and of higher VRC than those transmitted to females in the full cohort (P < 0.0001 and P = 0.0003, respectively), the viruses transmitted to the five males maintaining cART-free aviremia had significantly lower replication capacity (P < 0.0001). These data suggest that viremic control can occur in some infants with in utero-acquired HIV infection after early cART initiation and may be associated with innate immune sex differences.
Collapse
Affiliation(s)
- Nomonde Bengu
- Queen Nandi Regional Hospital, Empangeni, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rowena Fillis
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Kenneth Sprenger
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Samantha Kannie
- General Justice Gizenga Mpanza Regional Hospital, Stanger, South Africa
| | | | | | | | - Roopesh Bhoola
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Malini Krishna
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Noxolo Mchunu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Giuseppe Rubens Pascucci
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Probiomics S.r.l., Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Pablo Rojo
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | | | | | | | | | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Paolo Rossi
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Seohyun Hong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain
| | - John C Kappes
- University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, USA
| | - Moherndran Archary
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Africa Health Research Institute, Durban, South Africa.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
3
|
Mihealsick E, Word A, Scully EP. The impact of sex on HIV immunopathogenesis and therapeutic interventions. J Clin Invest 2024; 134:e180075. [PMID: 39286972 PMCID: PMC11405047 DOI: 10.1172/jci180075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Globally, the majority of people living with HIV are women or girls, but they have been a minority of participants in clinical trials and observational studies of HIV. Despite this underrepresentation, differences in the pathogenesis of HIV have been observed between men and women, with contributions from both gender- and sex-based factors. These include differences in the risk of HIV acquisition, in viral load set point and immune activation in responses to viremia, and differences in HIV reservoir maintenance. These differences obligate adequate study in both males and females in order to optimize treatments, but also provide a powerful leverage point for delineating the mechanisms of HIV pathogenesis. The shifts in exposure to sex steroid hormones across a lifespan introduce additional complexity, which again can be used to focus on either genetic or hormonal influences as the driver of an outcome. In this Review, we discuss consistent and reproducible differences by sex across the spectrum of HIV, from acquisition through pathogenesis, treatment, and cure, and explore potential mechanisms and gaps in knowledge.
Collapse
Affiliation(s)
| | | | - Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Alur P, Holla I, Hussain N. Impact of sex, race, and social determinants of health on neonatal outcomes. Front Pediatr 2024; 12:1377195. [PMID: 38655274 PMCID: PMC11035752 DOI: 10.3389/fped.2024.1377195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Despite the global improvements in neonatal outcomes, mortality and morbidity rates among preterm infants are still unacceptably high. Therefore, it is crucial to thoroughly analyze the factors that affect these outcomes, including sex, race, and social determinants of health. By comprehending the influence of these factors, we can work towards reducing their impact and enhancing the quality of neonatal care. This review will summarize the available evidence on sex differences, racial differences, and social determinants of health related to neonates. This review will discuss sex differences in neonatal outcomes in part I and racial differences with social determinants of health in part II. Research has shown that sex differences begin to manifest in the early part of the pregnancy. Hence, we will explore this topic under two main categories: (1) Antenatal and (2) Postnatal sex differences. We will also discuss long-term outcome differences wherever the evidence is available. Multiple factors determine health outcomes during pregnancy and the newborn period. Apart from the genetic, biological, and sex-based differences that influence fetal and neonatal outcomes, racial and social factors influence the health and well-being of developing humans. Race categorizes humans based on shared physical or social qualities into groups generally considered distinct within a given society. Social determinants of health (SDOH) are the non-medical factors that influence health outcomes. These factors can include a person's living conditions, access to healthy food, education, employment status, income level, and social support. Understanding these factors is essential in developing strategies to improve overall health outcomes in communities.
Collapse
Affiliation(s)
- Pradeep Alur
- Penn State College of Medicine, Hampden Medical Center, Enola, PA, United States
| | - Ira Holla
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Naveed Hussain
- Department of Pediatrics, Connecticut Children’s, Hartford, CT, United States
| |
Collapse
|
5
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
6
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Abstract
Biological sex has wide-ranging impacts on HIV infection spanning differences in acquisition risk, the pathogenesis of untreated infection, impact of chronic treated disease and prospects for HIV eradication or functional cure. This chapter summarizes the scope of these differences and discusses several features of the immune response thought to contribute to the clinical outcomes.
Collapse
Affiliation(s)
- Marcus Altfeld
- Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Brown R, Goulder P, Matthews PC. Sexual Dimorphism in Chronic Hepatitis B Virus (HBV) Infection: Evidence to Inform Elimination Efforts. Wellcome Open Res 2022; 7:32. [PMID: 36212217 PMCID: PMC9520633 DOI: 10.12688/wellcomeopenres.17601.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Sexual dimorphism in infectious diseases refers to the different infection susceptibilities and outcomes between males and females, and has been described for many pathogens, including hepatitis B virus (HBV). HBV is a substantial global health problem, with close to 300 million people chronically infected, and accounting for a million deaths each year, with an urgent need for enhanced interventions to support progress towards elimination goals. Sexual dimorphism has a strong influence in HBV infection, with males more likely to be exposed, to develop chronic infection, and to suffer from complications including cirrhosis and hepatocellular carcinoma (HCC) compared to females. Different outcomes are driven by differential immune responses, sexual dimorphism of the liver, and androgen response elements in the HBV genome. The impact of sex may also vary with age, with changes at puberty and influences of menarche, pregnancy and menopause in females. In addition, gender has complex influences on education, beliefs, behaviour and access to / engagement with healthcare services, which may contribute to differences in diagnosis and treatment. Interplay between these complex factors, alongside other attributes of host, virus and the environment, accounts for different outcomes of infection. However, gaps remain in our understanding of sexual dimorphism in HBV, and little effort has previously been made to harness this knowledge for translational gains. In this review, we assimilate human and animal data to consider the mechanism, outcomes and impact of sexual dimorphism, and consider how these insights can be used to inform advances in surveillance, treatment and prevention for HBV infection.
Collapse
Affiliation(s)
- Robin Brown
- Harris Manchester College, University of Oxford, Oxford, Oxon, OX1 3TD, UK
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, Oxon, OX1 3SY, UK
| | - Philippa C. Matthews
- Harris Manchester College, University of Oxford, Oxford, Oxon, OX1 3TD, UK
- The Francis Crick Institute, London, London, NW1 1AT, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Infectious Diseases, University College London Hospital, London, NW1 2BU, UK
| |
Collapse
|
10
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
11
|
Brown R, Goulder P, Matthews PC. Sexual Dimorphism in Chronic Hepatitis B Virus (HBV) Infection: Evidence to Inform Elimination Efforts. Wellcome Open Res 2022; 7:32. [PMID: 36212217 PMCID: PMC9520633 DOI: 10.12688/wellcomeopenres.17601.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 08/27/2024] Open
Abstract
Sexual dimorphism in infectious diseases refers to the different infection susceptibilities and outcomes between males and females, and has been described for many pathogens, including hepatitis B virus (HBV). HBV is a substantial global health problem, with close to 300 million people chronically infected, and accounting for a million deaths each year, with an urgent need for enhanced interventions to support progress towards elimination goals. Sexual dimorphism has a strong influence in HBV infection, with males more likely to be exposed, to develop chronic infection, and to suffer from complications including cirrhosis and hepatocellular carcinoma (HCC) compared to females. Different outcomes are driven by differential immune responses, sexual dimorphism of the liver, and androgen response elements in the HBV genome. The impact of sex may also vary with age, with changes at puberty and influences of menarche, pregnancy and menopause in females. In addition, gender has complex influences on education, beliefs, behaviour and access to / engagement with healthcare services, which may contribute to differences in diagnosis and treatment. Interplay between these complex factors, alongside other attributes of host, virus and the environment, accounts for different outcomes of infection. However, gaps remain in our understanding of sexual dimorphism in HBV, and little effort has previously been made to harness this knowledge for translational gains. In this review, we assimilate human and animal data to consider the mechanism, outcomes and impact of sexual dimorphism, and consider how these insights can be used to inform advances in surveillance, treatment and prevention for HBV infection.
Collapse
Affiliation(s)
- Robin Brown
- Harris Manchester College, University of Oxford, Oxford, Oxon, OX1 3TD, UK
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, Oxon, OX1 3SY, UK
| | - Philippa C. Matthews
- Harris Manchester College, University of Oxford, Oxford, Oxon, OX1 3TD, UK
- The Francis Crick Institute, London, London, NW1 1AT, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Infectious Diseases, University College London Hospital, London, NW1 2BU, UK
| |
Collapse
|
12
|
Brown R, Goulder P, Matthews PC. Sexual Dimorphism in Chronic Hepatitis B Virus (HBV) Infection: Evidence to Inform Elimination Efforts. Wellcome Open Res 2022; 7:32. [PMID: 36212217 PMCID: PMC9520633 DOI: 10.12688/wellcomeopenres.17601.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 09/06/2024] Open
Abstract
Sexual dimorphism in infectious diseases refers to the different infection susceptibilities and outcomes between males and females, and has been described for many pathogens, including hepatitis B virus (HBV) infection. HBV is a substantial global health problem, with close to 300 million people infected, and accounting for a million deaths each year, with an urgent need for enhanced interventions to support progress towards elimination goals. Sexual dimorphism has a strong influence in HBV infection, with males more likely to be exposed, to develop chronic infection, and to suffer from complications including cirrhosis and hepatocellular carcinoma (HCC) compared to females. Different outcomes are driven by differential immune responses, sexual dimorphism of the liver, and androgen response elements in the HBV genome. The impact of sex may also vary with age, with changes at puberty and influences of menarche, pregnancy and menopause in females. In addition, gender has complex influences on education, beliefs, behaviour and access to / engagement with healthcare services, which may contribute to differences in diagnosis and treatment. Interplay between these complex factors, alongside other attributes of host, virus and the environment, accounts for different outcomes of infection. However, gaps remain in our understanding of sexual dimorphism in HBV, and little effort has previously been made to harness this knowledge for translational gains. In this review, we assimilate human and animal data to consider the mechanism, outcomes and impact of sexual dimorphism, considering how these insights can be used to inform advances in surveillance, treatment and prevention for HBV infection.
Collapse
Affiliation(s)
- Robin Brown
- Harris Manchester College, University of Oxford, Oxford, Oxon, OX1 3TD, UK
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, Oxon, OX1 3SY, UK
| | - Philippa C. Matthews
- Harris Manchester College, University of Oxford, Oxford, Oxon, OX1 3TD, UK
- The Francis Crick Institute, London, London, NW1 1AT, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Infectious Diseases, University College London Hospital, London, NW1 2BU, UK
| |
Collapse
|
13
|
Zacharopoulou P, Marchi E, Ogbe A, Robinson N, Brown H, Jones M, Parolini L, Pace M, Grayson N, Kaleebu P, Rees H, Fidler S, Goulder P, Klenerman P, Frater J. Expression of type I interferon-associated genes at antiretroviral therapy interruption predicts HIV virological rebound. Sci Rep 2022; 12:462. [PMID: 35013427 PMCID: PMC8748440 DOI: 10.1038/s41598-021-04212-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although certain individuals with HIV infection can stop antiretroviral therapy (ART) without viral load rebound, the mechanisms under-pinning 'post-treatment control' remain unclear. Using RNA-Seq we explored CD4 T cell gene expression to identify evidence of a mechanism that might underpin virological rebound and lead to discovery of associated biomarkers. Fourteen female participants who received 12 months of ART starting from primary HIV infection were sampled at the time of stopping therapy. Two analysis methods (Differential Gene Expression with Gene Set Enrichment Analysis, and Weighted Gene Co-expression Network Analysis) were employed to interrogate CD4+ T cell gene expression data and study pathways enriched in post-treatment controllers versus early rebounders. Using independent analysis tools, expression of genes associated with type I interferon responses were associated with a delayed time to viral rebound following treatment interruption (TI). Expression of four genes identified by Cox-Lasso (ISG15, XAF1, TRIM25 and USP18) was converted to a Risk Score, which associated with rebound (p < 0.01). These data link transcriptomic signatures associated with innate immunity with control following stopping ART. The results from this small sample need to be confirmed in larger trials, but could help define strategies for new therapies and identify new biomarkers for remission.
Collapse
Affiliation(s)
- P Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Grayson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - H Rees
- Wits Reproductive Health and HIV Institute of the University of the Witwatersrand in Johannesburg, Johannesburg, South Africa
| | - S Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
| | - P Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - J Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- National Institute of Health Research Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
14
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Zhao G, Xu Y, Li J, Cui X, Tan X, Zhang H, Dang L. Sex differences in immune responses to SARS-CoV-2 in patients with COVID-19. Biosci Rep 2021; 41:BSR20202074. [PMID: 33350432 PMCID: PMC7846967 DOI: 10.1042/bsr20202074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Millions of people infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been diagnosed with coronavirus infectious disease 2019 (COVID-19). The prevalence and severity of COVID-19 differ between sexes. To explain these differences, we analyzed clinical features and laboratory values in male and female COVID-19 patients. The present study included a cohort of 111 people, i.e. 36 COVID-19 patients, 54 sex- and age-matched common viral community-acquired pneumonia (CAP) patients, and 21 healthy controls. Monocyte counts, lymphocyte subset counts, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), and C-reactive protein (CRP) levels in the peripheral blood were analyzed. Higher Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, monocyte counts, and CRP and ALT levels were found in male COVID-19 patients. Decreased lymphocyte subset counts and proportions were observed in COVID-19 patients, except for the CD3+ and CD8+ T cell proportions. The lower CD4+ T cell proportions and higher CD8+ T cell proportions were observed in male and severe COVID-19 patients and the differences were independent of estrogen level. The CD4+ T cell proportion was negatively associated with the CD8+ T cell proportion in male COVID-19 patients; this correlation was non-significant in females. Our work demonstrates differences between sexes in circulating monocyte counts and CD4+ T cell and CD8+ T cell proportions in COVID-19 patients, independent of estrogen levels, are associated with the clinical manifestations in COVID-19 patients with high specificity.
Collapse
Affiliation(s)
- Guolian Zhao
- Department of Laboratory Medicine, Xi’an Chest Hospital, Xi’an, China
| | - Yazhou Xu
- Department of Etio-biology, Southern Medical University, Guangzhou, China
| | - Jing Li
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoli Cui
- Department of Laboratory Medicine, Xi’an Chest Hospital, Xi’an, China
| | - Xiaowen Tan
- Department of Laboratory Medicine, Xi’an Chest Hospital, Xi’an, China
| | - Hongyue Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Liyun Dang
- Department of Laboratory Medicine, Xi’an Chest Hospital, Xi’an, China
| |
Collapse
|
16
|
Singh A, Kazer SW, Roider J, Krista KC, Millar J, Asowata OE, Ngoepe A, Ramsuran D, Fardoos R, Ardain A, Muenchhoff M, Kuhn W, Karim F, Ndung'u T, Shalek AK, Goulder P, Leslie A, Kløverpris HN. Innate Lymphoid Cell Activation and Sustained Depletion in Blood and Tissue of Children Infected with HIV from Birth Despite Antiretroviral Therapy. Cell Rep 2020; 32:108153. [PMID: 32937142 PMCID: PMC7495043 DOI: 10.1016/j.celrep.2020.108153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/14/2020] [Accepted: 08/25/2020] [Indexed: 12/04/2022] Open
Abstract
Innate lymphoid cells (ILCs) are important for response to infection and for immune development in early life. HIV infection in adults depletes circulating ILCs, but the impact on children infected from birth remains unknown. We study vertically HIV-infected children from birth to adulthood and find severe and persistent depletion of all circulating ILCs that, unlike CD4+ T cells, are not restored by long-term antiretroviral therapy unless initiated at birth. Remaining ILCs upregulate genes associated with cellular activation and metabolic perturbation. Unlike HIV-infected adults, ILCs are also profoundly depleted in tonsils of vertically infected children. Transcriptional profiling of remaining ILCs reveals ongoing cell-type-specific activity despite antiretroviral therapy. Collectively, these data suggest an important and ongoing role for ILCs in lymphoid tissue of HIV-infected children from birth, where persistent depletion and sustained transcriptional activity are likely to have long-term immune consequences that merit further investigation.
Collapse
Affiliation(s)
- Alveera Singh
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Samuel W Kazer
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Julia Roider
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa; Medizinische Klinik IV, Department of Infectious Diseases, Ludwig-Maximilians-University, Munich 80802, Germany
| | - Kami C Krista
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Jane Millar
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa
| | | | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Duran Ramsuran
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Amanda Ardain
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Maximilian Muenchhoff
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich 81377, Germany; German Center for Infection Research (DZIF), partner site Munich 80333, Germany
| | - Warren Kuhn
- ENT Department General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Philip Goulder
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Henrik N Kløverpris
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200N, Denmark; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
17
|
Kalawan V, Naidoo K, Archary M. Impact of routine birth early infant diagnosis on neonatal HIV treatment cascade in eThekwini district, South Africa. South Afr J HIV Med 2020; 21:1084. [PMID: 32537251 PMCID: PMC7276481 DOI: 10.4102/sajhivmed.v21i1.1084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Early infant diagnosis (EID) of human immunodeficiency virus (HIV) and early initiation of antiretroviral therapy (ART) in HIV-infected infants can reduce the risk of mortality and improve clinical outcomes. Infant testing guidelines in KwaZulu-Natal, South Africa, changed from targeted birth EID (T-EID) only in high-risk infants to a routine birth EID (R-EID) testing strategy in 2015. Objectives To describe the impact of the implementation of R-EID on the infant treatment cascade. Method A retrospective analysis of a facility-based clinical database for the eThekwini district and the National Health Laboratory Services (NHLS) was conducted. All data on neonates (< 4 weeks of age) diagnosed with HIV between January 2013 and December 2017 (T-EID [2013-2015] and R-EID [2016-2017]) were extracted including follow-up until 1 year post-diagnosis. Results A total of 503 neonates were diagnosed HIV-infected, with 468 (93.0%) initiated on ART within a median of 6 days. There was a significant increase in the estimated percentage of HIV-infected neonates diagnosed (21% vs. 86%, p < 0.001) and initiated on ART (90% vs. 94.3%, p < 0.001) between the T-EID and R-EID periods. Despite achieving over 90% of HIV-infected neonates diagnosed and initiated on ART in 2017, retention in care and viral suppression remained low. Conclusion Implementation of R-EID in eThekwini district improved diagnosis and initiation of ART in HIV-infected neonates and should be recommended as part of diagnostic guidelines. These gains are, however, lost because of poor retention in care and viral suppression rates and therefore required urgent attention.
Collapse
Affiliation(s)
- Vidya Kalawan
- Department of Paediatrics and Children Health, University of KwaZulu-Natal, Durban, South Africa.,King Dinizulu Hospital, Durban, South Africa
| | - Kevindra Naidoo
- Maternal Adolescent and Child Health (MatCH), University of the Witwatersrand, Johannesburg, South Africa
| | - Moherndran Archary
- Department of Paediatrics and Children Health, University of KwaZulu-Natal, Durban, South Africa.,King Edward VIII Hospital, Durban, South Africa
| |
Collapse
|