1
|
Liu H, Wang J, Zhang W, Zhao X, Jin H. AjMALT1 promotes Vibrio splendidus-induced inflammation through the NF-κB pathway in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105346. [PMID: 39984065 DOI: 10.1016/j.dci.2025.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), an intracellular signaling molecule, is widely expressed during inflammatory responses. To investigate the immune function of AjMALT1 in Apostichopus japonicus, the full length of AjMALT1 gene was cloned using transcriptome data and RACE technology. The results showed that AjMALT1 was distributed in all tissues, with higher expression found in coelomocytes and intestine. The expression of AjMALT1 was significantly upregulated in Vibrio splendidus-challenged sea cucumbers, as well as in coelomocytes exposed to inactive V. splendidus, and was positively correlated with the expression of the pro-inflammatory cytokine AjIL17 and the inflammasome component AjNLRP3. Further investigation using specific siRNA to silence AjMALT1 for 48 h revealed that the expression of AjIL17 and AjNLRP3 was reduced under V. splendidus stimulation. Additionally, histological observations showed a decrease in intestinal inflammation. Interference with AjMALT1 also led to downregulation of AjTRAF6 and AjRel expression, as well as inhibited nuclear translocation of AjRel. These findings suggest AjMALT1 exacerbates intestinal and coelomic inflammation by activating the AjTRAF6-dependent NF-κB pathway in A. japonicus.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Jiping Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Xuelin Zhao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China.
| | - Heng Jin
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, 315000, PR China
| |
Collapse
|
2
|
Wu EJ, Kandalkar AT, Ehrmann JF, Tong AB, Zhang J, Cong Q, Wu H. A structural atlas of death domain fold proteins reveals their versatile roles in biology and function. Proc Natl Acad Sci U S A 2025; 122:e2426986122. [PMID: 39977327 PMCID: PMC11874512 DOI: 10.1073/pnas.2426986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Death domain fold (DDF) superfamily proteins are critically important players in pathways of cell death and inflammation. DDFs are often essential scaffolding domains in receptors, adaptors, or effectors of these pathways by mediating homo- and hetero-oligomerization including helical filament assembly. At the downstream ends of these pathways, effector oligomerization by DDFs brings the enzyme domains into proximity for their dimerization and activation. Hundreds of structures of these domains have been solved. However, a comprehensive understanding of DDFs is lacking. In this article, we report the curation of a DDF structural atlas as a public website (deathdomain.org) and deduce the common and distinct principles of DDF-mediated oligomerization among the four families (death domain or DD, death effector domain or DED, caspase recruitment domain or CARD, and pyrin domain or PYD). We further annotate DDFs genome-wide based on AlphaFold-predicted models and protein sequences. These studies reveal mechanistic rules for this widely distributed domain superfamily.
Collapse
Affiliation(s)
- Emily J. Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Saratoga High School, Saratoga, CA95070
| | - Ankita T. Kandalkar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Alexander B. Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences, Chemistry Graduate Group, University of California, Berkeley, CA94720
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| |
Collapse
|
3
|
Lalit F, Jose A. Selecting genes for analysis using historically contingent progress: from RNA changes to protein-protein interactions. Nucleic Acids Res 2025; 53:gkae1246. [PMID: 39788543 PMCID: PMC11717427 DOI: 10.1093/nar/gkae1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for detailed study given limited resources. The partially subjective relationships between genes forged by both deduced functional relatedness and biased progress in the field were captured as mutual information and used to cluster genes that were frequently identified yet remain understudied. Some proteins encoded by these understudied genes are predicted to physically interact with known regulators of RNA silencing, suggesting feedback regulation. Predicted interactions with proteins that act in other processes and the clustering of studied genes among the most frequently perturbed suggest regulatory links connecting RNA silencing to other processes like the cell cycle and asymmetric cell division. Thus, among the gene products altered when a process is perturbed could be regulators of that process acting to restore homeostasis, which provides a way to use RNA sequencing to identify candidate protein-protein interactions. Together, the analysis of perturbed transcripts and potential interactions of the proteins they encode could help prioritize candidate regulators of any process.
Collapse
Affiliation(s)
- Farhaan Lalit
- University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Antony M Jose
- University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| |
Collapse
|
4
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Chen S, Fan H, Ran C, Hong Y, Feng H, Yue Z, Zhang H, Pontarotti P, Xu A, Huang S. The IL-17 pathway intertwines with neurotrophin and TLR/IL-1R pathways since its domain shuffling origin. Proc Natl Acad Sci U S A 2024; 121:e2400903121. [PMID: 38683992 PMCID: PMC11087794 DOI: 10.1073/pnas.2400903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.
Collapse
Affiliation(s)
- Shenghui Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Huiping Fan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Chenrui Ran
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Yun Hong
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Huixiong Feng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Zirui Yue
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Pierre Pontarotti
- MEPHI (Microbes, Evolution, Phylogénie et Infection), Aix Marseille Université, Marseille, France
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing100029, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
6
|
Godthi A, Min S, Das S, Cruz-Corchado J, Deonarine A, Misel-Wuchter K, Issuree PD, Prahlad V. Neuronal IL-17 controls Caenorhabditis elegans developmental diapause through CEP-1/p53. Proc Natl Acad Sci U S A 2024; 121:e2315248121. [PMID: 38483995 PMCID: PMC10963014 DOI: 10.1073/pnas.2315248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
During metazoan development, how cell division and metabolic programs are coordinated with nutrient availability remains unclear. Here, we show that nutrient availability signaled by the neuronal cytokine, ILC-17.1, switches Caenorhabditis elegans development between reproductive growth and dormancy by controlling the activity of the tumor suppressor p53 ortholog, CEP-1. Specifically, upon food availability, ILC-17.1 signaling by amphid neurons promotes glucose utilization and suppresses CEP-1/p53 to allow growth. In the absence of ILC-17.1, CEP-1/p53 is activated, up-regulates cell-cycle inhibitors, decreases phosphofructokinase and cytochrome C expression, and causes larvae to arrest as stress-resistant, quiescent dauers. We propose a model whereby ILC-17.1 signaling links nutrient availability and energy metabolism to cell cycle progression through CEP-1/p53. These studies describe ancestral functions of IL-17 s and the p53 family of proteins and are relevant to our understanding of neuroimmune mechanisms in cancer. They also reveal a DNA damage-independent function of CEP-1/p53 in invertebrate development and support the existence of a previously undescribed C. elegans dauer pathway.
Collapse
Affiliation(s)
- Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Sehee Min
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Srijit Das
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Johnny Cruz-Corchado
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Andrew Deonarine
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Kara Misel-Wuchter
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Priya D. Issuree
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| |
Collapse
|
7
|
Vérièpe-Salerno J, Podavini S, Long MJ, Kolotuev I, Cuendet M, Thome M. MALT-1 shortens lifespan by inhibiting autophagy in the intestine of C. elegans. AUTOPHAGY REPORTS 2023; 2:2277584. [PMID: 38510643 PMCID: PMC7615756 DOI: 10.1080/27694127.2023.2277584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 03/22/2024]
Abstract
The caspase-like protease MALT1 promotes immune responses and oncogenesis in mammals by activating the transcription factor NF-κB. MALT1 is remarkably conserved from mammals to simple metazoans devoid of NF-κB homologs, like the nematode C. elegans. To discover more ancient, NF-κB -independent MALT1 functions, we analysed the phenotype of C. elegans upon silencing of MALT-1 expression systemically or in a tissue-specific manner. MALT-1 silencing in the intestine caused a significant increase in life span, whereas intestinal overexpression of MALT-1 shortened life expectancy. Interestingly, MALT-1-deficient animals showed higher constitutive levels of autophagy in the intestine, which were particularly evident in aged or starved nematodes. Silencing of the autophagy regulators ATG-13, BEC-1 or LGG-2, but not the TOR homolog LET-363, reversed lifespan extension caused by MALT-1 deficiency. These findings suggest that MALT-1 limits the lifespan of C. elegans by acting as an inhibitor of an early step of autophagy in the intestine.
Collapse
Affiliation(s)
- Julie Vérièpe-Salerno
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Silvia Podavini
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Marcus J.C. Long
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, Quartier Sorge – Biophore, CH-1015 Lausanne, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Margot Thome
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
8
|
Desbois M, Pak JS, Opperman KJ, Giles AC, Grill B. Optimized protocol for in vivo affinity purification proteomics and biochemistry using C. elegans. STAR Protoc 2023; 4:102262. [PMID: 37294631 PMCID: PMC10323129 DOI: 10.1016/j.xpro.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/11/2023] Open
Abstract
We present an optimized protocol for in vivo affinity purification proteomics and biochemistry using the model organism C. elegans. We describe steps for target tagging, large-scale culture, affinity purification using a cryomill, mass spectrometry and validation of candidate binding proteins. Our approach has proven successful for identifying protein-protein interactions and signaling networks with verified functional relevance. Our protocol is also suitable for biochemical evaluation of protein-protein interactions in vivo. For complete details on the use and execution of this protocol, please refer to Crawley et al.,1 Giles et al.,2 and Desbois et al.3.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joseph S Pak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9 Canada
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington Medical School, Seattle, WA 98101, USA; Department of Pharmacology, University of Washington Medical School, Seattle, WA 98101, USA.
| |
Collapse
|
9
|
Zhu Y, Wang Z, Yu S, Zhao C, Xu B, Liu R, Xu L, Guo Y. Neuroprotective Effect of Ginseng Fibrous Root Enzymatic Hydrolysate against Oxidative Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227824. [PMID: 36431931 PMCID: PMC9697448 DOI: 10.3390/molecules27227824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Oxidative stress is one of the potential causes of nervous system disease. Ginseng extract possesses excellent antioxidant activity; however, little research on the function of the ginseng fibrous root. This study aimed to investigate the neuroprotective effects of ginseng fibrous root to alleviate the pathogenesis of Alzheimer's disease (AD) against oxidative stress. Ginseng fibrous root enzymatic hydrolysate (GFREH) was first prepared by digesting ginseng fibrous roots with alkaline protease. In vitro, the GFREH showed antioxidant activities in free radical scavenging mechanisms. With a cellular model of AD, GFREH inhibited the increase in Ca2+ levels and intracellular ROS content, maintained the balance of mitochondrial membrane potential, and relieved L-glutamic acid-induced neurotoxicity. In vivo, GFREH improved the survival rate of Caenorhabditis elegans (C. elegans) under oxidative stress, upregulated SOD-3 expression, and reduced reactive oxygen species (ROS) content. Therefore, our findings provide evidence for the alleviation effect of GFREH against oxidative stress in neuroprotection, which may accelerate the development of anti-Alzheimer's drugs and treatments in the future.
Collapse
Affiliation(s)
- Yuhua Zhu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ziyan Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shuxuan Yu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chong Zhao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Baofeng Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Rui Liu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.X.); (Y.G.)
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.X.); (Y.G.)
| |
Collapse
|
10
|
Hanuscheck N, Thalman C, Domingues M, Schmaul S, Muthuraman M, Hetsch F, Ecker M, Endle H, Oshaghi M, Martino G, Kuhlmann T, Bozek K, van Beers T, Bittner S, von Engelhardt J, Vogt J, Vogelaar CF, Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med 2022; 219:213227. [PMID: 35587822 PMCID: PMC9123307 DOI: 10.1084/jem.20211887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα–deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα–deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα–deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Ecker
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mohammadsaleh Oshaghi
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne; University of Cologne, Cologne, Germany
| | - Tim van Beers
- Molecular Cell Biology, Institute I of Anatomy, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jakob von Engelhardt
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Specific Gain and Loss of Co-Expression Modules in Long-Lived Individuals Indicate a Role of circRNAs in Human Longevity. Genes (Basel) 2022; 13:genes13050749. [PMID: 35627134 PMCID: PMC9140997 DOI: 10.3390/genes13050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Deep RNA sequencing of 164 blood samples collected from long-lived families was performed to investigate the expression patterns of circular RNAs (circRNAs). Unlike that observed in previous studies, circRNA expression in long-lived elderly individuals (98.3 ± 3.4 year) did not exhibit an age-accumulating pattern. Based on weighted circRNA co-expression network analysis, we found that longevous elders specifically gained eight but lost seven conserved circRNA-circRNA co-expression modules (c-CCMs) compared with normal elder controls (spouses of offspring of long-lived individuals, age = 59.3 ± 5.8 year). Further analysis showed that these modules were associated with healthy aging-related pathways. These results together suggest an important role of circRNAs in regulating human lifespan extension.
Collapse
|
12
|
Pujol N, Ewbank JJ. C. elegans: out on an evolutionary limb. Immunogenetics 2021; 74:63-73. [PMID: 34761293 DOI: 10.1007/s00251-021-01231-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The natural environment of the free-living nematode Caenorhabditis elegans is rich in pathogenic microbes. There is now ample evidence to indicate that these pathogens exert a strong selection pressure on C. elegans, and have shaped its genome, physiology, and behaviour. In this short review, we concentrate on how C. elegans stands out from other animals in terms of its immune repertoire and innate immune signalling pathways. We discuss how C. elegans often detects pathogens because of their effects on essential cellular processes, or organelle integrity, in addition to direct microbial recognition. We illustrate the extensive molecular plasticity that is characteristic of immune defences in C. elegans and highlight some remarkable instances of lineage-specific innovation in innate immune mechanisms.
Collapse
Affiliation(s)
- Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France.
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
13
|
Vuong-Brender TT, Flynn S, Vallis Y, Sönmez SE, de Bono M. Neuronal calmodulin levels are controlled by CAMTA transcription factors. eLife 2021; 10:e68238. [PMID: 34499028 PMCID: PMC8428840 DOI: 10.7554/elife.68238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.
Collapse
Affiliation(s)
- Thanh Thi Vuong-Brender
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sean Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Yvonne Vallis
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Saliha E Sönmez
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
14
|
Wu Y, Zhu J, Liu H, Liu H. Licochalcone A improves the cognitive ability of mice by regulating T- and B-cell proliferation. Aging (Albany NY) 2021; 13:8895-8915. [PMID: 33714945 PMCID: PMC8034954 DOI: 10.18632/aging.202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Licochalcone A (LA), a flavonoid found in licorice, has anticancer, antioxidant, anti-inflammatory, and neuroprotective properties. Here, we explored the effect of injecting LA into the tail vein of middle-aged C57BL/6 mice on their cognitive ability as measured by the Morris water maze (MWM) test and cerebral blood flow (CBF). The related mechanisms were assessed via RNA-seq, and T (CD3e+) and B (CD45R/B220+) cells in the spleen and whole blood were quantified via flow cytometry. LA improved the cognitive ability, according to the MWM test results, and upregulated the CBF level of treated mice. The RNA-seq results indicate that LA affected the interleukin (IL)-17 signaling pathway, which is related to T- and B-cell proliferation, and the flow cytometry data suggest that LA promoted T- and B-cell proliferation in the spleen and whole blood. We also performed immune reconstruction via a tail vein injection of lymphocytes into B-NDG (NOD-PrkdcscidIl2rgtm1/Bcge) mice before treating them with LA. We tested cognitive ability by subjecting these animals to new object recognition tests and quantified the splenic and whole blood T and B cells. Cognitive ability improved after immune reconstruction and LA treatment, and LA promoted T- and B-cell proliferation in the spleen and whole blood. This study demonstrates that LA, by activating the IL-17 signaling pathway, promotes T- and B-cell proliferation in the spleen and whole blood of mice and improves cognitive ability. Thus, LA may have immune-modulating therapeutic potential for improving cognition.
Collapse
Affiliation(s)
- Yating Wu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830016, Xinjiang, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
15
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
16
|
How Bacteria Impact Host Nervous System and Behaviors: Lessons from Flies and Worms. Trends Neurosci 2020; 43:998-1010. [PMID: 33051027 DOI: 10.1016/j.tins.2020.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Behavior is the neuronally controlled, voluntary or involuntary response of an organism to its environment. An increasing body of evidence indicates that microbes, which live closely associated with animals or in their immediate surroundings, significantly influence animals' behavior. The extreme complexity of the nervous system of animals, combined with the extraordinary microbial diversity, are two major obstacles to understand, at the molecular level, how microbes modulate animal behavior. In this review, we discuss recent advances in dissecting the impact that bacteria have on the nervous system of two genetically tractable invertebrate models, Drosophila melanogaster and Caenorhabditis elegans.
Collapse
|
17
|
Ancestral function of Inhibitors-of-kappaB regulates Caenorhabditis elegans development. Sci Rep 2020; 10:16153. [PMID: 32999373 PMCID: PMC7527347 DOI: 10.1038/s41598-020-73146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Mammalian IκB proteins (IκBs) exert their main function as negative regulators of NF-κB, a central signaling pathway controlling immunity and inflammation. An alternative chromatin role for IκBs has been shown to affect stemness and cell differentiation. However, the involvement of NF-κB in this function has not been excluded. NFKI-1 and IKB-1 are IκB homologs in Caenorhabditis elegans, which lacks NF-κB nuclear effectors. We found that nfki-1 and ikb-1 mutants display developmental defects that phenocopy mutations in Polycomb and UTX-1 histone demethylase, suggesting a role for C. elegans IκBs in chromatin regulation. Further supporting this possibility (1) we detected NFKI-1 in the nucleus of cells; (2) NFKI-1 and IKB-1 bind to histones and Polycomb proteins, (3) and associate with chromatin in vivo, and (4) mutations in nfki-1 and ikb-1 alter chromatin marks. Based on these results, we propose that ancestral IκB inhibitors modulate Polycomb activity at specific gene subsets with an impact on development.
Collapse
|
18
|
|
19
|
Staal J, Driege Y, Haegman M, Kreike M, Iliaki S, Vanneste D, Lork M, Afonina IS, Braun H, Beyaert R. Defining the combinatorial space of PKC::CARD‐CC signal transduction nodes. FEBS J 2020; 288:1630-1647. [DOI: 10.1111/febs.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Staal
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Yasmine Driege
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Mira Haegman
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marja Kreike
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Styliani Iliaki
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Domien Vanneste
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marie Lork
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Inna S. Afonina
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Harald Braun
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| |
Collapse
|