1
|
Zhu K, Wang J, Wang Z, Chen Q, Song J, Chen X. Ultrasound-Activated Theranostic Materials and Their Bioapplications. Angew Chem Int Ed Engl 2025; 64:e202422278. [PMID: 40091509 DOI: 10.1002/anie.202422278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 03/19/2025]
Abstract
Ultrasound (US) is a promising external excitation modality for bioapplications, offering significant advantages over X-rays or lasers due to its low cost, high biosafety, and ideal tissue penetration depth. US-activated theranostic materials, comprising organic, inorganic, and hybrid-based compounds, hold particular value in synergistic cancer therapeutic and diagnostic applications. These materials exhibit excellent imaging properties, high drug delivery and release efficiency, and enhanced reactive oxygen species (ROS) production, making them suitable for clinical diagnostic imaging and therapeutic interventions. This review summarizes recent research on the design, performance, and optimization of US-mediated molecules/nanosystems for a wide range of biomedical applications. Additionally, the multifunctional use of these sonosensitizers in imaging, drug delivery, and sonodynamic therapy, especially in combination with other treatments, could pave the way for innovative strategies in disease therapy. Finally, an overview of this field's challenges and potential future directions is provided, highlighting pathways to promote clinical translation and application.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jimei Wang
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250000, P.R. China
| | - Qing Chen
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xiaoyuan Chen
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
2
|
Li X, He Y, Wang Y, Lin K, Lin X. CHARMM36 All-Atom Gas Model for Lipid Nanobubble Simulation. J Chem Inf Model 2024; 64:7503-7512. [PMID: 39262130 DOI: 10.1021/acs.jcim.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Lipid nanobubbles with different gas cores may integrate the biocompatibility of lipids, powerful physicochemical properties of nanobubbles, and therapeutic effects of gas molecules, which thus promote enormous biomedical applications such as ultrasound molecular imaging, gene/drug delivery, and gas therapy. In order for further more precise applications, the exact molecular mechanisms for the interactions between lipid nanobubbles and biological systems should be studied. Molecular dynamics (MD) simulation provides a powerful computational tool for this purpose. However, previous state-of-the-art MD simulations of free gas nanobubble/lipid nanobubble employed the vacuum as their gas cores, which is not suitable for studying the interactions between functional lipid nanobubbles and biological systems and revealing the biological roles of gas molecules. Hence, in this work, we developed and optimized the CHARMM36 all-atom gas parameters for six gases including N2, O2, H2, CO, CO2, and SO2, which accurately reproduced the gas density at different pressures as well as the spontaneous formation of gas nanobubbles. Subsequent applications of these gas parameters for lipid nanobubble simulations also reproduced the self-assembly process of the lipid nanobubble. We further developed a Python script to generate all-atom lipid nanobubble simulation systems, which was proven to be efficient for all-atom MD simulations of lipid nanobubbles and to be able to capture the exact dynamics of gas molecules at the gas-lipid and lipid-water interfaces of the lipid nanobubble. In summary, the all-atom gas models proposed in this work are suitable for simulating free gas nanobubbles and lipid nanobubbles, which are supposed to overcome the shortcomings of previous state-of-the-art MD simulations with the vacuum replacing the gas core and play key roles in revealing the molecular-level interactions between lipid nanobubbles and biological systems.
Collapse
Affiliation(s)
- Xiu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuan He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuxuan Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Kaidong Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Van Court B, Ciccaglione M, Neupert B, Knitz MW, Maroney SP, Nguyen D, Abdelazeem KNM, Exner AA, Saviola AJ, Benninger RKP, Karam SD. Heterogeneous Kinetics of Nanobubble Ultrasound Contrast Agent and Angiogenic Signaling in Head and Neck Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614362. [PMID: 39386624 PMCID: PMC11463497 DOI: 10.1101/2024.09.22.614362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recently developed nanobubble ultrasound contrast agents are a promising tool for imaging and drug delivery in tumors. To better understand their unusual kinetics, we implemented a novel pixel clustering analysis, which provides unique information by accounting for spatial heterogeneity. By combining ultrasound results with proteomics of the imaged tumors, we show that this analysis is highly predictive of protein expression and that specific types of nanobubble time-intensity curve are associated with upregulation of different metabolic pathways. We applied this method to study the effects of two proteins, EphB4 and ephrinB2, which control tumor angiogenesis through bidirectional juxtacrine signaling, in mouse models of head and neck cancer. We show that ephrinB2 expression by endothelial cells and EphB4 expression by cancer cells have similar effects on tumor vasculature, despite sometimes opposite effects on tumor growth. This implicates a cancer-cell-intrinsic effect of EphB4 forward signaling and not angiogenesis in EphB4's action as a tumor suppressor.
Collapse
|
4
|
Wu X, Chen F, Zhang Q, Tu J. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. BME FRONTIERS 2024; 5:0067. [PMID: 39301016 PMCID: PMC11411164 DOI: 10.34133/bmef.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Sonodynamic therapy (SDT) has emerged as a novel and highly researched advancement in the medical field. Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency. However, the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored. Alternatively, in the absence of bubble-shaped agents, some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT. Diagnostic and therapeutic ultrasound can also activate cavitation bubbles, which supply energy to sonosensitive agents, leading to the production of cytotoxic free radicals to achieve therapeutic effects. While inorganic materials often spark controversy in clinical applications, their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals. Some organic-inorganic hybrid sonosensitive systems have also been reported, combining the benefits of inorganic and organic sonosensitive agents. Alternatively, by employing cell surface modification engineering to enable cells to perform functions such as immune escape, drug loading, gas loading, and sonosensitivity, cellular sonosensitizers have also been developed. However, further exploration is needed on the acoustic properties, ability to generate reactive oxygen species (ROS), and potential clinical application of this cellular sonosensitizer. This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts, including organic, inorganic, combined organic-inorganic sonosensitizers, and cellular sonosensitizers. This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fulong Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Chu B, Chen Z, Wu X, Shi H, Jin X, Song B, Cui M, Zhao Y, Zhao Y, He Y, Wang H, Dong F. Photoactivated Gas-Generating Nanocontrast Agents for Long-Term Ultrasonic Imaging-Guided Combined Therapy of Tumors. ACS NANO 2024; 18:15590-15606. [PMID: 38847586 DOI: 10.1021/acsnano.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.
Collapse
Affiliation(s)
- Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Zhiming Chen
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaofeng Wu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Xiangbowen Jin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Yingying Zhao
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Fenglin Dong
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
6
|
Huang Q, Qi J, Zhou L, Wang Y, Zhang WX, Hu J, Tai R, Wang S, Liu A, Zhang L. Hydrogen Nanobubbles Generated In Situ from Nanoscale Zerovalent Iron with Water to Further Enhance Selenite Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4357-4367. [PMID: 38326940 DOI: 10.1021/acs.est.3c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.
Collapse
Affiliation(s)
- Qing Huang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juncheng Qi
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Airong Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
7
|
Mateus Gonçalves L, Andrade Barboza C, Almaça J. Diabetes as a Pancreatic Microvascular Disease-A Pericytic Perspective. J Histochem Cytochem 2024; 72:131-148. [PMID: 38454609 PMCID: PMC10956440 DOI: 10.1369/00221554241236535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes is not only an endocrine but also a vascular disease. Vascular defects are usually seen as consequence of diabetes. However, at the level of the pancreatic islet, vascular alterations have been described before symptom onset. Importantly, the cellular and molecular mechanisms underlying these early vascular defects have not been identified, neither how these could impact the function of islet endocrine cells. In this review, we will discuss the possibility that dysfunction of the mural cells of the microvasculature-known as pericytes-underlies vascular defects observed in islets in pre-symptomatic stages. Pericytes are crucial for vascular homeostasis throughout the body, but their physiological and pathophysiological functions in islets have only recently started to be explored. A previous study had already raised interest in the "microvascular" approach to this disease. With our increased understanding of the crucial role of the islet microvasculature for glucose homeostasis, here we will revisit the vascular aspects of islet function and how their deregulation could contribute to diabetes pathogenesis, focusing in particular on type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
8
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 PMCID: PMC11700473 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Karlinsky KT, Bismuth M, Aronovich R, Ilovitsh T. Nonlinear Frequency Mixing Ultrasound Imaging of Nanoscale Contrast Agents. IEEE Trans Biomed Eng 2024; 71:866-875. [PMID: 37812544 DOI: 10.1109/tbme.2023.3321743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Nanoscale ultrasound contrast agents show promise as alternatives for diagnostics and therapies due to their enhanced stability and ability to traverse blood vessels. Nonetheless, their reduced size limits echogenicity. This study introduces an enhanced nanobubble frequency mixing ultrasound imaging method, by capitalizing on their nonlinear acoustic response to dual-frequency excitation. METHODS A single broadband transducer (L12-3v) controlled by a programmable ultrasound system was used to transmit a dual-frequency single-cycle wavefront. The frequency mixing effect enabled simultaneous transducer capture of nanobubble-generated sum and difference frequencies in real time without the need for additional hardware or post-processing, by substituting the single-frequency wavefront in a standard contrast harmonic pulse inversion imaging protocol, with the dual-frequency wavefront. RESULTS Optimization experiments were conducted in tissue mimicking phantoms. Among the dual-frequency combinations that were tested, the highest contrast was obtained using 4&8 MHz. The nanobubble contrast improved with increased mechanical index, and achieved a maximal contrast improvement of 8.4 ± 0.5 dB compared to 4 MHz pulse inversion imaging. In imaging of a breast cancer tumor mouse model, after a systemic nanobubble injection, the contrast was improved by 3.4 ± 1.7, 4.8 ± 1.8, and 6.3 ± 1.6 dB for mechanical indices of 0.04, 0.08, and 0.1, respectively. CONCLUSION Nonlinear frequency mixing significantly improved the nanobubble contrast, which facilitated their imaging in-vivo. SIGNIFICANCE This study offers a new avenue to enhance ultrasound imaging utilizing nanobubbles, potentially leading to advancements in other diagnostic applications.
Collapse
|
10
|
Liu J, You Q, Liang F, Ma L, Zhu L, Wang C, Yang Y. Ultrasound-nanovesicles interplay for theranostics. Adv Drug Deliv Rev 2024; 205:115176. [PMID: 38199256 DOI: 10.1016/j.addr.2023.115176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Nanovesicles (NVs) are widely used in the treatment and diagnosis of diseases due to their excellent vascular permeability, good biocompatibility, high loading capacity, and easy functionalization. However, their yield and in vivo penetration depth limitations and their complex preparation processes still constrain their application and development. Ultrasound, as a fundamental external stimulus with deep tissue penetration, concentrated energy sources, and good safety, has been proven to be a patient-friendly and highly efficient strategy to overcome the restrictions of traditional clinical medicine. Recent research has shown that ultrasound can drive the generation of NVs, increase their yield, simplify their preparation process, and provide direct therapeutic effects and intelligent control to enhance the therapeutic effect of NVs. In addition, NVs, as excellent drug carriers, can enhance the targeting efficiency of ultrasound-based sonodynamic therapy or sonogenetic regulation and improve the accuracy of ultrasound imaging. This review provides a detailed introduction to the classification, generation, and modification strategies of NVs, emphasizing the impact of ultrasound on the formation of NVs and summarizing the enhanced treatment and diagnostic effects of NVs combined with ultrasound for various diseases.
Collapse
Affiliation(s)
- Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Mokudai T, Kawada M, Tadaki D, Hirano-Iwata A, Kanetaka H, Fujimori H, Takemoto E, Niwano M. Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water. ULTRASONICS SONOCHEMISTRY 2024; 103:106809. [PMID: 38364483 PMCID: PMC10879770 DOI: 10.1016/j.ultsonch.2024.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Our previous study showed that nanobubbles (NBs) encapsulating CO2 gas have bactericidal activity due to reactive oxygen species (ROS) (Yamaguchi et al., 2020). Here, we report that bulk NBs encapsulating CO2 can be efficiently generated by ultrasonically irradiating carbonated water using a piezoelectric transducer with a frequency of 1.7 MHz. The generated NBs were less than 100 nm in size and had a lifetime of 500 h. Furthermore, generation of ROS in the NB suspension was investigated using electron spin resonance spectroscopy and fluorescence spectrometry. The main ROS was found to be the hydroxyl radical, which is consistent with our previous observations. The bactericidal activity lasted for at least one week. Furthermore, a mist generated by atomizing the NB suspension with ultrasonic waves was confirmed to have the same bactericidal activity as the suspension itself. We believe that the strong, persistent bactericidal activity and radical generation phenomenon are unique to NBs produced by ultrasonic irradiation of carbonated water. We propose that entrapped CO2 molecules strongly interact with water at the NB interface to weaken the interface, and high-pressure CO2 gas erupts from this weakened interface to generate ROS with bactericidal activity.
Collapse
Affiliation(s)
- Takayuki Mokudai
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan; Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
| | - Michi Kawada
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tadaki
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyasu Kanetaka
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujimori
- Planning & Development Department, Takemoto Yohki Co., Ltd., Tokyo 111-0036, Japan
| | - Emiko Takemoto
- Planning & Development Department, Takemoto Yohki Co., Ltd., Tokyo 111-0036, Japan
| | - Michio Niwano
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
12
|
Guo P, Wang Q, Chen L, Dingya K, Wang B. Ultrasound-Responsive Micelle-Encapsulated Mesenchymal Stem Cell-Derived EVs for the Treatment of Lower Limb Microcirculation Disease. ACS OMEGA 2023; 8:49406-49419. [PMID: 38162755 PMCID: PMC10753545 DOI: 10.1021/acsomega.3c08133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Lower limb microcirculatory ischemic disease is a vascular disorder primarily characterized by limb pain, gangrene, and potential amputation. It can be caused by various factors, such as hyperglycemia, atherosclerosis, and infection. Due to the extremely narrow luminal diameter in lower limb microcirculatory ischemic lesions, both surgical and medical interventions face challenges in achieving satisfactory therapeutic outcomes within the microvessels. Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) exhibit promising potential in the treatment of microcirculation ischemic lesions due to their small size and ability to promote angiogenesis. After undergoing substantial losses during the process of EVs transportation, only a minimal fraction of EVs can effectively reach the site of microcirculatory lesions, thereby compromising the therapeutic efficacy for microcirculatory disorders. Herein, an ultrasound-responsive system utilizing 2-(dimethylamino)ethyl methacrylate-b-2-tetrahydropyranyl methacrylate (DMAEMA-b-THPMA) micelles to encapsulate MSCs-EVs has been successfully constructed, with the aim of achieving localized and targeted release of EVs at the site of microcirculatory lesions. The reversible addition-fragmentation chain transfer (RAFT) polymerization method facilitates the successful synthesis of diblock copolymers comprising monomer 2-(dimethylamino)ethyl methacrylate (DMAEMA) and monomer 2-tetrahydropyranyl methacrylate (THPMA). The DMAEMA-b-THPMA micelles exhibit a nanoscale structure, reliable biocompatibility, ultrasound responsiveness, and conspicuous protection of EVs. Furthermore, the implementation of low-energy-density ultrasound can enhance angiogenesis by upregulating the levels of the vascular endothelial growth factor (VEGF). In in vivo experiments, the ultrasound-responsive system of the DMAEMA-b-THPMA micelles and MSCs-EVs synergistically enhances therapeutic efficacy by promoting angiogenesis, improving vascular permeability, and optimizing vascular. In conclusion, this work demonstrates bioapplication of an ultrasound-responsive micellar nanosystem loaded with EVs for the treatment of lower limb microcirculatory ischemic disorders.
Collapse
Affiliation(s)
- Peng Guo
- The
Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qian Wang
- College
of Materials and Chemical Engineering, West
Anhui University, Luan 237012, Anhui, China
| | - Ling Chen
- The
First Affiliated Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Kun Dingya
- The
Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bing Wang
- The
Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
13
|
Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y, Hirano-Iwata A. Two-dimensional water-molecule-cluster layers at nanobubble interfaces. J Colloid Interface Sci 2023; 652:1775-1783. [PMID: 37678082 DOI: 10.1016/j.jcis.2023.08.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
HYPOTHESIS Bulk nanobubbles (NBs) have high surface charge densities and long lifetimes. Despite several attempts to understand the lifetime of NBs, their interfacial layer structure remains unknown. It is hypothesized that a specific interfacial layer exists with a hydrogen bond network that stabilizes NBs. EXPERIMENTS In situ infrared reflectance-absorption spectroscopy and density functional theory were used to determine the interfacial layer structure of NBs. Furthermore, nuclear magnetic resonance spectroscopy was used to examine the interfacial layer hardness of bubbles filled with N2, O2, and CO2, which was expected to depend on the encapsulated gas species. FINDINGS The interfacial layer was composed of three-, four-, and five-membered ring clusters of water molecules. An interface model was proposed in which a two-dimensional layer of clusters with large electric dipole moments is oriented toward the endohedral gas, and the hydrophobic surface is adjacent to the free water. The interfacial layer hardness was dependent on the interaction with the gas (N2 > O2 > CO2), which supports the proposed interface model. These findings can be generalized to the structure of water at gas-water interfaces.
Collapse
Affiliation(s)
- Michio Niwano
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| | - Teng Ma
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kazuki Iwata
- Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| | - Daisuke Tadaki
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hideaki Yamamoto
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasuo Kimura
- Department of Electric and Electronic Engineering, Tokyo University of Technology, Hachioji, Tokyo 192-0983, Japan
| | - Ayumi Hirano-Iwata
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan; Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| |
Collapse
|
14
|
Dhamija P, Mehata AK, Setia A, Priya V, Malik AK, Bonlawar J, Verma N, Badgujar P, Randhave N, Muthu MS. Nanotheranostics: Molecular Diagnostics and Nanotherapeutic Evaluation by Photoacoustic/Ultrasound Imaging in Small Animals. Mol Pharm 2023; 20:6010-6034. [PMID: 37931040 DOI: 10.1021/acs.molpharmaceut.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nanotheranostics is a rapidly developing field that integrates nanotechnology, diagnostics, and therapy to provide novel methods for imaging and treating wide categories of diseases. Targeted nanotheranostics offers a platform for the precise delivery of theranostic agents, and their therapeutic outcomes are monitored in real-time. Presently, in vivo magnetic resonance imaging, fluorescence imaging, ultrasound imaging, and photoacoustic imaging (PAI), etc. are noninvasive imaging techniques that are preclinically available for the imaging and tracking of therapeutic outcomes in small animals. Additionally, preclinical imaging is essential for drug development, phenotyping, and understanding disease stage progression and its associated mechanisms. Small animal ultrasound imaging is a rapidly developing imaging technique for theranostics applications due to its merits of being nonionizing, real-time, portable, and able to penetrate deep tissues. Recently, different types of ultrasound contrast agents have been explored, such as microbubbles, echogenic exosomes, gas-vesicles, and nanoparticles-based contrast agents. Moreover, an optical image obtained through photoacoustic imaging is a noninvasive imaging technique that creates ultrasonic waves when pulsed laser light is used to expose an object and creates a picture of the tissue's distribution of light energy absorption on the object. Contrast agents for photoacoustic imaging may be endogenous (hemoglobin, melanin, and DNA/RNA) or exogenous (dyes and nanomaterials-based contrast agents). The integration of nanotheranostics with photoacoustic and ultrasound imaging allows simultaneous imaging and treatment of diseases in small animals, which provides essential information about the drug response and the disease progression. In this review, we have covered various endogenous and exogenous contrast agents for ultrasound and photoacoustic imaging. Additionally, we have discussed various drug delivery systems integrated with contrast agents for theranostic application. Further, we have briefly discussed the current challenges associated with ultrasound and photoacoustic imaging.
Collapse
Affiliation(s)
- Piyush Dhamija
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
15
|
Nittayacharn P, Abenojar E, Cooley M, Berg F, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555196. [PMID: 37732235 PMCID: PMC10508722 DOI: 10.1101/2023.09.01.555196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe Berg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, Zhou J. Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS NANO 2023; 17:263-274. [PMID: 36354372 DOI: 10.1021/acsnano.2c07300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis. Moreover, most current preparation methods for microbubbles are uncontrollable, and the as-obtained microbubbles are unstable in aqueous solution or under ultrasound. Here, we report a strategy to prepare superiorly stable microbubbles with three-layer structures by the ethanol-water exchange. This versatile method can also be applied to prepare different kinds of protein microbubbles with various sizes for advanced biomedical applications. To demonstrate this, the protein air microbubbles are created, which is stable in water for several days with intact structures and exhibits excellent contrast-enhanced ultrasound imaging. Moreover, the protein air microbubbles can also deliver a mass of drugs while maintaining their stable structures, making them a platform for ultrasound imaging-guided drug delivery. The versatile protein air microbubbles have great potential for the design and application of theranostic platforms.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jiaomei Mi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jinxu He
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
17
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
19
|
Chen C, Perera R, Kolios MC, Wijkstra H, Mischi M, Exner AA, Turco S. Pharmacokinetic modeling of PSMA-targeted nanobubbles for quantification of extravasation and binding in mice models of prostate cancer. Med Phys 2022; 49:6547-6559. [PMID: 36049109 PMCID: PMC9588563 DOI: 10.1002/mp.15962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Contrast-enhanced ultrasound (CEUS) by injection of microbubbles (MBs) has shown promise as a cost-effective imaging modality for prostate cancer (PCa) detection. More recently, nanobubbles (NBs) have been proposed as novel ultrasound contrast agents. Unlike MBs, which are intravascular ultrasound contrast agents, the smaller diameter of NBs allows them to cross the vessel wall and target specific receptors on cancer cells such as the prostate-specific membrane antigen (PSMA). It has been demonstrated that PSMA-targeted NBs can bind to the receptors of PCa cells and show a prolonged retention effect in dual-tumor mice models. However, the analysis of the prolonged retention effect has so far been limited to qualitative or semi-quantitative approaches. METHODS This work introduces two pharmacokinetics models for quantitative analysis of time-intensity curves (TICs) obtained from the CEUS loops. The first model is based on describing the vascular input by the modified local density random walk (mLDRW) model and independently interprets TICs from each tumor lesion. Differently, the second model is based on the reference-tissue model, previously proposed in the context of nuclear imaging, and describes the binding kinetics of an indicator in a target tissue by using a reference tissue where binding does not occur. RESULTS Our results show that four estimated parameters, β,β / λ $\beta /\lambda $ ,β + / β - ${\beta }_ + /{\beta }_ - $ , for the mLDRW-input model, and γ for the reference-based model, were significantly different (p-value <0.05) between free NBs and PSMA-NBs. These parameters estimated by the two models demonstrate different behaviors between PSMA-targeted and free NBs. CONCLUSIONS These promising results encourage further quantitative analysis of targeted NBs for improved cancer diagnostics and characterization.
Collapse
Affiliation(s)
- Chuan Chen
- Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Reshani Perera
- Case Western Reserve University, Cleveland, Ohio, United States
| | | | - Hessel Wijkstra
- Eindhoven University of Technology, Eindhoven, the Netherlands
- Universtity Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Massimo Mischi
- Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Agata A. Exner
- Case Western Reserve University, Cleveland, Ohio, United States
| | - Simona Turco
- Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
20
|
Wang J, Chen S, Zhang J, Wu J. Scutellaria baicalensis georgi is a promising candidate for the treatment of autoimmune diseases. Front Pharmacol 2022; 13:946030. [PMID: 36188625 PMCID: PMC9524225 DOI: 10.3389/fphar.2022.946030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases a group of disorders elicited by unexpected outcome of lymphocytes self-tolerance failure, and the common members of which include multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, rheumatoid arthritis, and type 1 diabetes mellitus, etc. The pathogenesis of autoimmune diseases is not fully understood and the current therapeutic regimen’s inefficacy in certain cases coupled with low rates of success, exorbitant financial burden, as well as numerous side effects, which do open new avenues for the role of natural products as novel therapeutic agents for auto-inflammatory disorders. Scutellaria baicalensis Georgi is a well-known and widely-recognized herbal medicine with certain ameliorative effect on diverse inflammation-involved dysfunction. Though recent advances do highlight its potential to be applied in the fight against autoimmune diseases, the specific mechanism and the related opinion on the exploring possibility are still limited which hampered the further progress. Here in this timeline review, we traced and collected the evidence of how Scutellaria baicalensis Georgi and its bioactive contents, namely baicalin, baicalein, wogonoside and wogonin affect autoimmune diseases. Moreover, we also discussed the clinical implications and therapeutic potential of Scutellaria baicalensis Georgi and its bioactive contents in autoimmune diseases treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy and Emergency, Yaan People’s Hospital, Yaan, PR, China
| | - Shanshan Chen
- Department of Pharmacy and Emergency, Yaan People’s Hospital, Yaan, PR, China
| | - Jizhou Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR, China
- *Correspondence: Jiasi Wu,
| |
Collapse
|
21
|
The unique second wave phenomenon in contrast enhanced ultrasound imaging with nanobubbles. Sci Rep 2022; 12:13619. [PMID: 35948582 PMCID: PMC9365822 DOI: 10.1038/s41598-022-17756-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/30/2022] [Indexed: 12/19/2022] Open
Abstract
Investigation of nanobubble (NB) pharmacokinetics in contrast-enhanced ultrasound (CEUS) at the pixel level shows a unique phenomenon where the first pass of the contrast agent bolus is accompanied by a second wave. This effect has not been previously observed in CEUS with microbubbles. The objective of this study was to investigate this second-wave phenomenon and its potential clinical applications. Seven mice with a total of fourteen subcutaneously-implanted tumors were included in the experiments. After injecting a bolus of NBs, the NB-CEUS images were acquired to record the time-intensity curves (TICs) at each pixel. These TICs are fitted to a pharmacokinetic model which we designed to describe the observed second-wave phenomenon. The estimated model parameters are presented as parametric maps to visualize the characteristics of tumor lesions. Histological analysis was also conducted in one mouse to compare the molecular features of tumor tissue with the obtained parametric maps. The second-wave phenomenon is evidently shown in a series of pixel-based TICs extracted from either tumor or tissues. The value of two model parameters, the ratio of the peak intensities of the second over the first wave, and the decay rate of the wash-out process present large differences between malignant tumor and normal tissue (0.04 < Jessen-Shannon divergence < 0.08). The occurrence of a second wave is a unique phenomenon that we have observed in NB-CEUS imaging of both mouse tumor and tissue. As the characteristics of the second wave are different between tumor and tissue, this phenomenon has the potential to support the diagnosis of cancerous lesions.
Collapse
|
22
|
Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Ramirez DG, Reusch JEB, Keller AC. (-)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. PLANTA MEDICA 2022; 88:735-744. [PMID: 35777366 PMCID: PMC9343939 DOI: 10.1055/a-1843-9855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 06/09/2023]
Abstract
Diabetes is a life-threatening and debilitating disease with pathological hallmarks, including glucose intolerance and insulin resistance. Plant compounds are a source of novel and effective therapeutics, and the flavonoid (-)-epicatechin, common to popular foods worldwide, has been shown to improve carbohydrate metabolism in both clinical studies and preclinical models. We hypothesized that (-)-epicatechin would alleviate thermoneutral housing-induced glucose intolerance. Male rats were housed at either thermoneutral (30 °C) or room temperature (24 °C) for 16 weeks and gavaged with either 1 mg/kg body weight or vehicle for the last 15 days before sacrifice. Rats housed at thermoneutrality had a significantly elevated serum glucose area under the curve (p < 0.05) and reduced glucose-mediated insulin secretion. In contrast, rats at thermoneutrality treated with (-)-epicatechin had improved glucose tolerance and increased insulin secretion (p < 0.05). Insulin tolerance tests revealed no differences in insulin sensitivity in any of the four groups. Pancreatic immunohistochemistry staining showed significantly greater islet insulin positive cells in animals housed at thermoneutrality. In conclusion, (-)-epicatechin improved carbohydrate tolerance via increased insulin secretion in response to glucose challenge without a change in insulin sensitivity.
Collapse
Affiliation(s)
- Ji Hye Chun
- Aquillius Corp., San Diego, CA, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Melissa M. Henckel
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Leslie A. Knaub
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Sara E. Hull
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Greg B. Pott
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - David G. Ramirez
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Jane E.-B. Reusch
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Amy C. Keller
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| |
Collapse
|
23
|
Pham VT, Ciccaglione M, Ramirez DG, Benninger RKP. Ultrasound Imaging of Pancreatic Perfusion Dynamics Predicts Therapeutic Prevention of Diabetes in Preclinical Models of Type 1 Diabetes. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1336-1347. [PMID: 35473669 PMCID: PMC9149043 DOI: 10.1016/j.ultrasmedbio.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In type 1 diabetes (T1D), immune-cell infiltration into islets of Langerhans (insulitis) and β-cell decline occur years before diabetes presents. There is a lack of validated clinical approaches for detecting insulitis and β-cell decline, to diagnose eventual diabetes and monitor the efficacy of therapeutic interventions. We previously determined that contrast-enhanced ultrasound measurements of pancreas perfusion dynamics predict disease progression in T1D pre-clinical models. Here, we test whether these measurements predict therapeutic prevention of T1D. We performed destruction-reperfusion measurements with size-isolated microbubbles in non-obese diabetic (NOD)-severe combined immunodeficiency (SCID) mice receiving an adoptive transfer of diabetogenic splenocytes. Mice received vehicle control or the following treatments: (i) anti-CD3 to block T-cell activation; (ii) anti-CD4 to deplete CD4+ T cells; (iii) verapamil to reduce β-cell apoptosis; or (iv) tauroursodeoxycholic acid (TUDCA) to reduce β-cell endoplasmic reticulum stress. We compared measurements of pancreas perfusion dynamics with subsequent progression to diabetes. Anti-CD3, anti-CD4, and verapamil delayed diabetes development. Blood flow dynamics was significantly altered in treated mice with delayed/absent diabetes development compared with untreated mice. Conversely, blood flow dynamics in treated mice with unchanged diabetes development was similar to that in untreated mice. Thus, measurement of pancreas perfusion dynamics predicts the successful prevention of diabetes. This strategy may provide a clinically deployable predictive marker for therapeutic prevention in asymptomatic T1D.
Collapse
Affiliation(s)
- Vinh T Pham
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark Ciccaglione
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
24
|
Miceli V, Fornasier M, Bulati M, Amico G, Conaldi PG, Casu A, Murgia S. In Vitro Evaluation of Nanoerythrosome Cytotoxicity and Uptake in Pancreatic Endothelial Cells: Implications for β-Cell Imaging Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3403-3411. [PMID: 35262354 DOI: 10.1021/acs.langmuir.1c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomolecule-targeted imaging represents one of the most difficult challenges in medicine. Nanoerythrosomes (NERs) are nanovesicles obtained after lysis of red blood cells, and they are promising tools for drug delivery and imaging. In this work, a formulation based on NERs functionalized with 7-amino-3-methylcoumarin via cross-linking was tested on rat INS-1E and mouse MIN6 β-cells and endothelial MSI cell lines. First, the morphology, size, ζ-potentials, and spectroscopic properties of the aggregates were investigated, highlighting that the functionalization did not significantly affect the nanoparticles' physicochemical features. In vitro, the nanoparticles did not significantly affect the proliferation and function of INS-1E and MIN6 β-cells at different concentrations. Only at the highest concentration tested on the MSI cell line, the formulation inhibited proliferation. Furthermore, NER aggregates were not internalized in both INS-1E and MIN6 cell lines, while a diffuse fluorescence was noticed in the cytosol of the MSI cell line at the highest concentrations. These findings proved that NER formulations might represent a new nanotool for β-cell imaging as a part of a strategy aimed to prevent any intracellular accumulation, thus reducing/avoiding side effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Marco Fornasier
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. bivio Sestu, 09042-I Monserrato, Italy
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Ri.MED Foundation, via Bandiera 11, I-90133 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Anna Casu
- Translational Research Institute─AdventHealth, Orlando, Florida 32804, United States
- Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), via E. Tricomi 5, I-90127 Palermo, Italy
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Department of Life and Environmental Sciences, University of Cagliari and CSGI, via Ospedale 72, I-09124 Cagliari, Italy
| |
Collapse
|
25
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
26
|
Nielsen MB, Søgaard SB, Bech Andersen S, Skjoldbye B, Hansen KL, Rafaelsen S, Nørgaard N, Carlsen JF. Highlights of the development in ultrasound during the last 70 years: A historical review. Acta Radiol 2021; 62:1499-1514. [PMID: 34791887 DOI: 10.1177/02841851211050859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review looks at highlights of the development in ultrasound, ranging from interventional ultrasound and Doppler to the newest techniques like contrast-enhanced ultrasound and elastography, and gives reference to some of the valuable articles in Acta Radiologica. Ultrasound equipment is now available in any size and for any purpose, ranging from handheld devices to high-end devices, and the scientific societies include ultrasound professionals of all disciplines publishing guidelines and recommendations. Interventional ultrasound is expanding the field of use of ultrasound-guided interventions into nearly all specialties of medicine, from ultrasound guidance in minimally invasive robotic procedures to simple ultrasound-guided punctures performed by general practitioners. Each medical specialty is urged to define minimum requirements for equipment, education, training, and maintenance of skills, also for medical students. The clinical application of contrast-enhanced ultrasound and elastography is a topic often seen in current research settings.
Collapse
Affiliation(s)
- Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Bech Andersen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Skjoldbye
- Department of Radiology, Aleris-Hamlet Hospitals, Copenhagen Denmark
| | - Kristoffer Lindskov Hansen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Rafaelsen
- Department of Radiology, University Hospital of Southern Denmark, Vejle, Denmark
- Faculty of Health Sciences, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Nis Nørgaard
- Department of Urology, Herlev Gentofte Hospital, Copenhagen, Denmark
| | - Jonathan F. Carlsen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Detecting insulitis in type 1 diabetes with ultrasound phase-change contrast agents. Proc Natl Acad Sci U S A 2021; 118:2022523118. [PMID: 34607942 DOI: 10.1073/pnas.2022523118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing β cells within the pancreatic islets of Langerhans (insulitis). Early diagnosis during presymptomatic T1D would allow for therapeutic intervention prior to substantial β-cell loss at onset. There are limited methods to track the progression of insulitis and β-cell mass decline. During insulitis, the islet microvasculature increases permeability, such that submicron-sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Submicron nanodroplet (ND) phase-change agents can be vaporized into micron-sized bubbles, serving as a microbubble precursor. We tested whether NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in nonobese diabetic (NOD) mice and NOD;Rag1ko controls and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10-wk-old NOD mice following ND infusion and vaporization but was absent in both the noninfiltrated kidney of NOD mice and the pancreas of Rag1ko controls. High-contrast elevation also correlated with rapid diabetes onset. Elevated contrast was also observed as early as 4 wk, prior to mouse insulin autoantibody detection. In the pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression, to guide and assess preventative therapeutic interventions for T1D.
Collapse
|
28
|
Abstract
Low-intensity ultrasound-triggered sonodynamic therapy (SDT) is a promising noninvasive therapeutic modality due to its strong tissue penetration ability. In recent years, with the development of nanotechnology, nanoparticle-based sonosensitizer-mediated SDT has been widely investigated. With the increasing demand for precise and personalized treatment, abundant novel sonosensitizers with imaging capabilities have been developed for determining the optimal therapeutic window, thus significantly enhancing treatment efficacy. In this review, we focus on the molecular imaging-guided SDT. The prevalent mechanisms of SDT are discussed, including ultrasonic cavitation, sonoluminescence, reactive oxygen species, and mechanical damage. In addition, we introduce the major molecular imaging techniques and the design principles based on nanoparticles to achieve efficient imaging. Furthermore, the imaging-guided SDT for the treatment of cancer, bacterial infections, and vascular diseases is summarized. The ultimate goal is to design more effective imaging-guided SDT modalities and provide novel ideas for clinical translation of SDT.
Collapse
Affiliation(s)
- Juan Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chaohui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
29
|
Exner AA, Kolios MC. Bursting Microbubbles: How Nanobubble Contrast Agents Can Enable the Future of Medical Ultrasound Molecular Imaging and Image-Guided Therapy. Curr Opin Colloid Interface Sci 2021; 54:101463. [PMID: 34393610 PMCID: PMC8356903 DOI: 10.1016/j.cocis.2021.101463] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of medical ultrasound has undergone a significant evolution since the development of microbubbles as contrast agents. However, due to their size, microbubbles remain in the vasculature, and therefore have limited clinical applications. Building a better - and smaller - bubble can expand the applications of contrast-enhanced ultrasound by allowing bubbles to extravasate from blood vessels - creating new opportunities. In this review, we summarize recent research on the formulation and use of NBs as imaging agents and as therapeutic vehicles. We discuss the ongoing debates in the field and reluctance to accepting NBs as an acoustically active construct and a potentially impactful clinical tool that can help shape the future of medical ultrasound. We hope that the overview of key experimental and theoretical findings in the NB field presented in this paper provides a fundamental framework that will help clarify NB-ultrasound interactions and inspire engagement in the field.
Collapse
Affiliation(s)
- Agata A. Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
30
|
Moore C, Borum RM, Mantri Y, Xu M, Fajtová P, O'Donoghue AJ, Jokerst JV. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. ACS Sens 2021; 6:2356-2365. [PMID: 34038103 PMCID: PMC8375416 DOI: 10.1021/acssensors.1c00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activatable contrast agents are of ongoing research interest because they offer low background and high specificity to the imaging target. Engineered sensitivity to protease activity is particularly desirable because proteases are critical biomarkers in cancer, infectious disease, inflammatory disorders, and so forth. Herein, we developed and characterized a set of peptide-linked cyanine conjugates for dual-modal detection of protease activity via photoacoustic (PA) and fluorescence imaging. The peptide-dye conjugates were designed to undergo contact quenching via intramolecular dimerization and contained n dyes (n = 2, 3, or 4) with n - 1 cleavable peptide substrates. The absorption peaks of the conjugates were blue-shifted 50 nm relative to the free dye and had quenched fluorescence. This effect was sensitive to solvent polarity and could be reversed by solvent switching from water to dimethyl sulfoxide. Employing trypsin as a model protease, we observed a 2.5-fold recovery of the peak absorbance, 330-4600-fold fluorescent enhancement, and picomolar detection limits following proteolysis. The dimer probe was further characterized for PA activation. Proteolysis released single dye-peptide fragments that produced a 5-fold PA enhancement through the increased absorption at 680 nm with nanomolar sensitivity to trypsin. The peptide substrate could also be tuned for protease selectivity; as a proof-of-concept, we detected the main protease (Mpro) associated with the viral replication in SARS-CoV-2 infection. Last, the activated probe was imaged subcutaneously in mice and signal was linearly correlated to the cleaved probe. Overall, these results demonstrate a tunable scaffold for the PA molecular imaging of protease activity with potential value in areas such as disease monitoring, tumor imaging, intraoperative imaging, in vitro diagnostics, and point-of-care sensing.
Collapse
Affiliation(s)
- Colman Moore
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Raina M Borum
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Jafari Sojahrood A, de Leon AC, Lee R, Cooley M, Abenojar EC, Kolios MC, Exner AA. Toward Precisely Controllable Acoustic Response of Shell-Stabilized Nanobubbles: High Yield and Narrow Dispersity. ACS NANO 2021; 15:4901-4915. [PMID: 33683878 PMCID: PMC7992193 DOI: 10.1021/acsnano.0c09701] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the pressure dependence of the nonlinear behavior of ultrasonically excited phospholipid-stabilized nanobubbles (NBs) is important for optimizing ultrasound exposure parameters for implementations of contrast enhanced ultrasound, critical to molecular imaging. The viscoelastic properties of the shell can be controlled by the introduction of membrane additives, such as propylene glycol as a membrane softener or glycerol as a membrane stiffener. We report on the production of high-yield NBs with narrow dispersity and different shell properties. Through precise control over size and shell structure, we show how these shell components interact with the phospholipid membrane, change their structure, affect their viscoelastic properties, and consequently change their acoustic response. A two-photon microscopy technique through a polarity-sensitive fluorescent dye, C-laurdan, was utilized to gain insights on the effect of membrane additives to the membrane structure. We report how the shell stiffness of NBs affects the pressure threshold (Pt) for the sudden amplification in the scattered acoustic signal from NBs. For narrow size NBs with 200 nm mean size, we find Pt to be between 123 and 245 kPa for the NBs with the most flexible membrane as assessed using C-Laurdan, 465-588 kPa for the NBs with intermediate stiffness, and 588-710 kPa for the NBs with stiff membranes. Numerical simulations of the NB dynamics are in good agreement with the experimental observations, confirming the dependence of acoustic response to shell properties, thereby substantiating further the development in engineering the shell of ultrasound contrast agents. The viscoelastic-dependent threshold behavior can be utilized for significantly and selectively enhancing the diagnostic and therapeutic ultrasound applications of potent narrow size NBs.
Collapse
Affiliation(s)
- Amin Jafari Sojahrood
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Al C. de Leon
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Richard Lee
- Light
Microscopy Imaging Core, Case Western Reserve
University, Cleveland, Ohio 44106, United
States
| | - Michaela Cooley
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric C. Abenojar
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Agata A. Exner
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
32
|
Thomas AN, Song KH, Upadhyay A, Papadopoulou V, Ramirez D, Benninger RKP, Lowerison M, Song P, Murray TW, Borden MA. Contrast-Enhanced Sonography with Biomimetic Lung Surfactant Nanodrops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2386-2396. [PMID: 33566623 PMCID: PMC8988746 DOI: 10.1021/acs.langmuir.0c03349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanodrops comprising a perfluorocarbon liquid core can be acoustically vaporized into echogenic microbubbles for ultrasound imaging. Packaging the microbubble in its condensed liquid state provides some advantages, including in situ activation of the acoustic signal, longer circulation persistence, and the advent of expanded diagnostic and therapeutic applications in pathologies which exhibit compromised vasculature. One obstacle to clinical translation is the inability of the limited surfactant present on the nanodrop to encapsulate the greatly expanded microbubble interface, resulting in ephemeral microbubbles with limited utility. In this study, we examine a biomimetic approach to stabilize an expanding gas surface by employing the lung surfactant replacement, beractant. Lung surfactant contains a suite of lipids and proteins that provide efficient shuttling of material from bilayer folds to the monolayer surface. We hypothesized that beractant would improve stability of acoustically vaporized microbubbles. To test this hypothesis, we characterized beractant surface dilation mechanics and revealed a novel biophysical phenomenon of rapid interfacial melting, spreading, and resolidification. We then harnessed this unique functionality to increase the stability and echogenicity of microbubbles produced after acoustic droplet vaporization for in vivo ultrasound imaging. Such biomimetic lung surfactant-stabilized nanodrops may be useful for applications in ultrasound imaging and therapy.
Collapse
Affiliation(s)
- Alec N Thomas
- Department of Mechanical Engineering, University of Colorado, Boulder 80309, Colorado, United States
- Institute of Biomedical Engineering, Oxford University, Oxford OX3 7DQ, U.K
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado, Boulder 80309, Colorado, United States
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado, Boulder 80309, Colorado, United States
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill 27514, North Carolina, United States
| | - David Ramirez
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder 80045, Colorado, United States
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder 80045, Colorado, United States
| | - Matthew Lowerison
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign 61801, Colorado, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign 61801, Colorado, United States
| | - Pengfei Song
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign 61801, Colorado, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign 61801, Colorado, United States
| | - Todd W Murray
- Department of Mechanical Engineering, University of Colorado, Boulder 80309, Colorado, United States
- Department of Biomedical Engineering, University of Colorado, Boulder 80309, Colorado, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder 80309, Colorado, United States
- Department of Biomedical Engineering, University of Colorado, Boulder 80309, Colorado, United States
| |
Collapse
|
33
|
Pellow C, Tan J, Chérin E, Demore CEM, Zheng G, Goertz DE. High frequency ultrasound nonlinear scattering from porphyrin nanobubbles. ULTRASONICS 2021; 110:106245. [PMID: 32932144 DOI: 10.1016/j.ultras.2020.106245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Emerging contrast imaging studies have highlighted the potential of nanobubbles for both intravascular and extravascular applications. Reports to date on nanobubbles have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and B-mode or contrast-mode on preclinical and clinical systems. However, none of these studies directly examined nanobubble acoustic signatures systematically to implement nonlinear imaging schemes in a methodical manner based on nanobubble behaviour. Here, nanobubble nonlinear behaviour is investigated at high frequencies (12.5, 25, 30 MHz) and low concentration (106 mL-1) in a channel phantom, with different pulse types in single- and multi-pulse sequences to examine behaviour under conditions relevant to high frequency imaging. Porphyrin nanobubbles are demonstrated to initiate nonlinear scattering at high frequencies in a pressure-threshold dependent manner, as previously observed at low frequencies. This threshold behaviour was then utilized to demonstrate enhanced nanobubble imaging with pulse inversion, amplitude modulation, and a combination of the two, progressing towards the improved sensitivity and expanded utility of these ultrasound contrast agents.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Research Centre, 101 College St., Toronto, ON M5G 0A3, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada.
| | - Josephine Tan
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Emmanuel Chérin
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Christine E M Demore
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Research Centre, 101 College St., Toronto, ON M5G 0A3, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
34
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
35
|
Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors. Am J Cancer Res 2020; 10:11690-11706. [PMID: 33052241 PMCID: PMC7545999 DOI: 10.7150/thno.51316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There has been growing interest in nanobubbles for their potential to extend bubble-mediated ultrasound approaches beyond that of their larger microbubble counterparts. In particular, the smaller scale of nanobubbles may enable them to access the tumor extravascular compartment for imaging and therapy in closer proximity to cancer cells. Compelling preliminary demonstrations of the imaging and therapeutic abilities of nanobubbles have thus emerged, with emphasis on their ability to extravasate. However, studies to date rely on indirect histologic evidence that cannot confirm whether the structures remain intact beyond the vasculature - leaving their extravascular potential largely untapped. Methods: Nanobubble acoustic scattering was assessed using a recently reported ultra-stable formulation at low concentration (106 mL-1) and frequency (1 MHz), over a range of pressures (100-1500 kPa) in a channel phantom. The pressure-dependent response was utilized as a basis for in vivo experiments where ultrasound transmitters and receivers were integrated into a window chamber for simultaneous intravital multiphoton microscopy and acoustic monitoring in tumor-affected microcirculation. Microscopy and acoustic data were utilized to assess passive and active delivery of nanobubbles and determine whether they remained intact beyond the vasculature. Results: Nanobubbles exhibit pressure-dependent nonlinear acoustic scattering. Nanobubbles are also found to have prolonged acoustic vascular pharmacokinetics, and passively extravasate intact into tumors. Ultrasound stimulation of nanobubbles is shown to actively enhance the delivery of both intact nanobubbles and shell material, increasing their spatial bioavailability deeper into the extravascular space. A range of acute vascular effects were also observed. Conclusion: This study presents the first direct evidence that nanobubbles passively and actively extravasate intact in tumor tissue, and is the first to directly capture acute vascular events from ultrasound-stimulation of nanobubbles. The insights gained here demonstrate an important step towards unlocking the potential of nanobubbles and extending ultrasound-based applications.
Collapse
|
36
|
Current Progress and Perspective: Clinical Imaging of Islet Transplantation. Life (Basel) 2020; 10:life10090213. [PMID: 32961769 PMCID: PMC7555367 DOI: 10.3390/life10090213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Islet transplantation has great potential as a cure for type 1 diabetes. At present; the lack of a clinically validated non-invasive imaging method to track islet grafts limits the success of this treatment. Some major clinical imaging modalities and various molecular probes, which have been studied for non-invasive monitoring of transplanted islets, could potentially fulfill the goal of understanding pathophysiology of the functional status and viability of the islet grafts. In this current review, we summarize the recent clinical studies of a variety of imaging modalities and molecular probes for non-invasive imaging of transplanted beta cell mass. This review also includes discussions on in vivo detection of endogenous beta cell mass using clinical imaging modalities and various molecular probes, which will be useful for longitudinally detecting the status of islet transplantation in Type 1 diabetic patients. For the conclusion and perspectives, we highlight the applications of multimodality and novel imaging methods in islet transplantation.
Collapse
|